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Abstract. Soft wavelet shrinkage, total variation (TV) diffusion, TV regularization, and a
dynamical system called SIDEs are four useful techniques for discontinuity preserving denoising of
signals and images. In this paper we investigate under which circumstances these methods are
equivalent in the one-dimensional case. First, we prove that Haar wavelet shrinkage on a single scale
is equivalent to a single step of space-discrete TV diffusion or regularization of two-pixel pairs. In the
translationally invariant case we show that applying cycle spinning to Haar wavelet shrinkage on a
single scale can be regarded as an absolutely stable explicit discretization of TV diffusion. We prove
that space-discrete TV diffusion and TV regularization are identical and that they are also equivalent
to the SIDEs system when a specific force function is chosen. Afterwards, we show that wavelet
shrinkage on multiple scales can be regarded as a single step diffusion filtering or regularization of the
Laplacian pyramid of the signal. We analyze possibilities to avoid Gibbs-like artifacts for multiscale
Haar wavelet shrinkage by scaling the thresholds. Finally, we present experiments where hybrid
methods are designed that combine the advantages of wavelets and PDE/variational approaches.
These methods are based on iterated shift-invariant wavelet shrinkage at multiple scales with scaled
thresholds.
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1. Introduction. Image denoising is a field where one is typically interested
in removing noise without sacrificing important structures such as edges. This goal
cannot be achieved with linear filters. Consequently, a large variety of nonlinear
strategies has been proposed including, among others, wavelet techniques [22, 23, 31],
PDEs [2, 37, 41, 47], and variational methods [5, 6, 9, 36].

Although these method classes serve the same purpose, relatively few publications
exist where their similarities and differences are juxtaposed and their mutual relations
are analyzed. However, such an analysis is highly desirable, since it can help to transfer
results from one of these classes to the others. Moreover, a deeper understanding of the
differences between these classes might be helpful for designing novel hybrid methods
that combine the advantages of the different classes.

The goal of the present paper is to address this problem by analyzing relations
between four important representatives of discontinuity-preserving denoising methods:

• wavelet soft thresholding [22],
• space-discrete total variation (TV) diffusion [3, 4],
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Fig. 1. (a) Top left: original magnetic resonance image. (b) Top right: magnetic resonance
image degraded with Gaussian noise with standard deviation 50. (c) Bottom left: wavelet denoising
of (b) using translation-invariant soft shrinkage with Haar wavelets. (d) Bottom right: TV diffusion
of (b).

• discrete TV regularization [40, 1],
• SIDEs, a dynamical system that has been inspired from space-discrete stabi-

lized inverse diffusion equations [38].
Figure 1 gives an illustration of the denoising properties of soft wavelet shrinkage

and TV regularization methods. The original image is available from [31]. We observe
that the results do not differ very much. Indeed, we shall prove in our paper that all
four aforementioned methods are very closely related.

In order to keep things as simple as possible we base our analysis on the one-
dimensional (1-D) case. Our basic strategy is to start with the simplest cases for
which we can establish equivalence. Afterwards, we extend these results to more
general situations. The higher-dimensional case is beyond the scope of the present
paper, since it cannot be treated as a straightforward generalization of the 1-D ideas.
For some preliminary results in two dimensions, we refer the reader to [34], where
diffusion-inspired wavelet shrinkage with improved rotation invariance is introduced.

Our paper is organized as follows. In section 2 we give a very brief description
of the general ideas behind wavelet shrinkage, nonlinear diffusion filtering, variational
image denoising, and SIDEs. In section 3 we specify these paradigms to the sim-
plest cases where equivalence can be shown. In this section we restrict ourselves to
two-pixel signals, soft Haar wavelet shrinkage, TV diffusivity, and its corresponding
regularizer. Under these circumstances we prove equivalence between wavelet shrink-
age, TV diffusion, and TV regularization. These results are extended in section 4 to
the translationally invariant case with N -pixel signals. In the wavelet setting, we use



688 STEIDL, WEICKERT, BROX, MRÁZEK, AND WELK

a Haar wavelet-based technique on a single scale with cycle spinning. We show that it
can be regarded as a single iteration of a stabilized explicit scheme for TV diffusion,
and we prove that this TV diffusion is equivalent to both TV regularization and SIDEs
with an appropriate force function. In section 5 we extend our wavelet results from a
single scale to multiple scales. We show that multiple scale Haar wavelet soft shrinkage
can be regarded as TV diffusion, TV regularization, or SIDEs applied to a Laplacian
pyramid decomposition of the signal. Moreover, we propose and analyze a strategy
for avoiding Gibbs-like artifacts by scaling the shrinkage thresholds. In section 6 we
present experiments where we compare iterated single-scale filtering with noniterated
and iterated multiscale filtering. The paper is concluded with a summary in section 7.

Related work. Recently, a number of interesting connections between wavelet
shrinkage of functions, regularization methods, and PDEs has been established. A
book by Meyer [33] presents a unified view on wavelets and nonlinear evolutions,
and Shen and Strang [43] have included wavelets into the solution of the linear heat
equation. Chambolle et al. [13] showed that one may interpret wavelet shrinkage of
functions as regularization processes in suitable Besov spaces. In particular, Haar
thresholding was considered in [18]. Furthermore, Cohen et al. [17] showed that the
space of functions of bounded variation can be “almost” characterized by wavelet
expansions. Chambolle and Lucier [15] considered iterated translationally invariant
wavelet shrinkage and interpreted it as a nonlinear scale-space, which differs from
other scale-spaces by the fact that it is not given in terms of PDEs.

There has also been a rapidly increasing interest in designing hybrid methods
using both wavelet shrinkage and TV denoising methods. Durand and Froment [24]
proposed to address the problem of pseudo-Gibbs artifacts in wavelet denoising by
replacing the thresholded wavelet coefficients by coefficients that minimize the total
variation. Their method is also close in spirit to approaches by Chan and Zhou [16],
who postprocessed images obtained from wavelet shrinkage by a TV-like regulariza-
tion technique. Coifman and Sowa [20] used functional minimization with wavelet
constraints for postprocessing signals that have been degraded by wavelet thresh-
olding or quantization. Candés and Guo [12] also presented related work, in which
they combined ridgelets and curvelets with TV minimization strategies. Recently,
Malgouyres [30] proposed a hybrid method that uses both wavelet packets and TV
approaches. His experiments showed that it may restore textured regions without
introducing ringing artifacts.

Regarding the relations between wavelet shrinkage denoising of discrete signals
and TV reduction, not much research has been done so far. One notable exception is
a recent paper by Coifman and Sowa [21], where they propose TV diminishing flows
that act along the direction of Haar wavelets. Bao and Krim [7] addressed the problem
of texture loss in diffusion scale-spaces by incorporating ideas from wavelet analysis.
An experimental evaluation of the denoising capabilities of three-dimensional wavelet
shrinkage and nonlinear diffusion filters is presented in a paper by Frangakis, Stoschek,
and Hegerl [27].

This discussion shows that our paper differs from preceding work by the fact
that we investigate conditions under which we can prove equivalence between wavelet
shrinkage of discrete signals, space-discrete TV diffusion or regularization, and SIDEs.
Some preliminary results in this paper have been presented at conferences [44, 10].

2. The basic methods. The goal of this section is to give a brief introduction
to the methods that are considered in this paper: soft Haar wavelet shrinkage, TV
diffusion, TV denoising, and SIDEs.
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2.1. Wavelet shrinkage. During recent years wavelet methods have proved
their use in various signal processing tasks. One of them is discontinuity-preserving
denoising. The discrete wavelet transform represents a 1-D signal f(x) in terms of
shifted versions of a dilated lowpass scaling function ϕ(x), as well as shifted and dilated
versions of a bandpass wavelet function ψ(x). In the case of orthogonal wavelets, this
gives

f(x) =
∑
i∈Z

〈f, ϕje
i 〉ϕje

i (x) +

je∑
j=−∞

∑
i∈Z

〈f, ψj
i 〉ψ

j
i (x),

where ψj
i (x) := 2−j/2ψ(2−jx− i) and where 〈·, ·〉 denotes the inner product in L2(R).

The wavelet representation employs scaling components only at one level je, and
wavelet components at levels j ≤ je add higher resolution details to the signal.

If the measurements f are corrupted by white Gaussian noise, then this noise is
contained to a small amount in all wavelet coefficients 〈f, ψj

i 〉, while the original signal
is in general determined by few significant wavelet coefficients. Therefore wavelet
shrinkage attempts to eliminate noise from the wavelet coefficients by the following
three-step procedure:

• Analysis. Transform the noisy data f to the wavelet coefficients dji = 〈f, ψj
i 〉

and scaling function coefficients cjei = 〈f, ϕje
i 〉.

• Shrinkage. Apply a shrinkage function Sτ with a threshold parameter τ
related to the variance of the Gaussian noise to the wavelet coefficients, i.e.,
Sτ (d

j
i ) = Sτ (〈f, ψj

i 〉).
• Synthesis. Reconstruct the denoised version u of f from the shrunken wavelet

coefficients

u(x) :=
∑
i∈Z

〈f, ϕje
i 〉ϕje

i (x) +

je∑
j=−∞

∑
i∈Z

Sτ (〈f, ψj
i 〉)ψ

j
i (x).

In the literature a number of different shrinkage functions have been considered. In
this paper we focus on one of the most popular strategies, namely Donoho’s soft
shrinkage [22]. It uses the soft thresholding with threshold parameter τ > 0:

Sτ (x) =

{
x− τ sgn (x) if |x| > τ,

0 if |x| ≤ τ,
(2.1)

which shrinks all coefficients towards zero. Other shrinkage functions will be consid-
ered in a forthcoming paper.

Furthermore, in this paper we restrict our attention to Haar wavelets. They
are well suited for recovering piecewise constant signals with discontinuities. The
Haar wavelet ψ(x) and the corresponding scaling function ϕ(x) are given by ψ(x) :=
1[0, 12 ) − 1[ 12 ,1)

and ϕ(x) := 1[0,1), where 1[a,b) is the characteristic function of [a, b):

1[a,b)(x) :=

{
1 if x ∈ [a, b),
0 else.

Using the so-called two-scale relation of the wavelet and its scaling function, the
coefficients cji and dji at higher level j can be computed from the coefficients cj−1

i at
lower level j − 1 and vice versa. This results in fast algorithms for the analysis step
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and the synthesis step. For the Haar wavelets, we obtain

cji =
cj−1
2i + cj−1

2i+1√
2

, dji =
cj−1
2i − cj−1

2i+1√
2

,(2.2)

cj−1
2i =

cji + dji√
2

, cj−1
2i+1 =

cji − dji√
2

.(2.3)

2.2. Diffusion filtering. Let us now consider a function f(x) on some interval
[a, b]. The basic idea behind nonlinear diffusion filtering is to obtain a family u(x, t)
of filtered versions of the signal f(x) as the solution of a suitable diffusion process
with f(x) as initial condition and homogeneous Neumann boundary conditions [37]:

ut = (g(u2
x)ux)x on (a, b) × (0,∞),(2.4)

u(x, 0) = f(x) for all x ∈ [a, b],

ux(a, t) = ux(b, t) = 0 for all t ∈ (0,∞),

where subscripts denote partial derivatives, and the diffusion time t is a simplification
parameter: larger values correspond to stronger filtering.

The diffusivity g(u2
x) is a nonnegative function that steers the amount of diffusion.

Usually, it is decreasing in u2
x. This ensures that strong edges are less blurred by the

diffusion filter than noise and low-contrast details. In the present paper, we focus on
the TV diffusivity

g(u2
x) :=

1

|ux|
.(2.5)

The resulting TV diffusion filter (also called TV flow) has a number of interesting
properties. It requires no additional parameters (besides t), it is well posed [3, 8, 25],
it preserves the shape of some objects [8], and it leads to constant signals in finite
time [4].

2.3. Regularization methods. Regularization methods constitute an alterna-
tive to diffusion filters when one is interested in a discontinuity-preserving denoising
method for a continuous signal f(x) with x ∈ [a, b]. Here the basic idea is to look for
the minimizer u of the energy functional

E(u;α, f) :=

∫ b

a

(
(u− f)2 + αΨ(u2

x)
)
dx.(2.6)

The first term of this functional encourages similarity between the original signal
f(x) and its filtered version u(x), while the second term penalizes deviations from
smoothness. The increasing function Ψ is called the penalizer (regularizer), and the
nonnegative regularization parameter α serves as smoothness weight: larger values
correspond to a more pronounced filtering.

As is explained in detail in [42], there are strong relations between regularization
methods and diffusion filters: A minimizer of (2.6) satisfies necessarily the Euler–
Lagrange equation

u− f

α
= (Ψ′(u2

x)ux)x,

with homogeneous Neumann boundary conditions. This equation may be regarded
as a fully implicit time discretization of the diffusion equation (2.4) with diffusivity
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g(u2
x) = Ψ′(u2

x), initial value f(x), and stopping time α. Thus, one would expect that
the minimizer of (2.6) approximates the diffusion filter (2.4) but is not identical to it.

In the present paper, we are interested in one of the most popular nonlinear
regularization methods, namely TV regularization [40, 1]. It uses the penalizer
Ψ(u2

x) := 2 |ux|, which corresponds to the TV diffusivity (2.5). This regularization
is well known for its good denoising capabilities and its tendency to create blocky,
segmentation-like results. Well-posedness results can be found in [14].

2.4. SIDEs. A SIDE is a dynamical system that has been inspired from a sta-
bilized limiting case of a space-discrete nonlinear diffusion filter [38]. The name SIDE
is an acronym for stabilized inverse diffusion equation.

Let us consider a discrete signal f = (fi)
N−1
i=0 . Then its SIDE evolution produces

a sequence of filtered images u(t) = (ui(t))
N−1
i=0 , with u(0) = f . Increasing the time t

leads to a consecutive merging of regions. The evolution between two merging events
is governed by a dynamical system with a discontinuous right-hand side.

Assume that at some time tj a pixel with index i belongs to a constant region of
size mi,tj ; i.e., there exist l ≥ 1 and r ≥ 0 with mi,tj = l + r,

ui−l+1 = · · · = ui = ui+1 = · · · = ui+r,

ui−l �= ui−l+1 if i− l ≥ 0, ui+r �= ui+r+1 if i + r ≤ N − 2.

Then the SIDEs algorithm proceeds as follows:
(i) Initialization. Start at time t0 = 0 with the trivial segmentation, where each

pixel i is regarded as a region of size mi,0 = 1:

ui(0) = fi.

(ii) Evolution. Given a segmentation at time tj , the signal evolves according to

u̇i =

⎧⎪⎨
⎪⎩

1
mi,tj

F (ui+r+1 − ui+r) if i− l = −1,
−1

mi,tj
F (ui−l+1 − ui−l) if i + r = N − 1,

1
mi,tj

(F (ui+r+1 − ui+r) − F (ui−l+1 − ui−l)) else,

(2.7)

where u̇i denotes the derivative of ui with respect to t and F is a so-called force
function that satisfies a number of formal requirements [38]. The first case in (2.7)
describes the evolution of the region at the left signal boundary, the second case
applies for the right boundary region, and the third case specifies the evolution of all
inner regions.

In [38], only the third case has been specified. We have supplemented the other
two cases here in order to be able to treat the boundary regions in a proper way as
well. The evolution is stopped when two neighboring regions attain equal grey values.
This determines the new merging time tj+1.

(iii) Merging. Merge the neighboring regions with equal grey values.
(iv) Loop control. Stop if all regions are merged to one; else go back to step (ii).
We see that the stabilization in SIDEs is achieved by an additional definition

that results in merging neighboring regions when they approach each other. This
step is crucial for the performance of SIDEs, as it can be used for reducing the state
variables of the dynamical system. The analytical solutions in the following sections
will provide further theoretical justification for this region-merging step.

In [38] several theoretical results for SIDEs are proved, including a maximum
principle, well-posedness properties, and a finite extinction time.
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The dynamic system suggests that for the specific case mi = 1 one may regard a
1-D SIDE as a space discretization of the PDE

ut = (F (ux))x

with homogeneous Neumann boundary conditions. This is a diffusion equation with
flux function F . Since we are specifically interested in the TV case, we do not consider
the specific choice in [38] but restrict ourselves to the TV force function

F (v) :=

{
1 if v > 0,

−1 if v < 0.

Then it is evident that if mi = 1 for all i, TV diffusion is approximated.

3. Two-pixel signals. In this section, we analyze relations between soft wavelet
shrinkage, TV diffusion, TV regularization, and SIDEs for the simplest signals, namely
discrete signals with only two pixels. We will see that the restriction to two pixels
allows us to find analytical solutions for these degenerated nonlinear processes.

3.1. Soft Haar wavelet shrinkage of two-pixel signals. Let us now con-
sider a discrete two-pixel signal f = (f0, f1) and study its change under soft Haar
wavelet shrinkage. The analysis step produces the coefficients c = (f0 + f1)/

√
2 and

d = (f0 − f1)/
√

2 of the scaling function and the wavelet. For simplicity, we have
dropped the sub- and superscripts for c and d. This step is followed by the shrink-
age operation Sτ (d) with the soft shrinkage function (2.1). Then the synthesis step
u0 = (c + Sτ (d)) /

√
2, u1 = (c− Sτ (d)) /

√
2 gives the final result:

u0 =

{
f0 + τ√

2
sgn (f1−f0) if τ < |f1−f0|/

√
2,

(f0 + f1)/2 else,
(3.1)

u1 =

{
f1 − τ√

2
sgn (f1−f0) if τ < |f1−f0|/

√
2,

(f0 + f1)/2 else.
(3.2)

This shows that by increasing the shrinkage threshold τ the grey values of both pixels
approach each other. For τ = |f1 − f0|/

√
2 they merge, and for larger τ they remain

merged.

3.2. TV diffusion of two-pixel signals. Next, we are interested in the space-
discrete diffusion of two-pixel signals (f0, f1). The homogeneous Neumann boundary
conditions are discretized by setting flows over the signal boundary to zero. In this
case a space-discrete version of the TV diffusion equation

ut =

(
ux

|ux|

)
x

can be written as

u̇0 =
u1 − u0

|u1 − u0|
, u̇1 = − u1 − u0

|u1 − u0|
,(3.3)

with initial conditions u0(0) = f0 and u1(0) = f1. Here the dot denotes again temporal
differentiation, and the pixel size is set to 1. Setting w(t) := u1(t) − u0(t) and
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η := f1 − f0, and subtracting u̇0 from u̇1 in (3.3), we obtain the following initial value
problem:

ẇ = −2
w

|w| , w(0) = η.(3.4)

The right-hand side of this differential equation is discontinuous for w = 0 and thus
requires a generalization of the concept of solution. We say that w is a solution of
(3.4) if it is an absolutely continuous function which fulfills

ẇ = −2 sgn (w), w(0) = η(3.5)

almost everywhere, where
(I) sgn (w) := 1 if w > 0,

sgn (w) := −1 if w < 0
and may take any value in [−1, 1] if w = 0.

Note that this definition is in agreement with the frequently used concept of differential
inclusions for differential equations with discontinuous right-hand sides [26], where
absolutely continuous solutions of

−1

2
ẇ ∈

⎧⎨
⎩

{1} if w > 0,
{−1} if w < 0,

[−1, 1] if w = 0

were considered. The solution of (3.5) can be obtained as follows: If η �= 0, then we
have by straightforward computation for t < |η|/2 that w(t) = η − 2 t sgn (η) and in
particular, by continuity of w, that w(|η|/2) = 0. Assume that w(t) �= 0 for some
t > |η|/2. Let without loss of generality w(t) > 0. The opposite assumption w(t) < 0
can be handled in the same way. Then w(t) = −2t+C, where we get by continuity of
w, if t approaches |η|/2, that C = |η| and, consequently, w(t) = 2(|η|/2− t) < 0. This
contradicts our assumption. Thus w(t) = 0 for t ≥ |η|/2. In summary, we obtain the
solution

w(t) =

{
η − 2 t sgn (η) if t < |η|/2,

0 if t ≥ |η|/2.(3.6)

This equation shows that the grey value difference w(t) = u1(t)−u0(t) tends linearly
to 0. Both pixels merge at time t = |f1 − f0|/2 and remain merged afterwards. Thus,
already the simple two-pixel model indicates a finite extinction time for TV diffusion.
Since u̇0 + u̇1 = 0 and u0(0) + u1(0) = f0 + f1, we see further that the average grey
value is preserved:

u0(t) + u1(t) = f0 + f1 ∀ t ≥ 0.(3.7)

Using (3.6) and (3.7), we obtain the analytical solution

u0(t) =

{
f0 + t sgn (f1−f0) if t < |f1−f0|/2,

(f0 + f1)/2 else,
(3.8)

u1(t) =

{
f1 − t sgn (f1−f0) if t < |f1−f0|/2,

(f0 + f1)/2 else.
(3.9)

Interestingly, this result is identical to the results (3.1)–(3.2) for soft Haar wavelet
shrinkage if one identifies the diffusion time t with the threshold parameter τ =

√
2t.
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3.3. TV regularization of two-pixel signals. Let us now turn our attention
to the regularization framework. Again we are interested only in the two-pixel model
(f0, f1). We consider a space-discrete variant of (2.6) with a TV penalizer:

E(u0, u1;α, f) = (f0 − u0)
2 + (f1 − u1)

2 + 2α |u1 − u0|.(3.10)

Straightforward computation results in the following minimizer of (3.10):

u0 =

{
f0 + α sgn (f1−f0) if α < |f1−f0|/2,

(f0 + f1)/2 else,

u1 =

{
f1 − α sgn (f1−f0) if α < |f1−f0|/2,

(f0 + f1)/2 else.

This result coincides with the outcome of a single Haar wavelet shrinkage step with
shrinkage parameter τ =

√
2α. Moreover, it is identical to TV diffusion if one replaces

the diffusion time t by the regularization parameter α. Thus, all three methods are
equivalent by setting τ =

√
2 t =

√
2α. It is remarkable that TV diffusion and TV

regularization give identical evolutions in the two-pixel case. From the considerations
in section 2.3 one would expect only that the processes approximate each other. In
section 4.3 we will investigate if this equivalence also holds in the general space-discrete
case with N pixels.

3.4. SIDEs for two-pixel signals. If we consider the SIDE evolution of a two-
pixel signal (f0, f1), we obtain for the case of a TV force function the dynamical
system

u̇0 =
u1 − u0

|u1 − u0|
, u̇1 = − u1 − u0

|u1 − u0|
,

with initial conditions u0(0) = f0 and u1(0) = f1.
This is the same evolution as in the TV diffusion case. Hence, its solution is given

by (3.8)–(3.9), and there is a finite merging time t = |f1 − f0|/2.

4. N-pixel signals. So far we have focused on the two-pixel case. Let us now
investigate which of the equivalences carry over to the general 1-D case with N pixels.
To this end we will consider shift invariant wavelet shrinkage on a single scale, show
that it performs a numerical approximation to TV diffusion, prove the equivalence
of space-discrete TV diffusion and discrete TV regularization by deriving analytical
solutions of both processes, and show that this solution coincides with SIDEs with
TV force functions.

4.1. Shift invariant wavelet shrinkage on a single scale. Let us first re-
consider the soft Haar wavelet shrinkage on a single scale with N pixels, where N is
even. Figure 2 illustrates this computation as the two-channel filter bank. As usual we

apply the z-transform notation f(z) =
∑N−1

i=0 fiz
−i. Then Hi(z) (i = 0, 1) denotes

the convolution of f with the lowpass filter (i = 0) and the highpass filter (i = 1),

i.e., f(z)Hi(z), 2 ↓ and 2 ↑ downsampling and upsampling by 2, respectively, and

the circle soft thresholding by Sτ . Finally, • signifies addition.
The use of Haar wavelets creates a natural decomposition of the signal into two-

pixel pairs of type (f2j , f2j+1) (j = 0, . . . , N/2−1). This two-pixel clustering, however,
also causes a lack of translation invariance which may be responsible for visual arti-
facts. One method to improve the quality of the denoised signal considerably is to
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)(zf

)(0 zH

)(1 zH

)(zu

τS

↓2

2↑

2↑ )( 1
0

−zH

)( 1
1

−zH2↓

Fig. 2. Two-channel filter bank with H0(z) = 1+z√
2

and H1(z) = 1−z√
2

.

“average out” the translation dependence. This method was termed cycle spinning
by Coifman and Donoho [19]. For a single wavelet decomposition step, the basic idea
of cycle spinning on a single scale reads as follows:

(a) perform wavelet shrinkage (3.1), (3.2) on successive pairs of the original signal;
(b) shift the signal one pixel to the right;

perform wavelet shrinkage on successive pairs of the shifted signal;
shift the resulting signal one pixel back to the left;

(c) average both results.
The shifting process requires the incorporation of boundary conditions for f . Again
we mirror the signal f at its ends. Steps (a)–(c) are equivalent to denoising the signal
using a nonsubsampled filter bank. More sophisticated material on oversampled filter
banks, corresponding wavelet frames, and undecimated wavelet transforms can be
found in [31].

4.2. Equivalence to a numerical scheme for TV diffusion. We have seen
that, in order to improve the performance of wavelet shrinkage and to make wavelet-
based denoising translationally invariant, cycle spinning can be used. Since there is an
equivalence between Haar wavelet shrinkage and TV diffusion in the two-pixel case, it
would be natural to ask if there is a TV diffusion scheme equivalent to translationally
invariant soft Haar wavelet shrinkage on a single level. This leads us to an interesting
novel scheme for TV diffusion.

Derivation of the scheme. We have been able to derive an analytical solution for
TV diffusion in the two-pixel case. We can use this two-pixel solution to create a
numerical scheme for N pixels. In order to derive such a scheme for some time step
size �t, we proceed in three steps that are inspired by the cycle spinning technique:

(a) perform TV diffusion with step size 2�t on all pixel pairs (u2j , u2j+1);
(b) perform TV diffusion with step size 2�t on all pixel pairs (u2j−1, u2j);
(c) average both results.

Obviously, one step of this iterative scheme is equivalent to a translationally invari-
ant Haar wavelet shrinkage with threshold τ = 2

√
2�t on a single level. So let us

investigate this scheme in more detail.
At iteration level k, we assume that our signal is given by (uk

i )
N−1
i=0 . We denote

the resulting signal of step (a) by (vk+1
i )N−1

i=0 and the spatial grid size by h. From our
analysis of the two-pixel situation, it follows that vi in some even pixel i = 2j is given
by

vk+1
i =

uk
i + uk

i+1

2
−

⎧⎪⎨
⎪⎩

max
(

uk
i+1−uk

i

2 − 2�t
h , 0

)
if uk

i+1 ≥ uk
i ,

min
(

uk
i+1−uk

i

2 + 2�t
h , 0

)
if uk

i+1 < uk
i .

(4.1)

To simplify the notation, we assume only in this subsection instead of the third agree-
ment in (I) that sgn(0) := 0. It is not difficult to see that (4.1) can be rewritten
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as

vk+1
i = uk

i +
2�t

h
sgn (uk

i+1 − uk
i ) min

(
1,

h

4�t
|uk

i+1 − uk
i |
)
.(4.2)

Step (b) leads to a resulting signal (wk+1
i )N−1

i=0 . For i = 2j it is given by

wk+1
i = uk

i − 2�t

h
sgn (uk

i − uk
i−1) min

(
1,

h

4�t
|uk

i − uk
i−1|

)
.(4.3)

Thus, the averaging step (c) gives the final scheme for TV diffusion:

uk+1
i = uk

i +
�t

h
sgn (uk

i+1 − uk
i ) min

(
1,

h

4�t
|uk

i+1 − uk
i |
)

− �t

h
sgn (uk

i − uk
i−1) min

(
1,

h

4�t
|uk

i − uk
i−1|

)
.(4.4)

The same scheme can also be derived if i is odd, since the construction (a)–(c) in
this subsection ensures that the result is translationally invariant. Hence it holds for
every inner pixel i ∈ {1, . . . , N −2}. It is even valid for the boundary pixels i = 0 and
i = N−1 if we realize the homogeneous Neumann boundary conditions by introducing
dummy values uk

−1 := uk
0 and uk

N := uk
N−1.

Stability. Let us now investigate the stability properties of the explicit finite
difference scheme (4.2). Since (4.2) satisfies

min(uk
i , u

k
i+1) ≤ vk+1

i ≤ max(uk
i , u

k
i+1)

and (4.3) fulfills the estimate

min(uk
i−1, u

k
i ) ≤ wk+1

i ≤ max(uk
i−1, u

k
i ),

we can conclude that

min(uk
i−1, u

k
i , u

k
i+1) ≤ uk+1

i ≤ max(uk
i−1, u

k
i , u

k
i+1).

With the initial condition u0
j = fj for j = 0, . . . , N − 1, it follows that the two-pixel

scheme (4.2) satisfies the discrete maximum-minimum principle

min
j

fj ≤ uk+1
i ≤ max

j
fj

for all pixels i ∈ {0, . . . , N − 1}, all iteration levels k = 0, 1, 2, . . . , and all time step
sizes �t > 0. In particular, this shows that the scheme is absolutely stable in the
maximum norm.

We may regard (4.4) as a stabilization of the naive explicit scheme

uk+1
i = uk

i +
�t

h
sgn (uk

i+1 − uk
i ) −

�t

h
sgn (uk

i − uk
i−1),(4.5)

which becomes unstable for arbitrary small time steps if neighboring values become
arbitrarily close.

Consistency. The absolute stability in scheme (4.4) is at the expense that its
consistency is no longer unconditional. This effect is typical for absolutely stable
explicit schemes; see, for example, the DuFort–Frankel scheme for linear diffusion. In
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our case, (4.4) is an O(�t + h2) approximation to the continuous TV diffusion for
�t ≤ h

4 min
(
|uk

i+1 − uk
i |, |uk

i − uk
i−1|

)
, since it coincides with scheme (4.5) then. For

larger time step sizes, the scheme performs averaging within the neighborhood of each
pixel. By using small time step sizes, these averaging effects appear only in regions
that are already almost flat such that the difference from real TV diffusion becomes
invisible. This two-pixel scheme may be regarded as an alternative to classical finite
difference schemes that are based on the regularized TV flow

ut =

(
ux√

ε2 + u2
x

)
x

.(4.6)

The ε-regularization is necessary for making the diffusivity bounded. It has an effect
similar to the deviation from consistency in the two-pixel scheme (4.4): For small
|ux|, a PDE is approximated that differs from TV diffusion and has better stability
properties. Indeed, in section 6 we shall see that both schemes give very similar
results.

Related schemes. The idea to split up a diffusion process into pairwise interactions
has also proved to be fruitful in other fields. In the context of fluid dynamic problems,
related schemes have been formulated by Richardson, Ferrell, and Long [39]. These
authors, however, use multiplicative splittings; i.e., they first compute the diffusion of
the pairs of type (u2j , u2j+1), which is then used as the initial state for the subsequent
diffusion of the shifted pairs. In a general nonlinear setting, such a scheme is not
translationally invariant. Our approach computes the diffusion of the pairs and the
shifted pairs in parallel and averages afterwards. This additive splitting guarantees
translation invariance. The splitting into two-pixel interactions distinguishes scheme
(4.4) from other additive operator splittings [29, 48]. They use directional splittings
along the coordinate axis.

4.3. Equivalence of space-discrete TV diffusion and discrete TV regu-
larization. The equivalence of TV diffusion and TV regularization in the two-pixel
case gives rise to the question of whether this equivalence also holds in the N -pixel
situation. In order to prove this, we now show that both processes have the same
analytical solutions.

4.3.1. Space-discrete TV diffusion. We consider the following dynamical sys-
tem designed to describe space-discrete TV flow on a 1-D signal with N pixels:

u̇0 = sgn(u1 − u0),

u̇i = sgn(ui+1 − ui) − sgn(ui − ui−1) (i = 1, . . . , N − 2),

u̇N−1 = −sgn(uN−1 − uN−2),

u(0) = f.

(4.7)

In the following, we further set u−1 := u0 and uN := uN−1. Since the right-hand side
of this system is discontinuous, we need again a more detailed specification of when
a system of functions is said to satisfy these differential equations. A vector-valued
function u is said to fulfill the system (4.7) over the time interval [0, T ] if the following
holds true:

(II) u is an absolutely continuous vector-valued function which satisfies (4.7) al-
most everywhere, where sgn is defined by (I) in subsection 3.2.

(III) If u̇i(t) and u̇i+1(t) exist for the same t, and ui+1(t) = ui(t) holds, then the
expression sgn(ui+1(t)−ui(t)) occurring in both the right-hand sides for u̇i(t)
and u̇i+1(t) must take the same value in both equations.
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With this notation we can establish the following results.
Proposition 4.1 (properties of space-discrete TV diffusion). The system (4.7)

has a unique solution u(t) in the sense of (II) and (III). This solution has the
following properties:

(i) Finite extinction time. There exists a finite time T ≥ 0 such that for all t ≥ T
the signal becomes constant:

ui(t) =
1

N

N−1∑
k=0

fk for all i = 0, . . . , N − 1.(4.8)

(ii) Finite number of merging events. There exists a finite sequence 0 = t0 < t1 <
· · · < tn−1 < tn = T such that the interval [0, T ) splits into subintervals [tj , tj+1)
with the property that for all i = 0, . . . , N − 2 either ui(t) = ui+1(t) or ui(t) �=
ui+1(t) throughout [tj , tj+1). The absolute difference between neighboring pixels does
not become larger for increasing t ∈ [tj , tj+1).

(iii) Analytical solution. In each of the subintervals [tj , tj+1) constant regions of
u(t) evolve linearly:

For a fixed index i let us consider a constant region given by

ui−l+1 = · · · = ui = ui+1 = · · · = ui+r (l ≥ 1, r ≥ 0),(4.9)

ui−l �= ui−l+1 if i− l ≥ 0, ui+r �= ui+r+1 if i + r ≤ N − 1

for all t ∈ [tj , tj+1). We call (4.9) a region of size mi,tj = l + r. For t ∈ [tj , tj+1) let
�t = t− tj. Then ui(t) is given by

ui(t) = ui(tj) + µi,tj

2�t

mi,tj

,

where µi,tj reflects the relation between the region containing ui and its neighboring
regions. It is given as follows:

For inner regions (i.e., i− l ≥ 0 and i + r ≤ N − 1) we have

µi,tj =

⎧⎨
⎩

0 if (ui−l, ui, ui+r+1) is strictly monotonic,
1 if ui is minimal in (ui−l, ui, ui+r+1),

−1 if ui is maximal in (ui−l, ui, ui+r+1),
(4.10)

and in the boundary case (i− l+ 1 = 0 or i+ r = N − 1) the evolution is half as fast:

µi,tj =

⎧⎪⎨
⎪⎩

0 if m = N,
1
2 if ui is minimal in (ui−l, ui, ui+r+1),

− 1
2 if ui is maximal in (ui−l, ui, ui+r+1).

(4.11)

Proof. Let u be a solution of (4.7). We show that u is uniquely determined and
satisfies the rules (i)–(iii). Our proof proceeds in four steps.

Step 1. If u̇(t) exists at a fixed time t and ui(t) lies at this time in some region

ui−l+1(t) = · · · = ui(t) = · · · = ui+r(t) (l ≥ 1, r ≥ 0),

ui−l(t) �= ui−l+1(t) if i− l ≥ 0, ui+r(t) �= ui+r+1(t) if i + r ≤ N − 1

of size mi,t, then it follows by (4.7) and (III) in the nonboundary case i − l ≥ 0 and
i + r ≤ N − 1 that

ui(t) =
1

mi,t

r∑
k=−l+1

ui+k(t),
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and therefore

u̇i(t) =
1

mi,t

r∑
k=−l+1

u̇i+k(t) =
1

mi,t
(sgn(ui+r+1(t) − ui(t)) − sgn(ui(t) − ui−l(t)))

= µi,t
2

mi,t
,(4.12)

where µi,t describes the relation between the region containing ui and its neighbors
at time t as in (4.10). In the boundary case i− l + 1 = 0 or i + r = N − 1 we follow
the same lines and obtain (4.12) with µi,t defined by (4.11).

Step 2. Let u̇(t) exist in some small interval (τ0, τ1), and assume that ui(t) �=
ui+1(t) for some i ∈ {0, . . . , N − 2} and all t ∈ (τ0, τ1). By continuity of u we may
assume that ui(t) < ui+1(t) throughout (τ0, τ1). The opposite case ui(t) > ui+1(t)
can be handled in the same way. Then we obtain by (4.12) and the definition of µi,t

for all t ∈ (τ0, τ1) that

u̇i(t) ≥ 0 if i− l ≥ 0,(4.13)

u̇i(t) > 0 if i− l + 1 = 0,(4.14)

u̇i+1(t) ≤ 0 if i + r ≤ N − 2,(4.15)

u̇i+1(t) < 0 if i + r = N − 1.(4.16)

Set w(t) := ui+1(t) − ui(t). Then the mean value theorem yields

w(τ1) − w(τ0) = (τ1 − τ0) ẇ(t∗)

for some t∗ ∈ (τ0, τ1), and we get by (4.13)–(4.16) that

w(τ1) − w(τ0) ≤ 0

with strict inequality in the boundary case. Consequently, the difference between
pixels cannot become larger in the considered interval. In particular, by continuity of
u, pixels cannot be split. Once merged they stay merged.

Step 3. Now we start at time t0 = 0. Let t1 be the largest time such that u̇(t)
exists and no merging of regions appears in (0, t1). Then, for all i ∈ {0, . . . , N − 1},
a function ui is in the same region with the same relations to its neighboring regions
throughout [0, t1). Thus, we conclude by (4.12) that

u̇i(t) = µi,0
2

mi,0
(t ∈ (0, t1))

and, consequently,

ui(t) = µi,0
2t

mi,0
+ Ci,0 = fi + µi,0

2t

mi,0
(t ∈ [0, t1]),

where the last equality follows by continuity of ui if t approaches 0.
Step 4. We are now in the position to analyze the entire chain of merging events

successively.
Next, we consider the largest interval (t1, t2) without merging events in the same

way, where we take the initial setting u(t1) into account instead of f . Then we obtain

ui(t) = µi,t1

2t

mi,t1

+ Ci,t1 ,
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where, by continuity of ui, ui(t1) = µi,t1
2t1

mi,t1
+ Ci,t1 and, consequently,

ui(t) = ui(t1) + µi,t1

2(t− t1)

mi,t1

.

Now we can continue in the same way by considering [t2, t3) and so on. Since we
have only a finite number N of pixels and some of these pixels merge at the points
tj , the process stops after a finite number of n steps with output (4.8). Conversely, it
is easy to check that a function u with (i)–(iii) is a solution of the system (4.7). This
completes the proof of the proposition.

4.3.2. Discrete TV regularization. Next, we will prove that discrete TV reg-
ularization satisfies the same rules as space-discrete TV diffusion. For given initial
data f = (f0, . . . , fN−1) discrete TV regularization consists of constructing the mini-
mizer u(α) = minu E(u;α, f) of the functional

E(u;α, f) =
N−1∑
i=0

(
(ui − fi)

2 + 2α|ui+1 − ui|
)
,(4.17)

where we suppose again Neumann boundary conditions u−1 = u0 and uN = uN−1.
For a fixed regularization parameter α ≥ 0, the minimizer of (4.17) is uniquely

determined since E(u;α, f) is strictly convex in u0, . . . , uN−1. Further, E(u, α; f) is
a continuous function in u0, . . . , uN−1, α. Consequently, u(α) is a (componentwise)
continuous function in α.

The following proposition implies, together with Proposition 4.1, the equivalence
of space-discrete TV diffusion and discrete TV regularization.

Proposition 4.2 (properties of discrete TV regularization). The minimizing
function u(α) of (4.17) is uniquely determined by the following rules:

(i) Finite extinction parameter. There exists a finite A ≥ 0 such that for all
α ≥ A the signal becomes constant:

ui(α) =
1

N

N−1∑
k=0

fk for all i = 0, . . . , N − 1.

(ii) Finite number of merging events. There exists a finite sequence 0 = a0 <
a1 < · · · < an−1 < an = A such that the interval [0, A) splits into subintervals
[aj , aj+1) with the property that for all i = 0, . . . , N − 2 either ui(α) = ui+1(α) or
ui(α) �= ui+1(α) throughout [aj , aj+1). The absolute difference between neighboring
pixels does not become larger for increasing α ∈ [aj , aj+1).

(iii) Analytical solution. In each of the subintervals [aj , aj+1) constant regions of
u(α) evolve linearly:

For a fixed index i let us consider a constant region given by

ui−l+1 = · · · = ui = ui+1 = · · · = ui+r (l ≥ 1, r ≥ 0),(4.18)

ui−l �= ui−l+1 if i− l ≥ 0, ui+r �= ui+r+1 if i + r ≤ N − 2(4.19)

for all α ∈ [aj , aj+1). We call (4.18) a region of size mi,aj = l+ r. For α ∈ [aj , aj+1)
let �α = α− aj. Then ui(α) is given by

ui(α) = ui(aj) + µi,aj

2�α

mi,aj

,
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where µi,aj reflects the relation between the region containing ui and its neighboring
regions. It is given as follows:

For inner regions (i.e., i− l ≥ 0 and i + r ≤ N − 2) we have

µi,aj =

⎧⎨
⎩

0 if (ui−l, ui, ui+r+1) is strictly monotonic,
1 if ui is minimal in (ui−l, ui, ui+r+1),

−1 if ui is maximal in (ui−l, ui, ui+r+1),
(4.20)

and in the boundary case (i− l+ 1 = 0 or i+ r = N − 1) the evolution is half as fast:

µi,aj
=

⎧⎪⎨
⎪⎩

0 if m = N,
1
2 if ui is minimal in (ui−l, ui, ui+r+1),

− 1
2 if ui is maximal in (ui−l, ui, ui+r+1).

(4.21)

Proof. A proof that is in complete analogy with our proof for the TV diffusion
case is presented in [10, 45].

Similar results have also been established in a different way by Strong [46] for the
case of continuous TV regularization methods with step functions as initializations.
It should be noted that TV regularization by using the taut-string algorithm was also
considered by Mammen and van de Geer [32]; see also [28].

4.4. Equivalence to SIDEs with TV force functions. In section 2.4 we have
seen that 1-D SIDEs with region size 1 and TV force function are identical to space-
discrete TV diffusion. Moreover, in section 4.3 we have derived analytical solutions
of space-discrete TV diffusion and discrete TV regularization that show the same
merging behavior as SIDEs with TV force functions. Consequently, 1-D SIDEs can
be interpreted as an exact solution of space-discrete TV diffusion or regularization in
general.

This also confirms that the merging steps in the SIDE evolution are much more
than a heuristic stabilization that speeds up the evolution: They are a natural conse-
quence of the degenerated diffusivities that are unbounded in 0. Last but not least,
our considerations can be regarded as a theoretical justification of region merging in
terms of variational and PDE-based techniques.

5. Multiple scales. So far we have considered only soft wavelet shrinkage on a
single scale. In almost all practical applications, however, wavelet shrinkage is per-
formed on multiple scales. In this section, we interpret multiscale soft shrinkage with
Haar wavelets as the application of nonlinear TV-based diffusion to two-pixel groups
of hierarchical signals. First, we consider the standard situation without shift invari-
ance; then we discuss the shift-invariant case. Finally, we address a frequent problem
that occurs with wavelet shrinkage on multiple scales: the presence of Gibbs-like ar-
tifacts. We analyze ways to circumvent this phenomenon by using scale-dependent
thresholds.

Throughout this section we deal with signals of length N = 2n (n ∈ N).

5.1. Standard case without shift invariance. Haar wavelet shrinkage on two
scales is described by the filter bank in Figure 3. To obtain more than two scales we
further split up the upper branch of the inner filter bank and so on until we arrive
at scale n = log2 N , where the successive downsampling by 2 results in a one-pixel
signal.

Next, we briefly recall the concept of Gaussian and Laplacian pyramids [11] with
respect to the Haar filters. The Gaussian pyramid we are interested in is the sequence
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Fig. 3. Two scales of Haar wavelet shrinkage with H0(z) = 1+z√
2

and H1(z) = 1−z√
2

.

of H0-smoothed and downsampled versions of an initial signal f given by

f = f (0) −→ f (1) = Rf −→ · · · −→ f (n) = Rnf,

where R denotes the operator for H0-smoothing and subsequent downsampling by 2,
i.e.,

f
(j+1)
i =

(
Rf (j)

)
i
=

(
f

(j)
2i + f

(j)
2i+1

)
/
√

2 (j = 0, . . . , n− 1; i = 0, . . . , N/2j+1 − 1).

Let Pf (j) denote the prolongated version of f (j) given by

(
Pf (j)

)
2i

=
(
Pf (j)

)
2i+1

= f
(j)
i /

√
2 (j = 1, . . . , n; i = 0, . . . , N/2j − 1).(5.1)

Then the corresponding Laplacian pyramid is the sequence

f − Pf (1) −→ f (1) − Pf (2) −→ · · · −→ f (n−1) − Pf (n) −→ f (n).

By

f (j) = Pf (j+1) +
(
f (j) − Pf (j+1)

)
(j = n− 1, . . . , 0)

we can reconstruct f from its Laplacian pyramid.
Let difft denote the operator of nonlinear diffusion with TV diffusivity and stop-

ping time t applied to the successive two-pixel parts of a signal. By subsection 3.2
we know that difft performs like a single wavelet shrinkage step with soft thresh-
old parameter τ =

√
2t. In other words, the result of the filter bank in Figure 2 is

u = difft(f). Further, we see that the upper branch of this filter bank produces Pf (1)

so that the lower branch must produce difft(f) − Pf (1). By (5.1) and (3.1) it is easy
to check that the nonlinear operator difft fulfills difft(f) − Pf (1) = difft

(
f − Pf (1)

)
.

Thus, one wavelet shrinkage step is given by u = Pf (1) + difft

(
f − Pf (1)

)
. Now

the multiscale Haar wavelet shrinkage up to scale n can be described by successive
application of difft to the Laplacian pyramid:

u(n) = f (n),(5.2)

u(j) = Pu(j+1) + difft

(
f (j) − Pf (j+1)

)
(j = n− 1, . . . , 0).(5.3)

The result of the multiscale wavelet shrinkage is u = u(0).

5.2. Shift-invariant case. Now we consider translation-invariant multiscale
wavelet shrinkage. In the multiscale setting we apply cycle spinning over the range
of all N shifts of f . The filter bank which corresponds to two scales of translation-
invariant Haar wavelet shrinkage is shown in Figure 4. Note that the inner filter bank
uses z2 instead of z in Hi (i = 0, 1). In general we have to replace z by z2j−1

at
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Fig. 4. Two scales of shift-invariant Haar wavelet shrinkage with H0(z) = 1+z√
2

and H1(z) = 1−z√
2

.

scale j. While ordinary wavelet shrinkage requires O(N) arithmetic operations, its
translation-invariant version needs O(N log2 N) arithmetic operations.

In subsection 4.2 we have deduced a numerical scheme for TV diffusion. Each
iteration is given by (4.4). This coincides with a single translation-invariant Haar
wavelet shrinkage step with threshold τ = 2

√
2t. Using our operator diff · and the

operator S, which shifts a signal one pixel to the right, the result u of the single-scale
translation-invariant filter bank is given by

u =
1

2

(
diff2t(f) + S−1diff2t(Sf)

)
.

Now the multiscale translation-invariant Haar wavelet shrinkage can be interpreted as
application of diff · to a multiple Laplacian pyramid. We define a multiple Gaussian
pyramid by

f (0,0) →
(
f (1,0), f (1,1)

)
→

(
f (2,0), f (2,1), f (2,2), f (2,3)

)
→ · · · →

(
f (n,0), . . . , f (n,2n−1)

)
,

where f = f (0,0). Here f (j,k) is obtained by successive application of the operators R
and RS on f as follows: Let 0 denote the application of R and 1 the application of
RS; then these operators are applied to f in the order of the binary representation
(kj−1, . . . , k0)2 of k, where we start from the left. For example, we get f (2,1) =
f (2,(0,1)2) = RS Rf and f (2,2) = f (2,(1,0)2) = RRSf . Then the multiple Laplacian
pyramid is given by(
f (0,0) − Pf (1,0), Sf (0,0) − Pf (1,1)

)
−→

(
f (1,0) − Pf (2,0), Sf (1,0) − Pf (2,1), f (1,1) − Pf (2,2), Sf (1,1) − Pf (2,3)

)
−→ · · · −→(

f (n,0), . . . , f (n,2n−1)
)
,

and the translation-invariant version of (5.2)–(5.3) can be obtained from this multiple
Laplacian pyramid by

u(n,k) = f (n,k) (k = 0, . . . , 2n − 1),

u(j,k) =
1

2

(
Pu(j+1,2k) + diff2t(f

(j,k) − Pf (j+1,2k))

+ S−1
(
Pu(j+1,2k+1) + diff2t(Sf

(j,k) − Pf (j+1,2k+1))
))

for j = n− 1, . . . , 0; k = 0, . . . , 2j − 1. The result is u = u(0,0).

5.3. Scale-dependent thresholds. Cycle spinning techniques can be used to
make wavelet shrinkage not only translationally invariant, but they can also reduce
artifacts. However, it is still possible that oscillatory (Gibbs-like) artifacts appear if
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multiple scales are used. We want to demonstrate that the use of the scale-dependent
thresholds

τj = τ/
√

2
j−1

(j = 1, . . . , n)(5.4)

suppresses oscillations in the shrinkage process.
In this subsection, we consider signals f = (f0, . . . , fN−1) with periodic boundary

conditions. Note that mirror boundary conditions can easily be transferred into peri-
odic ones by doubling the signal. The decimated Haar wavelet shrinkage with full n-
scale decomposition and thresholds (5.4) consists of three operations. It starts with the
linear transform (2.2) of f yielding the wavelet coefficients (cn, dn, dn−1, . . . , d1), where
dj := (dj0, . . . , d

j
N/2j−1). The wavelet coefficients then undergo the soft wavelet thresh-

olding sji := Sτj (d
j
i ) (j = 1, . . . , n; i = 0, . . . , N/2j − 1) followed by the inverse linear

transform (2.3) of (cn, sn, sn−1, . . . , s1) which gives the denoised signal u(τ). In partic-
ular we have u(0) = f . Note that by the semigroup property Sτ+τ̃ (x) = Sτ̃ (Sτ (x)) of
our shrinkage function (2.1) the signal u(Kτ) obtained by one n-scale wavelet shrink-
age cycle with threshold Kτ coincides with the signal which results from K times
repeating one n-scale wavelet shrinkage cycle with smaller threshold τ . Of course,
this is no longer true for the translation-invariant wavelet transform. In our exam-
ples in the next section we will consider iterated translation-invariant Haar wavelet
shrinkage with small thresholds τ .

Since oscillatory (Gibbs-like) artifacts are characterized by the emergence of new
local extrema, we study the behavior of local extrema of the signal under the shrinkage
process. We call ui an extremal pixel if either ui−1 < ui, ui > ui+1 or ui−1 > ui,
ui < ui+1.

First, we consider the dynamics of “infinitesimal translation-invariant soft Haar
wavelet shrinkage,” i.e., the speed at which pixels of the signal evolve with respect to
the threshold τ ∈ [0, T ] in the limit case T → 0.

Proposition 5.1 (suppression of Gibbs-like artifacts by scaled thresholds). Un-
der infinitesimal translation-invariant soft Haar wavelet shrinkage, an extremal pixel
fi evolves as follows:

(i) The value of the extremal pixel decreases, i.e., u̇i < 0, if it is a maximum and
increases, i.e., u̇i > 0, if it is a minimum. Here the dot denotes differentiation
with respect to τ .

(ii) The absolute value of the difference of the extremal pixel to each of its two
neighbors decreases; i.e., u̇i − u̇i±1 < 0 for a maximum and u̇i − u̇i±1 > 0 for
a minimum.

Statement (i) holds also for the decimated Haar wavelet shrinkage, while statement (ii)
cannot be established in that setting.

Proof. For the decimated Haar wavelet shrinkage with full n-scale decomposition
and thresholds (5.4) it is easy to check that the resulting signal ũi is given by

ũi = µ +

n∑
j=1

2−j/2εj(i)s
j
�i/2j	,

where �x� denotes the largest integer ≤ x. Moreover, µ := 1
N

∑N−1
i=0 fi is the average

value, and

εj(i) :=

{
1 if �i/2j−1� is even,

−1 if �i/2j−1� is odd.
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For the translation-invariant Haar wavelet shrinkage, the sum on the right-hand side
of this equation is replaced by the average of N sums of the same kind containing the
back-shifted shrunken wavelet coefficients of N forward-shifted initial signals, i.e.,

ui = µ +
1

N

N−1∑
ν=0

n∑
j=1

2−j/2εj(i + ν)sj�(i+ν)/2j	,ν ,(5.5)

where sji,ν denotes the ith coefficient of the jth level of the ν-shifted initial signal,

and the coefficients are treated N/2j-periodic with respect to i. Of course, some
coefficients coincide for different ν; more precisely,

sj�(i+ν)/2j	,ν = sj�(i+ν+r2j)/2j	,ν+r2j (ν = 0, . . . , 2j − 1; r = 0, . . . , N/2j − 1).

This equation allows us to rewrite (5.5) as

ui = µ +
1

2
√

2

(
ε1(i)s

1
�i/2	,0 + ε1(i + 1)s1

�(i+1)/2	,1

)

+
1

N

n∑
j=2

2−j/2
2j−1∑
ν=0

N/2j−1∑
r=0

εj(i + ν + r2j)sj�(i+ν+r2j)/2j	,ν+r2j

= µ +
si,+ − si,−

2
√

2
+

n∑
j=2

2−3j/2
2j−1∑
ν=0

εj(i + ν)sj�(i+ν)/2j	,ν ,

where si,+ := Sτ (di,+) = Sτ

(
(fi − fi+1)/

√
2
)

and si,− := Sτ (di,−) = Sτ

(
(fi−1 −

fi)/
√

2
)
. Now the evolution of ui under infinitesimal soft wavelet shrinkage is de-

scribed by

u̇i =
ṡi,+ − ṡi,−

2
√

2
+

n∑
j=2

2−3j/2
2j−1∑
ν=0

εj(i + ν)ṡj�(i+ν)/2j	,ν ,(5.6)

where

ṡj· =
dSτj (d

j
· )

dτj
· dτj

dτ
=

− sgn(dj· )
√

2
j−1

.

Inserting this into (5.6), we obtain

u̇i =
− sgn(di,+) + sgn(di,−)

2
√

2
− Ai,(5.7)

where

Ai :=
√

2

n∑
j=2

4−j
2j−1∑
ν=0

εj(i + ν) sgn
(
dj�(i+ν))/2j	,ν

)
.

By the triangle inequality we can estimate

|Ai| ≤
√

2

n∑
j=2

2−j <
1√
2
.(5.8)
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If fi is an extremal pixel, then we have that sgn(di,+) = − sgn(di,−) = 1 for a
maximum and −1 for a minimum. This implies by (5.7) and (5.8) that

sgn(u̇i) = − sgn(di,+),(5.9)

proving statement (i) of the proposition.
By subtracting from (5.7) its counterpart for pixel ui+1, we obtain by di,+ =

di+1,− that

u̇i − u̇i+1 =
sgn(di,−) − 2 sgn(di,+) + sgn(di+1,+)

2
√

2
− (Ai −Ai+1).(5.10)

In

Ai −Ai+1

=
√

2

n∑
j=2

4−j
2j−1∑
ν=0

(
εj(i + ν) sgn

(
dj�(i+ν)/2j	,ν

)
−εj(i + 1 + ν) sgn

(
dj�(i+1+ν)/2j	,ν

))

the values in the inner brackets cancel except for the two indices ν = νjk ∈ {0, . . . , 2j−
1} (k = 0, 1) with νjk + 1 + i ≡ 0 mod 2j−1. For these indices the signs of εj(i + νk)
and εj(i+1+ νk) are opposite. Consequently, for each j, the inner sum contains only
four summands, and we can estimate

|Ai −Ai+1| ≤
√

2

n∑
j=2

4−j · 4 <

√
2

3
.(5.11)

By inserting this into (5.10), it becomes clear that for an extremal pixel fi we get

sgn(u̇i − u̇i+1) = − sgn(di,+).(5.12)

We have therefore proven that the difference of an extremal pixel to its right neighbor
decreases under infinitesimal soft wavelet shrinkage. Analogous considerations apply
to the left neighbor, which completes the proof of (ii).

It follows particularly from Proposition 5.1 that under iterated infinitesimal soft
wavelet shrinkage no oscillatory (Gibbs-like) artifacts can appear. Any artifact of
this type would include at least one local extremum evolving from a flat region which
would, for continuity, have to grow over a finite time interval in contradiction to
Proposition 5.1.

It should be noted that a single step of infinitesimal shrinkage does not effectively
change the signal any more since T → 0. To investigate true changes of the signal by
the shrinkage procedure, one has to consider iterated shrinkage. Summing up τ over
all iteration steps, a “total evolution time” t is obtained; for fixed t, the number of
iteration steps tends to infinity as τ goes to zero. Infinitesimal translation-invariant
soft Haar wavelet shrinkage thus becomes a dynamic process parametrized by t, and
Proposition 5.1 describes its behavior at a single point of time.

Of course, this analysis can be extended to a time interval. Then one has to take
care of the discontinuity of sgn at 0. Similarly, as in the proof of Proposition 4.1,
this can be done by splitting the time axis into intervals in which no sign changes of
wavelet coefficients occur. However, since once-merged pixels can split again in the
process considered here, sgn(0) will in most cases occur only in discrete time points.
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Now we turn to consider finite-size shrinkage steps τ . The ideas used in the
proof of Proposition 5.1 can also be applied to analyze soft wavelet shrinkage with
finite threshold τ by simply replacing the derivatives u̇i, ṡ

j
i,ν by differences ∆ui :=

ui(τ) − ui(0) and ∆sji,ν := sji,ν − dji,ν , respectively. Then we obtain instead of (5.7)
that

∆ui =
(si,+ − di,+) − (si,− − di,−)

2
√

2
+ Ai,

where

Ai =

n∑
j=2

2−3j/2
2j−1∑
ν=0

εj(i + ν)∆sj�(i+ν)/2j	,ν .

By (5.4) and (2.1) we obtain instead of (5.8) the estimate

|Ai| ≤ τ
√

2

n∑
j=2

2−j <
τ√
2
.

However, the implication from inequality (5.8) to (5.9) can be transferred only if
|di,+| ≥ τ and |di,−| ≥ τ . Similarly, we conclude instead of (5.10) that

∆ui − ∆ui+1 =
−∆si,− + 2∆si,+ − ∆si+1,+

2
√

2
+ (Ai −Ai+1)(5.13)

and estimate the latter difference by

|Ai −Ai+1| ≤ τ
√

2

n∑
j=2

4−j 4 <
τ
√

2

3
.(5.14)

However, the conclusion from (5.11) to (5.12) can be transferred only if |∆si,− −
2∆si,+ + ∆si+1,+| ≥ 4τ/3. The latter holds true if (but not only if) |di,+| ≥ τ and
|di,−| ≥ τ , i.e., if fi − fi±1 ≥

√
2τ . In this case we obtain by (5.13), (5.14), and their

counterparts for the left neighbors of fi that

−τ
√

2

3
≤ ui(τ) − ui±1(τ) ≤ fi − fi±1 −

τ
√

2

6

if fi is a maximum. Analogous inequalities hold true if fi is a minimum. We can
therefore state the following corollary.

Corollary 5.2 (behavior of extrema under Haar wavelet shrinkage). Under
translation-invariant soft Haar wavelet shrinkage with thresholds (5.4) an extremal
pixel fi, which differs at least by

√
2τ from each of its neighbors, evolves as follows:

(i) The value of the extremal pixel decreases, i.e., ∆ui < 0, if it is a maximum
and increases, i.e., ∆ui > 0, if it is a minimum.

(ii) The absolute value of the difference of the extremal pixel to each of its two
neighbors decreases; in particular, one has ∆ui − ∆ui±1 < 0 for a maximum
and ∆ui − ∆ui±1 > 0 for a minimum.

It can be shown by examples that each of the statements (i) and (ii) of the corollary
can be violated if the extremal pixel fi differs from its neighbors by not more than√

2τ . In summary, it follows that Gibbs-like artifacts can in principle still occur under
finite-size steps of soft Haar wavelet shrinkage but are restricted in amplitude.
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Fig. 5. Test signal with N = 8 pixels.

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

Fig. 6. K = 1, 20, 1000 iterations (top to bottom) of translation-invariant soft Haar wavelet
shrinkage with thresholds τ/K applied to the signal in Figure 5. Left column: single-scale wavelet
shrinkage with τ = 1. Center column: multiscale wavelet shrinkage (m = 4) with uniform threshold
τ = 0.48 on all scales. Right column: multiscale wavelet shrinkage (m = 4) with τ = 0.585 and
scale-adapted thresholds according to (5.4).

6. Experiments. In this section we illustrate the interplay of iterations and
multiscale soft Haar wavelet shrinkage by two examples. As in the previous section we
consider initial signals f = (f0, . . . , fN−1), where N = 2n is a power of 2. Furthermore,
we restrict our attention to reflecting (Neumann) boundary conditions. Then we can
perform multiscale wavelet shrinkage up to some assigned scale m ≤ n.

We start with a simple example which demonstrates the influence of the inter-
play between iterations and multiscale wavelet shrinkage on Gibbs-like artifacts and
its relation to TV diffusion. We consider the initial signal in Figure 5 and apply
iterated translation-invariant single-scale and multiscale soft Haar wavelet shrinkage
with various threshold parameters. The resulting signals are presented in Figure 6.

Consider the left column of Figure 6. In subsection 4.2 we have shown that
translation-invariant soft Haar wavelet shrinkage corresponds to a stable numerical
scheme for TV diffusion which represents real TV diffusion if the shrinkage parameter
τ is small enough. The first row demonstrates the local effect of the single-scale wavelet
shrinkage with threshold τ = 1. The K-times iterated processes with thresholds
τ = 1/K in the second and third rows spread the information globally over the signal.
For K = 1000, the scheme is a very good approximation to TV diffusion.

The middle and the right columns of Figure 6 deal with multiscale wavelet shrink-
age which does not fully correspond to TV diffusion. Already a single iteration results
in global effects here. Iterating the multiplescale wavelet shrinkage flattens homoge-
neous regions, as desired also in TV diffusion. In the middle column, we can observe
Gibbs-like phenomena. In the right column, they are avoided by scaling the thresh-
olds.

In our second example we are concerned with the initial signal in Figure 7 ob-
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tained using the WaveLab package [31]. Figure 8 presents the denoised signal, where
the parameter of each method (threshold value or number of iterations) was chosen
to optimize the signal-to-noise ratio on the output. We have applied the following
techniques:

A. 1 level, regularized TV scheme (4.6) with ε = 0.04
2
√

2
, iterated with τ = 0.01

2
√

2
,

K = 53707 iterations.
B. 1 level, two-pixel scheme (4.4), iterated with τ = 0.01, K = 53707 iterations.
C. 13 levels, 1 iteration, uniform threshold τ = 37.4.
D. 13 levels, iterated, τ = 0.01, K = 3244 iterations.
E. 13 levels, 1 iteration, scaled thresholds, τ = 92.6.
F. 13 levels, iterated, τ = 0.01, K = 7800 iterations.
The best restoration results in terms of the signal-to-noise ratio are obtained using

the regularized TV diffusion scheme (A, SNR=24.6dB), iterated single-scale wavelet
shrinkage (B, SNR=24.5dB), or the iterated n-scale wavelet shrinkage with adapted
thresholds (F, SNR=24.3dB). Although these methods are not exactly equivalent,
they reveal a high level of visual similarity and provide a good piecewise constant
approximation to the original signal. The single step multiscale wavelet shrinkage
with scale-adapted threshold (E, SNR=21.9dB) performs slightly worse. The single
step and iterated multiscale wavelet shrinkage techniques with a uniform threshold on
all scales (C, SNR=18.3dB and D, SNR=21.3dB, respectively) are less satisfactory,
also visually.

These experiments show that TV denoising outperforms many soft wavelet shrink-
age strategies. On the other hand, this is at the expense of a relatively high numerical
effort. In order to make wavelets competitive, the shrinkage should be shift invariant,
iterative, and use multiple scales with scaled thresholds. In those cases where it is
possible to reduce the number of iterations without severe quality degradations, one
obtains a hybrid method that combines the speed of multiscale wavelet techniques
with the quality of variational or PDE-based denoising methods. For more experi-
ments on multiscale ideas versus iterations we refer the reader to [35].

7. Summary. The goal of the present paper was to investigate under which
conditions one can prove equivalence between four discontinuity preserving denoising
techniques in the 1-D case: soft wavelet thresholding, TV diffusion, TV regular-
ization, and SIDEs. Starting from a simple two-pixel case we were able to derive
analytical solutions. These two-pixel solutions have been used for the following pur-
poses:

• They establish equivalence between soft Haar wavelet shrinkage with threshold
parameter τ and TV diffusion of two-pixel signal pairs with diffusion time t = τ/

√
2.

• They prove also equivalence to TV regularization of two-pixel pairs with regu-
larization parameter α = τ/

√
2.

• They conjecture equivalence of space-discrete TV diffusion and discrete TV reg-
ularization for general N -pixel signals. This conjecture has been proven in subsection
4.3.

• They prove that space-discrete TV diffusion and discrete TV regularization
are also equivalent to a SIDE evolution with a TV-based force function. This gives
a sound theoretical justification for the heuristically introduced evolution rules for
SIDEs.

• They design a novel numerical scheme for TV diffusion of N -pixel signals. It
is based on an additive operator splitting into two-pixel interactions where analytical
solutions exist for arbitrary large time step sizes. Thus, the numerical scheme is
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Fig. 7. Piecewise polynomial signal. Left: original. Right: with additive Gaussian white noise
(SNR = 8 dB) as input for the filtering procedures.
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Fig. 8. Optimal filtering results of several variants of procedures based on TV or wavelet
filtering when run on the noisy data of Figure 7.
A. Iterated classical scheme for the regularized TV flow (4.6).
B. Iterated single-level shrinkage (equivalent to the scheme (4.4) for TV flow).
C. Multiple levels with a single threshold, single step (i.e., noniterated).
D. Iterated multiple level with a single threshold at each of the levels.
E. Multiple levels with thresholds scaled according to (5.4), single step.
F. Iterated multiple level with scaled thresholds.
See text for the explanation and numerical evaluation of the results.
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explicit and absolutely stable.
We showed that wavelet shrinkage on multiple scales can also be regarded as two-

pixel TV diffusion or regularization on the Laplacian pyramid of the signal. On the
wavelet side, our experiments show that one can improve the denoising performance
by rescaling the thresholds for each wavelet level and by iterating the translation-
invariant wavelet shrinkage. On the PDE side, it is possible to achieve a speed-
up without significant quality deterioration by using iterated multiple scales instead
of iterated single-scale denoising. Thus, the resulting hybrid methods combine the
advantages of wavelet and PDE-based denoising.

In our future work we intend to consider more advanced wavelet methods (other
shrinkage functions, different wavelets) and to analyze the multidimensional case. In
two dimensions, first results on diffusion-inspired wavelet shrinkage with improved
rotation invariance are presented in [34]. We will also consider extensions of the
numerical two-pixel schemes for TV diffusion.

Acknowledgment. Joachim Weickert thanks Stephen Keeling (Graz, Austria)
for interesting discussions on two-pixel signals.
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