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Abstract

Identifying and counting of pollen grains in ambient air samples is still a demanding and time-consuming task
even for an experienced microscopist. This article describes a technique which may be employed to establish
a fully automated system for this task. Based on a 3D volume fluorescence image of a pollen grain taken with
a confocal laser scanning microscope, the described system is able to recognize the pollen taxa. The system
autonomously extracts all required information for the recognition from a data base with reference objects
(self-learning system) and only needs to calculate very general purpose features of the volumetric data sets
(so-called gray scale invariants). This allows for easy adaptation of the system to other conditions (e.g., pollen
of a special area) or even other objects than pollen (e.g., spores, bacteria etc.) just by exchanging the reference
data base. When using a reference data base with the 26 most important German pollen taxa, the recognition rate
is 92%. With a special database for allergic purposes recognizing only Corylus, Alnus, Betula, Poaceae, Secale,
Artemisia and “allergically non-relevant” the recognition rate is 97.4%.

Abbreviations: LSM – Laser Scanning Microscope; SVM – Support Vector Machine; FFT – Fast Fourier
Transform; pixel – picture element; voxel – volume element

1. Introduction

Pollen counting is still done by eye. This routine
work is a demanding and time consuming task even
for experienced microscopists. For the conventional
measurement the pollen are sampled with the Burkard
trap. The microscopic samples are not available earlier
than the next day. The quality and reliability of
these routine data vary considerably according to the
motivation and qualification of the pollen counters.

These well known limitations of real-world pollen
data gave reason for a joint project of the German
Weather Service and the MeteoSwiss in cooperation
with the Institute for Computer Science of the Univer-
sity of Freiburg in order to develop a computer based

technique for automatic pollen recognition based on
image recognition techniques. This automated pollen
recognition should provide reproducible data with
known quality and faster availability of the data.

Even though the pattern recognition on images is
widely used in several biological applications, there
are only very few papers in the literature dealing with
pollen recognition, (e.g., Langford et al., 1986; Lang-
ford et al., 1990; France et al., 1997) and most of
them deal with fossil pollen. To the authors’ know-
ledge, there are only two other recent projects aimed
at the automatic identification of airborne pollen
with image recognition techniques; one project in
Australia, which has already been finished, and one
within a joint Italian, French and Spanish EU-project
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called “A.S.T.H.M.A”. Results of both projects were
presented at the “2nd European Symposium on Aero-
biology” in Vienna, Austria from 5-9 September 2000.

In contrast to other approaches we decided to
employ the following:

1. fluorescence microscopy for imaging the pollen
grains

2. the full 3D volumetric data set of each pollen grain
recorded with a confocal laser scanning micro-
scope

3. general purpose “gray-scale invariants” for the
extraction of features of these volumetric data sets

4. a classifier based on “support vector machines”,
which automatically learns how to recognize the
different pollen taxa from a reference data set of
pollen grains.
The employment of the strong primary fluores-

cence of pollen (McCrone and Delly, 1973) eases
their isolation from other components of an air sample
(Figure 1). Furthermore fluorescence images are better
suited for the subsequent 3D analysis of each pollen
grain. Instead of using only 2D views, we record the
full 3D information of the objects. This volumetric
data was recorded with a confocal laser-scanning
microscope, but may also be obtained with a conven-
tional fluorescence microscope and post-processing
(so-called deconvolution) of the acquired images.

For the recognition-software we do not use
the widespread pollen identification schemes which
consist of a step-by-step procedure tailored to meet the
needs and the potential of a human identifier. These
schemes can be transfered on a computer only with
great difficulties.

Therefore we use 3D gray scale invariants, which
are able to classify objects independent from their
position and orientation in space. These abstract
features can be directly calculated from the recorded
3D gray value distribution of the pollen grain.

The classification is done with “support vector
machines” which were trained with a reference data
base. This “computer-optimized” way of object recog-
nition has several advantages: by simply exchanging
the reference data base and retraining the classifier one
can adapt the system to special conditions or even use
it for objects other than pollen.

2. Methods

2.1 Sampling and preparation

To set up a reference data base, the pollen grains
were directly collected from the plants of interest in
order to prepare pure samples of each pollen taxa.
This approach ensured that the pollen were correctly
labeled. As a limitation it has to be considered that
these pollen may have less variations in size and
morphology than airborne pollen because the pollen
for each taxa were taken just from one plant.

Furthermore our reference pollen are not expected
to have deformations due to sampling stress in the
Burkard trap and there are no contaminated or agglo-
merated pollen grains.

The pollen grains were mounted on glass slides
and embedded in a 88% glycerine solution suitable for
fluorescence microscopy at any wavelength.

Accordingly treated samples were prepared for
pollen of the following plant taxa:

Acer, Artemisia, Alnus, Alnus viridis, Betula,
Carpinus, Corylus, Chenopodium, Compositae,
Cruciferae, Fagus, Quercus, Aesculus, Juglans,
Fraxinus, Plantago, Platanus, Poaceae, Secale,
Rumex, Populus, Salix, Taxus, Tilia, Ulmus, Urtica.

2.2 Fluorescence microscopy

For conventional pollen counting translucent micro-
scopy is used. The pollen recognition at ambient
air samples is complicated due to the huge variety
of particles, which are not only of biological origin
(Figure 1a). The strong primary fluorescence of pollen
provides an easy accessible feature which allows
a reliabe isolation from the background and from
most other particles (either organic or inorganic)
(Figure 1b). We obtained the images of the best signal
to noise ratio when using blue excitation light (about
450nm) and recording the green to yellow emission of
the pollen grains.

Furthermore fluorescence microscopic recordings
have great advantages if reconstructing volumetric
data from an image stack (see next section).

2.3 3D volume imaging

Even for a human pollen counter it is hard to recognize
a pollen of an unfavorable orientation from a single
2D view. As today’s computer codes are still by far
less capable in object recognition than a human, the
identification of all the pollen from a single 2D image
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Figure 1. Ambient particle sample collected with a Burkard trap on April 3, 2000 at an urban site in Freiburg recorded with a) translucent and
b) fluorescence microscopy. The strong primary fluorescence of pollen grains can be used for a simple and robust selection and segmentation.

Figure 2. Translucent (a) and fluorescence (b) microscopic images of a Betula pollen grain recorded with a 100x oil-objective at different
vertical positions. The rightmost image shows a vertical cut through the recorded volume image which was constructed of 256 single images.

is extremely unlikely. This result was also found by
Mazière (1997).

To obtain more information, the human focuses
onto different focus planes of the pollen grain. Simil-
arly we record several planes in z-direction and stack
them up to a volume image. Translucent microscopy is
not well suited for this technique, because the recorded
images are the result of a complicated integral of light
defraction and refraction due to the inhomogeneities
of the refraction coefficient inside the pollen grain and
its surrounding.

This effect becomes obvious, when comparing the
image from the lower edge (z = −7.5µm) and the
upper edge (z = +7.5µm) of the pollen grain in
Figure 2a: The upper edge appears much brighter,
because the whole pollen acts as a lens and partly
focuses the incoming parallel light on it. This effect
can clearly be seen in the vertical cut of the translu-

cent volume image. Furthermore the pollen appears
stretched in z-direction and the upper pore is nearly
invisible.

In fluorescence microscopy all fluorescence active
molecules of the pollen act as small light sources
(Figure 2b). The resulting image therefore can be
regarded as the measurement of the local fluores-
cence activity, which is largely independent from the
direction of viewing and the direction of illumination.

A general problem of imaging systems is that
the true image of the focused plane of the object is
disturbed by the light originating from other object
planes, which are out of focus. In order to eliminate
the light from these non-focused parts, one can use
the confocal microscopy, which eliminates this light
by hardware components to provide images with the
highest quality but very costly. An alternative are the
so-called deconvolution techniques, which remove the
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light dispersion by post-processing the digital images
taken with a conventional fluorescence microscope.
For the development of the recognition software we
started with high-quality images from a confocal laser-
scan microscope.

To investigate the capabilities of deconvolution
techniques, image stacks of some pollen have been
recorded with a normal fluorescence microscope and
have been subjected to a deconvolution using the point
spread function of the imaging system, which had
been measured by means of very small fluorescing
spheres, so-called “beads”. The algorithm used imple-
ments the optimal Wiener-Filter. In contrast to other
deconvolution systems we use multiple recordings of
the same bead to measure the Signal-to-Noise Ratio
for each frequency component. This results in a filter,
which is not optimized for a special class of objects,
but ensures, that no information is lost due to the
filtering process.

2.4 Pattern recognition with gray-scale invariants

The general way of object recognition is first to extract
appropriate features from the unknown object and
then to start a classification based on the resulting set
of parameters, with the aim to find the best match
between the parameters of the unknown object and the
parameters of the labeled objects in a database.

There are mainly two ways to realize an auto-
matic pattern recognition system. The first is to extract
highly abstract features from the images, like the
“number of pores”, which means to put all “intelli-
gence” of the software to the feature extraction part.
This keeps the classifier very simple, but usually needs
high efforts in the development of a big collection of
highly object-specific functions, e.g., the pore finder,
which must be adapted to every pollen species, or even
to each possible orientation of a pore.

The alternative is to keep the feature extraction as
general as possible and to use a more sophisticated
classifier, which can be trained with given samples
from a reference data base. The advantage of such
an approach is the easy adaption to different envir-
onmental conditions or even other objects just by
exchanging the reference data base and rerunning the
training program.

A quite simple but very powerful way of a general
feature extraction is the calculation of so-called “gray-
scale invariants” (Schulz-Mirbach, 1995; Burkhardt
and Siggelkow, 2001). The gray-scale invariants do
not need any segmentation within the object, but

operate directly on the gray-values of the image.
Furthermore they are not limited to two-dimensional
image data and can be straightforwardly extended
to three-dimensional volumetric data (Schael and
Siggelkow, 2000).

The aim of such an invariant feature is the
following: The scanned 3D volume data set represents
one individual pollen grain, independent of its posi-
tion and orientation in space. This means, that the
3D volume data set of one individual pollen grain,
in all possible positions and orientations (Euclidian
motion), represent exactly one equivalence class. An
invariant transformation is able to map all representa-
tions in the vector space of the equivalence class into
one point of the feature space and there represents the
intrinsic information of the structure, independent of
its position and orientation.

The basic idea for the calculation of these invari-
ants is to take a small non-linear kernel function f (X)

for combining some neighboring pixels1 or voxels2

and to integrate the results of this function over all
possible representations in the equivalence class.

T [f ](X) := 1

|G|
∫

G

f (gX)dg (1)

X : gray-value image

G : transformation group

|G| : number of elements in the transformation
group

g : one element of the transformation group

For stiff or at least partially quite stiff objects
like pollen, these different representations can be
described with a simple euclidian transformation
(rotation and translation) of the object:

T [f ](X) := 1

2πN

∫ �xmax

�x=�0

∫ 2π

ϕ=0
f (g�x,ϕX)dϕd �x (2)

�Xmax : extension of the image

N : number of pixels/voxels in the image

Actually, it is not necessary to transform the full image
to all possible representations, instead the kernel func-
tion can be appropriately transformed, which conside-
rably speeds up the computation and results in linear
complexity of the algorithm. This is illustrated by an
example in Figure 3.

A further speedup of this still expensive calculation
is done for a special class of kernel functions by using
a convolution with the image of a circle (or in 3D a
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Figure 3. Calculation of a 2D gray-scale invariant: (a) Selection of a non-linear kernel function for combining some neighboring pixels: In this
example the kernel function f(X) is defined as the multiplication of two gray values of distance 3. (b) This kernel function is evaluated for all
angles and the results are summed up, to become invariant to rotations of the object. (c) This set of rotated kernel functions is evaluated at all
possible positions of the image and the results are summed up, to become invariant to translations of the object. As a result, identical values for
T are obtained independent from the angle and position of the object in the image.

sphere surface) C. This convolution may be calculated
by means of the Fast Fourier Transform (FFT). For
kernel functions of the type

f (X) = a
(

X(�0)
)

· b
(

X(�q)
)

(3)

a, b : any functions that transform the gray values

�q : span of the kernel function

one can rewrite Equation 2 for the two-dimensional
case using

A := a(X) (4)

B := b(X) (5)

as

T [f ](X) := (6)

1

2πNxNy

∫ Nx

x=0

∫ Ny

y=0
A(x, y)

∫ 2π

ϕ=0
B (x + |�q|cos(ϕ), y + |�q|sin(ϕ)) dϕ dxdy

which then could be rewritten with a convolution
(denoted as ∗) as

T [f ](X) := (7)

1

2πNxNy

∫ Nx

x=0

∫ Ny

y=0
A(x, y) · (B ∗ C) (x, y) dxdy

where C(x, y) =
{

1 : √
x2 + y2 = |�q|

0 : elsewhere

This again is illustrated for one example in Figure 4.
A more general method to save computing costs

has been described by Siggelkow and Schael (1999):
the considered features are computed only approxi-
mately with the required precision.

Even though these features were designed to be
only invariant to euclidian transformations, due to the
finite kernel support they are additionally quite robust
against other transformations like articulated motion
or even slight topological deformations (Burkhardt
and Siggelkow, 2001).

To adjust the gray scale invariants to a specific
problem, one uses different kernel functions. This
allows an easy construction of features that provide
the required discrimination power. Using a small-scale
kernel results in a feature which is sensitive to small-
scale structures of the object. For example coarse
or fine-grained plasm. Correspondingly large-scale
kernels sense the large-scale structure of the object,
e.g., the difference between spherical and ellipsoid
objects.

For the pollen recognition we use just two kernel
functions,

f1(X) = X(0, 0, 0) · X(0, 0, 2) (8)

f2(X) = √
X(0, 0, 0) · √

X(0, 0, 2) (9)

which are evaluated at 7 different scalings of the object
(1:1, 1:2, 1:4, 1:8, 1:16, 1:32 and 1:64), resulting in
a vector of 14 features that describe the object under
consideration. Since the gray scale values of the input
image were normalized to unit variance the elements
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Figure 4. Fast calculation of a special class of gray scale invariants: (a) The sequential evaluation of the rotated kernel functions (as shown in
Figure 3b) is split into two steps. Step 1: the gray values touched by the second kernel point within the rotation are summed up. Step 2: the
result is multiplied with the gray value of the first kernel point. (b) step 1 could now be replaced by a pixel-wise multiplication with an image
of a circle and the Integration of the results. (c) The evaluation of step 1 for all positions in the image is a simple convolution which could
efficiently be calculated by means of the Fast Fourier Transform (FFT).

of the resulting feature vector are in the range [−1 : 1]
corresponding to normalized correlation coefficients.

The 14 dimensional feature vector is computed for
each object. Therefore each object is represented by
one point in the 14-dimensional feature space. If the
selected features were good, the points belonging to
one class, e.g., all Corylus-pollen form a cluster which
is clearly separated from clusters belonging to other
classes. The task of the classifier is to decide to which
of these clusters an unknown object belongs.

As a first approach we used the standard
Mahalanobis-classifier, which models each of these
clusters by a Gaussian probability distribution. So
recognition rates of about 70% were achieved. A
higher recognition rate is achieved by the so-called
support vector machines (Vapnik, 1995) which we
are using at present. The principal idea behind the
support vector machine is to describe the clusters by
searching for the thickest hyperplane, which separates
this cluster from the remaining points. As the clusters
are usually not linear separable (which means separ-
able by a hyperplane in the original feature space)
the points are transformed into a higher dimensional
space, where they are linear separable. This trans-
formation just leads to a redefinition of the distance
function in the original feature space, which will be

expressed by means of a kernel function. The big
advantage of support vector machines is, that they
have an unambiguous global optimum and that the
training process will find this optimum. Furthermore
they are easy to handle, perform very well for low
numbers of reference samples3 and, last but not least,
one can just download powerful and easy to use SVM
implementations from the internet (e.g., Joachims,
2001) . A good introduction to the theory of SVMs
is given by C.J. Burges Tutorial (Burges, 1998).

2.5 Measuring the recognition rate

For measuring the quality of our recognition system,
we have used a reference data base with the 26 most
relevant German pollen taxa. 3D volume data sets
of about 15 samples from each pollen taxon were
recorded with a resolution of ca. 5 voxels/µm in each
direction using a confocal laser scanning microscope
with a 40x oil-objective, an excitation wavelength of
450–490nm and an emission wavelength greater than
510nm.

With these 385 high-quality volumetric pollen
images we tested our recognition system using the
“leave one out” technique. That means: the pollen
grain to be classified was taken out and the classi-
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fier was trained with the remaining 384 pollen grains.
After that the left out pollen grain was classified with
the resulting classifier. This was repeated for each
pollen.

As classifier we use a set of 26 SVMs with a Gaus-
sian kernel where each SVM was trained to separate
one particular class from the rest. The radius of the
Gaussian kernel was determined by optimizing the
recognition rate.

3. Results and discussion

The recognition rate for all 26 taxa was about 92%.
The details are listed in Table 1. There for each pollen
taxon the number of correct and incorrect classifi-
cations are shown, where e.g., “1 → Compositae, 1
→ Platanus” besides the Artemisia pollen means, that
one of the Artemisia pollen was incorrectly classified
as a Compositae and one was incorrectly classified as
a Platanus.

For pollen forecasts we are only interested in the
allergically relevant pollen. So it doesn’t matter if the
computer cannot distinguish, for example, between an
Ulmus and a Platanus.

So we can put all these taxa into one class and
end up with a recognition rate for allergically relevant
pollen of 97.4%.

As one can see, the automatic recognition works
nearly perfect on these high-quality pollen images.
This high performance is encouraging enough to test
the procedure with reduced data quality by using
a normal fluorescence microscope with subsequent
deconvolution (see Figure 5) and air samples with
deformed or contaminated pollen. Last but not least
we can use a pollen-calendar to reduce the reference
data base to the seasonal possible set of pollen, which
again should increase the recognition rate.

For establishing this system in a laboratory envir-
onment, one main aspect is the time needed for the
evaluation. Currently the scanning with the LSM takes
about 40s per object (depending on its size) and the
calculation of the 14 gray scale invariants for a 1283

voxel volume takes about 15s on a Pentium II Dual-
Processor PC with 400MHz, so that we end up with a
recognition time of about 1min for each object. This
time will be dramatically reduced by using the normal
fluorescence microscope, which can record the same
3D volume in a few seconds. On the computational
side using a faster processor and perhaps reducing the
resolution by a factor of 2 in each direction could

also reduce the recognition time to a few seconds per
object.

Our current work also focuses on the 2D pre-
recognition of the objects, so that only pollen with an
unfavorable orientation or other doubtful objects have
to be subjected to the relatively time-consuming 3D
recognition.

On the other hand the time needed for the evalu-
ation is less important for an on-line system because
there it is sufficient to evaluate a one-day-sample
within 24 hours.

4. Conclusions and outlook

The utilization of fluorescence microscopy for the
pollen recognition turned out to have considerable
advantages in comparison to translucent microscopy.
First it allows to isolate the pollen from the back-
ground and the other objects, and it allows a straight
forward 3D volume analysis, because one can measure
the local properties of the object largely independent
from its orientation towards the direction of viewing
and illumination.

The 3D information is required for a highly reliable
pollen recognition even by a human, because a single
2D view of a pollen grain of unfavorable orientation
does not contain sufficient information to realize an
unequivocal classification.

The selected gray scale invariants turned out to
be a powerful but simple to use approach for object
recognition on 3D volume data. Up to now, there is
no pollen-specific code in our recognition software,
which makes it reusable for a wide range of other
applications. The only limitation is that the objects
have to be quite stiff within the support of the selected
kernel functions.

It was demonstrated that our system can recog-
nize pollen on the basis of 3D volume data with
good reliability by using data recorded with a confocal
laser scanning microscope, and pollen which are
not deformed or contaminated. The recognition rate
of 92% for all 26 pollen taxa and 97.4% when
combining all allergically irrelevant in one class is
encouraging, and gives reason to test the procedure
with reduced data quality by using a conventional
fluorescence microscope with subsequent deconvolu-
tion (see Figure 5) and air samples with deformed
or contaminated pollen. We expect that the described
approach may in near future replace the tedious and
time consuming work of manual pollen counting.
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Table 1. Classification results using 3D LSM data (leave-one-out classification)

aAllergically relevant pollen.
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Figure 5. deconvolution (“software confocal”) applied to a fluorescence image stack of a Corylus pollen grain recorded with a 100x oil-objective
and a conventional fluorescence microscope. In the original data (a) many details are nearly invisible due to the light originating from the parts
of the pollen grain, which are out of focus. The deconvolution removes this light dispersion resulting in a clear image of each plane (b).

Furthermore, this approach opens up the possibi-
lity to directly integrate such a system into a pollen
sampler resulting in an online pollen monitor.

More information concerning our project including
some 3D volume images of pollen may be found on
our web pages (Ronneberger, 2001).
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Notes

1. Pixels = picture elements.
2. Voxels = volume elements.
3. The rule of thumb, that one needs at least three or more reference

samples of one class per dimension of the feature space does not
apply to them.
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