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Abstract. In this work, we introduce a robust energy model for mul-
tiview 3D reconstruction that fuses silhouette- and stereo-based image
information. It allows to cope with significant amounts of noise with-
out manual pre-segmentation of the input images. Moreover, we suggest
a method that can globally optimize this energy up to the visibility
constraint. While similar global optimization has been presented in the
discrete context in form of the maxflow-mincut framework, we suggest
the use of a continuous counterpart. In contrast to graph cut methods,
discretizations of the continuous optimization technique are consistent
and independent of the choice of the grid connectivity. Our experiments
demonstrate that this leads to visible improvements. Moreover, memory
requirements are reduced, allowing for global reconstructions at higher
resolutions.

1 Introduction

We consider the classical problem of inferring a dense 3D structure reconstruction
of an object from a collection of views calibrated to a common world coordinate
system. Among the multitude of existing methods one can distinguish between
two major classes of techniques according to the exploited image information:
shape from silhouettes and stereo.

In case of sparsely textured objects, silhouette-based methods exhibit favor-
able performance. Most of them aim at approximating the visual hull [I8] of the
imaged object. The visual hull is an outer approximation of the observed solid,
constructed as the intersection of the visual cones associated with all image sil-
houettes. The earliest attempts use a volumetric representation of the scene,
where each voxel is labeled as opaque or transparent according to each projec-
tion onto the images [20]. Latter developments led to the use of surface-based
representations, which allow to impose regularization in an energy minimization
framework. These methods are able to reconstruct a smooth version of the vi-
sual hull from the raw input images without the immediate need for manually
outlined silhouettes [24I28]. This is because the segmentation of each image is
obtained through the evolution of a single surface in 3D rather than separate
contours in 2D. As a result, such methods exhibit considerable robustness to
outliers and erroneous camera calibration. In [16] the robustness to noise and
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initialization is further increased by incorporating all available observations into
a probabilistic framework.

The main drawback of silhouette-based approaches is their inability to recon-
struct concavities, since these do not affect the silhouettes. Stereo-based methods
capture such indentations by measuring photoconsistency of surface patches in
space. The fundamental idea is that only points on the object’s surface have
a consistent appearance in the input images, while all other points project to
incompatible image patches. The earliest algorithms use carving techniques to
obtain a volumetric representation of the scene by repeatedly eroding inconsis-
tent voxels [I7]. They do not enforce the smoothness of the surface, which often
results in rather noisy reconstructions. Later, energy minimization techniques
based on the integration of the data fidelity criterion on the unknown surface,
have become more popular [QITTIT9]. In these works, one seeks the surface with
the smallest weighted area, where the weights reflect the local photoconsistency.

Some recent approaches use a fusion of silhouette constraints and stereo in-
formation in order to achieve consistency in terms of silhouettes as well as image
patches. Generally, there are two types of techniques to combine silhouette infor-
mation and photoconsistency. The first strategy integrates silhouette constraints
into stereo-based optimization [T0J2326]. The alternative is to use the visual hull
merely as initialization for a stereo-based technique [27].

In this paper, we present an energy model which generalizes [16] by imposing
photoconsistency constraints. Since for computing photoconsistency one needs
the visibility of surface points, the photoconsistency term is collapsed at the
beginning. With the resulting approximate visibility information, we can globally
optimize the energy that includes both constraints. Our approach is related to
the one introduced in [27]. However, the sought surface is not restricted to lie
within some predefined band around the visual hull, which imposes different
weighting of silhouette and stereo term. Another closely related work is the one
of [19]. However, in this approach the silhouette constraint is replaced by a
constant ballooning term that persistently prefers larger surfaces. To this end,
visibility estimation is based on local graph edge orientations.

All previous methods use either local optimization, which is prone to insta-
bilities and getting stuck in local minima, or discrete global optimization based
on graph cuts. However, graph cuts can only minimize a certain class of discrete
energies that are inconsistent to a corresponding continuous formulation, i.e.,
the solution does not converge to the continuous solution for finer grids. Thus,
graph cuts are not rotationally invariant and favor polyhedral structures. In the
scope of multiview reconstruction, an additional practical limitation is the rela-
tively large memory consumption of graph cut methods, which can be decisive
when computing reconstructions at a high resolution. The main contribution of
the present work is the development of a novel technique for continuous global
optimization for multiview reconstruction, which allows to avoid previously men-
tioned limitations. Similar techniques were recently proposed in the context of
image segmentation [8]. In [I] another method for global optimization has been
proposed, which has been extended in [2] to 3D segmentation. However, this
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Table 1. Optimization techniques used in image segmentation and multiview 3D re-
construction

continuous discrete continuous

local optimization| global optimization [global optimization

image Snakes [13] Graph Cuts [3] TV-L1 [§]

segmentation Level Sets [5] CSPs [1]
multiview Mesh-based [10] |Graph Cuts [19/23126/27] this
reconstruction| Level Sets [11] work

approach does not allow to incorporate regional information, which makes it in-
appropriate for our model. Both techniques were inspired by the original works
of [12], [25]. Table [l provides a number of representative works on local opti-
mization, discrete and continuous global optimization in the context of image
segmentation and multiview reconstruction, respectively.

The paper is laid out as follows. The next section contains a brief reviewing
of related continuous global optimization techniques in the context of image
segmentation. In Section 3 we present and discuss the energy model. Section 4
is devoted to the optimization technique including implementation details. We
show experimental results in Section 5 and conclude the paper with a brief
summary in Section 6.

2 Convex Formulations of Image Segmentation

In a series of works [8/4]7] image segmentation functionals, namely the two-phase
piecewise constant Mumford-Shah model [21] and the snakes [14] were addressed
by means of convex formulations. The key idea is to represent region-integrals
by means of a binary variable u : 2 C R? — {0,1} indicating foreground
and background. The weighted length term proposed in the snakes and the
geodesic active contours [6/I5] can then be expressed by means of a weighted
total variation (TV) norm [22//4]:

TV, (u) = /Q o(IV1)) |Vu] d, (1)

with an edge indicator function ¢(]VI|) that provides the local metric.

Since the space of binary functions is a non-convex space, also the respective
optimization problems are non-convex. However, in [8] it was found that when
minimizing the total variation norm over all real-valued functions u : {2 — R, the
values of u(x) converge to oo almost everywhere. Therefore the segmentation
can be cast as a convex problem on the convex space of functions u : 2 — [0, 1]
by enforcing 0 < u(z) < 1 via a convex penalizer [g]

u%’l} )

0(u) := max {0,2
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Minimization over the space of real-valued functions and subsequent threshold
will then lead to a global minimizer of the respective segmentation problems.

In this work, we will revisit these ideas and show that under appropriate
assumptions the multiview reconstruction problem can be cast as a spatially
continuous convex optimization problem. Moreover we will introduce an efficient
numerical solution by means of Successive Overrelaxation (SOR).

3 A Continuous Energy Model for Multiview
Reconstruction

Let V C R? be a volume, which contains the scene of interest, and Iy,..., I, :
2 — R3 a collection of calibrated color images with perspective projections
T,...,Tn. We are looking for some surface S C V that gives rise to these
images. This can be formulated as the energy minimization problem

E(S)=— /RS log Poyj () dx —/ log Pycr(z) dz + V/Sp(x) dA — min. (3)

obj Rfck

The energy consists of two parts. The first two terms impose the silhouette
constraint via a probabilistic segmentation of the volume into object and back-
ground. The third term acts as a constraint both for smoothness and photocon-
sistency by seeking the minimal surface with respect to a Riemannian metric.
The parameter v controls the weighting of both parts of the energy.

The definition of the probability terms follows [16]. Regarding the silhouette
constraint, according to a certain surface estimate .S, all points in V can be
divided into two classes: lying inside S or belonging to the background, i.e. V =
bej U Rfck, where bej denotes the interior and Rfck the exterior. Considering
the given image content we can assign each point € V two probabilities Pyy;(z)
and Py (z) associated with bej and Rfck, respectively. More precisely

Poj(x) = P({Ii(m(2))}i=1,..n | & € Riy)) ()
Pk () = P({Ii(m(2))}i=1,...n | © € Rip).

Note that in this formulation Ppy;(z) and Ppek(x) will generally not sum to 1.
Considering dependence of the image observations we can write

Pas(@) = ;| [[ PUL(mi(a)) | = € RS,)

Pbck(z) =1-7 H [1 - P(Il(ﬂl(x)) | T e Rbsck)]

=1

The probability of a voxel being part of the foreground is equal to the probability
that all cameras observe this voxel as foreground, whereas the probability of
background membership describes the probability of at least one camera seeing
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Fig. 1. Orthogonal image features used for multiview 3D reconstruction: shape from
silhouettes vs. shape from stereo. (a) Region-based color information. Surface concav-
ities are not presented in the reconstruction. (b) Stereo-based point matching. Surface
indentations can also be captured.

background. The root is for normalization with respect to the number of camera
views, since both products will converge to 0 for n — oo. Thus, dependency
between single image observations is expressed in terms of their geometric mean.
Note that the fusion of all available image observations allows for quite robust
silhouette-based surface estimation.

The foreground/background probabilities for the single image observations

P(Ii(mi(z)) | 2 € R3,;) ~ N(ttobs» Lobs) (©)
P(Ii(mi(z)) |z € Ryp.) ~ N (tbers Zock)-

are modeled to be Gaussian distributed. The parameters of both models, i.e.
mean vectors and covariance matrices, can be updated during optimization by
projecting the current surface estimate onto the images in order to collect pix-
els, which belong to the respective regions. However, in our implementation we
replace this iterative scheme by estimating the parameters interactively marking
a small object and background region in one of the images. This is a require-
ment for the energy to be globally minimizable. Minimization of the first two
terms in (B]) results in the most probable surface with respect to the probability
distributions P,y; and Py.
The last term in (@)

Estereo(S) = /SP(I) dA (7)

accounts for photoconsistency and smoothness of the sought surface. It is par-
ticularly important in order to reconstruct concavities that are not visible from
the silhouettes; see Figure [] for an illustration of the conceptual difference be-
tween the silhouette- and stereo-based constraints. Computation of p requires
visibility estimation. To this end, we minimize the energy with Euclidean regu-
larizer p(z) = 1. From the resulting surface, one can compute a signed distance
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function ¢ : V' — R, which in turn allows for normal estimation N, = % to
each voxel x € V. Hence, visibility is determined by front-facing cameras ac-
cording to the estimated normal direction. The term () is equivalent to the one
suggested in [II]. In particular, photoconsistency is computed in terms of the
normalized cross-correlations by averaging over front-facing cameras

@) = 5 3 37 NCO (), (s ), ®)

i

where N denotes the number of relevant camera pairs. In order to take patch
distortion into account, the surface is locally approximated by its tangent plane
[11]. For each point = € V this yields some measure c(x) between -1 and 1, where
1 means perfect correlation. This value is then mapped to the unit interval [0, 1]
using the following function proposed in [27]:

plx) =1—exp (— tan (%(c(w) - 1))2 /02) . (9)

Smoothness is implicitly enforced since minimizing () corresponds to finding
the minimal surface with respect to a Riemannian metric [5]. Note that global
optimization of this energy alone yields the empty surface. In our energy (),
the silhouette-based terms naturally prevent the empty surface without requiring
additional knowledge about the scene.

4 Continuous Global Optimization

4.1 An Equivalent Convex Formulation

Energy @) can be globally optimized, provided the object and background pa-
rameters of the Gaussian distribution and the visibility of points are given. In
this paper we build upon the optimization technique described in Section 2 by
formulating (@) as a continuous convex optimization problem.

To this end, the surface S is represented implicitly by the characteristic func-
tionu:V — {0,1} of Ry, ,i. e. u= lgs and 1 —u = 1gs . Hence, changes in
the topology of S are handled automatically without repaljrametrization. With
the implicit surface representation we have the following constrained, non-convex
energy minimization problem corresponding to (B]):

E(u) = /V(log Poyj(x) —log Pocr(z))u(x) dz + V/Vp(x)|Vu| dz — min,

s.t.ue {0,1}.

(10)

The minimization problem stated in (I{) is non-convex, since the optimization
is carried out over a non-convex set of binary functions. However, relaxing the
binary condition and extending the optimization to all functions v : V" — R,
where also intermediate values can be taken, will cause the values of u(z) to
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converge to +oo almost everywhere. In order to circumvent this difficulty, one
can restrict the domain by enforcing 0 < u(x) < 1 via a convex penalizer 6(u):

E(u) = /V (108 P () = 10g Prr(2) ) u() + vp(a)| Vul + af(u(x)) dz, (1)

where a has to be chosen sufficiently large in order to ensure that u does not
leave the interval [0,1]. This leads to a convex formulation, which allows for
global optimization by using standard techniques like gradient descent. Finally,
we come up with a global minimizer of the original non-convex functional (I0) by
thresholding the result at any p € (0,1). In our experiments, we chose u = 0.5,
but we obtained virtually the same results with p € [0.1,0.9].

In summary, the optimization can be split into two steps:

1. Find a minimizer u of (II]).

2. Threshold the result: bej ={z eV | u(z) < u for some u € (0,1)}.

A necessary condition for a minimum of (IJJ) is stated by the associated Euler-
Lagrange equation

\Y% \Y%
0 = (log Popj — log Pyei) — vpdiv (_u) —(Vp, _u> + afl(u)

[Vu |Vul
. Vu ,
= (log Pop;j — log Pyer) — v div pm + ab(u), (12)
u

where 6. is a regularized version of the derivative of 6 with respect to its
argument.

4.2 Fast Minimization by Successive Overrelaxation

Discretization of the Euler-Lagrange equation ([I2]) leads to a sparse nonlinear
system of equations, which can be solved via gradient descent. However, gradient
descent converges very slowly. Thus, we suggest to use a fixed point iteration
scheme that transforms the nonlinear system into a sequence of linear systems.
These can be efficiently solved with iterative solvers, such as Gauss-Seidel, suc-
cessive over-relaxation (SOR), or even multi-grid methods.

Neglecting the term «f’(u), which can in practice be replaced by simply clip-
ping values of u that fall out of the interval [0, 1], the only source of nonlinearity
in ([I2)) is the diffusivity g := ﬁ. Starting with an initialization u® = 0.5, we
can compute g and keep it constant. For constant g, (IZ) yields a linear system
of equations, which we solve with the SOR method. This means, we iteratively
compute an update of u at voxel i by

1,k+1 I,k
vy pigiuyt T AU Y pighuyt = b
Lk JEN(i),5<i JEN(i),5>i
ST 4w 7
vy PjYi~j
JEN (i)

ubkF = (1

% - w)u

(13)

(2
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Fig. 2. Some of the input images used for 3D reconstruction. The image sequence is
pretty challenging because of the presence of reflections and illumination artefacts.

where N (7) denotes the neighborhood of i, g;~; denotes the diffusivity between
voxel i and its neighbor j, and the vector b; contains the constant part of (I2)
that does not depend on u, i.e. the fidelity term b; = log Popj; — log Pyck,i-
The over-relaxation parameter w has to be chosen in the interval (0,2) for the
method to converge. The optimal value depends on the linear system to be
solved. Empirically we obtained the fastest convergence rate for w = 1.85. After
being sufficiently close to a fixed point u! (we iterated for k = 1,...,10), one can
update the diffusivities and solve the next linear system. Iterations are stopped
as soon as the energy decay in one iteration is in the area of number precision.

5 Experiments

Figure 2] depicts 3 of 33 input images of resolution 640 x 480 used for recon-
struction. The input images are pretty challenging because of the presence of
illumination artefacts and specular reflections. Note that automatic color-based
segmentation of the single images is infeasible due to the similarity in color of
the bunny figure and the illumination effects in the background.

Figure [B] shows reconstructions from the above image sequence by using dis-
crete graph cuts and the proposed continuous optimization technique applied on
the model described in Section 3. Both reconstructions look accurate. However,
the graph cut reconstruction looks generally slightly oversmoothed because of the
discrete approximation of the smoothness term. In addition, the proposed min-
imization exhibits considerable reductions in memory compared to graph cuts
(in our implementation about a factor of 20), which allows to perform global
optimization at higher volume resolutions. We ran the proposed optimization on
an architecture with 2 GB of main memory and volume of more than 20 million
voxels (see Figure ). The corresponding graph cut computation is infeasible for
this resolution.

The evolution of an initial surface towards the final result is depicted in
Figure[Bl Note that the final reconstruction does not depend on the initialization,
since the used cost function is minimized globally. A closer look at the evolu-
tion process reveals the difference to local optimization techniques like level sets,
where the surface evolves coherently, i.e. there are no unnecessary topological
changes.
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Fig. 3. Multiview reconstruction of the sequence in Figure[2l First row: reconstruction
with the proposed method. second row: reconstruction obtained by minimizing the
same energy functional [B]) via graph cuts. Volume resolution was set to 108 x 144 x 162.
At this resolution both reconstructions look quite similar.

Fig. 4. Reconstruction obtained by the proposed approach at a volume resolution of
216 x 288 x 324. Increasing the resolution by a factor of 2 in each dimension allows for
the emergence of fine-scale details (compare to Figure ). Graph cut reconstruction at
such a resolution was infeasible on our machines due to memory overflow.
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Fig. 5. Surface evolution towards the final result. Intermediate surfaces were generated
by thresholding the evolving function u at 0.5 (see Section []). In contrast to level set
schemes the evolution process is not coherent.

(a) (b) (c)

Fig. 6. Continuous vs. discrete optimization. (a) A slice through the data volume.
Increasing intensities denote regions with Puy;(z) > Pock(x), Povj(z) < Pyer(x) and
Poyj(xz) = Pyer(x) respectively. Photoconsistency function p is constant throughout
the volume. (b) Reconstruction obtained with the optimization technique described
in Section [ (¢) Reconstruction computed by graph cuts. In contrast to the graph
cut solution, the proposed continuous optimization does not suffer from discretization
artefacts.

Figure [6] additionally emphasizes a comparison between graph cuts and the
proposed continuous optimization when applied on a synthetic sphere with a
missing piece of data. At such locations the difference between both models
becomes obvious. Note that some discretization artefacts in terms of blocky
structures are available in the graph cut reconstruction because of metrication
errors, even with 26-neighborhood system. In addition, sharp corners occur, since
the discrete model does not take the curvature of the surface into account. In
contrast, the continuous optimization achieves nice and smooth continuation of
the missing part of the surface.
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6 Summary

In this paper an energy model for multiview 3D reconstruction allowing global
optimization is proposed. To the best of our knowledge this is the first work
to cast multiview 3D reconstruction as a continuous convex optimization prob-
lem (up to visibility). As for graph cuts this allows to compute globally optimal
shapes. However, in contrast to discrete techniques, the proposed continuous
formulation does not suffer from metrication errors. Moreover, it requires con-
siderably less memory, thereby allowing for optimal reconstructions at higher
resolutions. All these properties are demonstrated experimentally.
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