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Abstract. The recent nonlocal means filter is a very successful tech-
nique for denoising textured images. In this paper, we formulate a varia-
tional technique that leads to an adaptive version of this filter. In partic-
ular, in an iterative manner, the filtering result is employed to redefine
the similarity of patches in the next iteration. We further introduce the
idea to replace the neighborhood weighting by a sorting criterion. This
addresses the parameter selection problem of the original nonlocal means
filter and leads to favorable denoising results of textured images, partic-
ularly in case of large noise levels.
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1 From neighborhood filters to the nonlocal means filter

In recent years, increasingly sophisticated filtering techniques have been devel-
oped in order to remove noise from a given input image f : (Ω ⊂ R2) → R.
While linear Gaussian filtering

u(x) = Gρ ∗ f(x) =
∫

Gρ(x′)f(x− x′) dx′ (1)

with a Gaussian Gρ of width ρ > 0 is known to blur relevant image structures,
more sophisticated nonlinear filtering techniques were developed, such as the
total variation filtering [10], also known as the ROF model, which minimizes the
cost functional:

E(u) =
∫

(f − u)2 dx + λ

∫
|∇u| dx. (2)

The ROF model is closely related to nonlinear diffusion filters [9], in particular
to the total variation flow [1]

u(x, 0) = f(x)

∂tu(x, t) = div
(
∇u(x,t)
|∇u(x,t)|

)
.

(3)

In the space-discrete, one-dimensional setting, it was shown that the solution of
this diffusion equation at a time t is equivalent to the solution of the ROF model
with λ = t as well as a certain implementation of wavelet soft shrinkage [12].
Despite an enormous success in image enhancement and noise removal applica-
tions, approaches like the ROF filtering remain spatially local, in the sense that
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Fig. 1. Nonlocal means filter. From left to right: (a) Reference image of size 119×121
pixels. (b) Gaussian noise with σ = 20 added. (c) Denoising result of the nonlocal means
filter (h = 0.95σ). (d) Denoising result of the changed nonlocal means filter using a
sorting criterion (n = 8).

at each location x ∈ Ω the update of u is determined only by derivatives of u at
that same location x – see equation (3).
A class of image filters which adaptively takes into account intensity information
from more distant locations are the Yaroslavsky neighborhood filters [16]:

u(x) =
1

C(x)

∫
K(x, y, f(x), f(y)) C(x) =

∫
K(x, y, f(x), f(y)) dy. (4)

K is a nonnegative kernel function which decays with the distances |x− y| and
|f(x) − f(y)|. Thus the application of this filter amounts to assigning to x a
weighted average over the intensities f(y) of all pixels y which are similar in
the sense that they are close to {x, f(x)} in space and in intensity. These filters
are also known as local M-smoothers [4, 15]. A similar, but iterative, filter is the
bilateral filter [11, 13]. Relations between such neighborhood filters and nonlinear
diffusion filters have been investigated in [8].
A drastic improvement of these neighborhood filters is the nonlocal means fil-
ter which was recently proposed by Buades et al. [3]. Its application to video
processing and surface smoothing has been demonstrated in [7, 17] and a very
related statistical filter was presented in [2]. The nonlocal means filter can be
written as:

u(x) =
∫

wf (x, y) f(y) dy, (5)

with normalized weights of the form

wf (x, y) =
gf (x, y)∫
gf (x, y) dy

, (6)

where

gf (x, y) = exp

(
−

d2
f (x, y)
h2

)
(7)

and
d2

f (x, y) =
∫

Gρ(x′)
(
f(x− x′)− f(y − x′)

)2
dx′. (8)
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In contrast to the neighborhood filters, the nonlocal means filter quantifies the
similarity of pixels x and y by taking into account the similarity of whole patches
around x and y. The similarity is expressed by a dissimilarity measure d2

f (x, y),
which contains the size ρ of the compared patches as a parameter, and a weight-
ing function g with parameter h, which quantifies how fast the weights decay
with increasing dissimilarity of respective patches. Since the above similarity
measure takes into account complete patches instead of single pixel intensities,
the nonlocal means filter is able to remove noise from textured images with-
out destroying the fine structures of the texture itself. This amazing property is
demonstrated in Fig. 1.
The key idea of nonlocal means filtering is that the restoration of a destroyed
texture patch is improved with support from similar texture patches in other
areas of the image. The filter is, hence, based on a similar concept as the texture
synthesis work of Efros and Leung [5]. In this paper, we will show that this
property is further enhanced by iterated nonlocal means which shall be developed
in the following.

2 Iterated nonlocal means

The nonlocal means filter assigns to each pixel x a weighted average over all
intensities f(y) of pixels y which share a similar intensity neighborhood as the
point x. A trivial variational principle for this filter can be written as:

E(u) =
∫ (

u(x)−
∫

wf (x, y)f(y) dy

)2

dx. (9)

An alternative variational formulation of nonlocal means was proposed in [6]. In
this paper, we propose an iterated form of the nonlocal means filter which arises
when extending the above functional by replacing wf by wu in the following
manner:

E(u) =
∫ (

u(x)−
∫

wu(x, y)f(y) dy

)2

dx. (10)

Thus, rather than imposing similarity of u(x) to f(y) for locations y where the
input image f(y) is similar to f(x), we impose similarity to f(y) for locations
y where the filtered image u(y) is similar to u(x). This induces an additional
feedback and further decouples the resulting image u from the input image f .
The idea is that the similarity of patches can be judged more accurately from
the already denoised signal than from the noisy input image.

2.1 Fixed point iteration

Due to the introduced dependence of w on u, the minimizer of (10) is no longer
the result of a weighted convolution, but the solution of a nonlinear optimization
problem. A straightforward way to approximate a solution of (10) is by an itera-
tive scheme with iteration index k, where we start with the initialization u0 = f .
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For fixed u = uk we are in a similar situation as with the conventional nonlocal
means filter. In particular, we can compute the similarity measure wuk(x, y) for
the current image uk and, as a consequence, we obtain an update on u

uk+1(x) =
∫

wuk(x, y) f(y) dy. (11)

Whether this iterative process converges to a stationary solution, is subject of
future investigation.

2.2 Euler-Lagrange equation and gradient descent

An alternative way to find a solution of (10) is by computing its Euler-Lagrange
equation, which states a necessary condition for a (local) minimum. We are
seeking for the gradient

∂E(u)
∂u

=
∂E(u + εh)

∂ε

∣∣∣∣
ε→0

. (12)

After evaluation and substitution of integration variables, we end up with the
following Euler-Lagrange equation:

∂E(u)
∂u

= 0 =
(

u(x)−
∫

f(y)wu(x, y)dy

)
+2
∫∫ (

u(z)−
(∫

f(y′)wu(z, y′)dy′
))

f(y)g′(z, y)∫
g(z, y′)dy′

Gρ(y − x)(u(z − y − x)− u(x))dydz

+2
∫∫∫ (

u(z)−
(∫

f(y′)wu(z, y′)dy′
))

f(y)g(z, y)g′(z, y′′)(∫
g(z, y′)dy′

)2 Gρ(z − x)(u(x)− u(y′′ − z − x))dy′′dydz

After initializing u0 = f , the gradient descent equation

uk+1 = uk − τ
∂E(u)

∂u
(13)

yields the next local minimum for some sufficiently small step size τ and t →∞.
Obviously, gradient descent with the gradient being reduced to the first term
in (2.2) leads for τ = 1 to the same iterative scheme as in Section 2.1. The
additional two terms take the variation of wu into account and ensure conver-
gence for sufficiently small step sizes τ . However, these terms induce a very large
computational load in each iteration. In particular, the time complexity of the
third term in each iteration is O(MN4), where N is the number of pixels in
the image and M the number of pixels in the compared patch. For comparison,
the first term only has a time complexity of O(MN2) and a nonlinear diffusion
filter like TV flow has a time complexity of O(N) in each iteration. Hence, in
our experiments, we took only the first term into account.
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Fig. 2. Parameter sensitivity of nonlocal means filter in case of high noise levels. From
left to right: (a) Gaussian noise with σ = 30 added to reference image in Fig.1a. (b,c,d)
Denoising result of nonlocal means filter for h = 0.65σ, h = 0.7σ, and h = 0.75σ. The
fact that the restored image contains both unfiltered, noisy areas, as well as over-
smoothed areas shows that there exists no ideal choice of the parameter h.

3 A robust threshold criterion

While the nonlocal means filter can yield astonishing denoising results, a deeper
experimental investigation reveals a large sensitivity to the parameter h in

gf (x, y) = exp

(
−

d2
f (x, y)
h2

)
, (14)

which is responsible for steering the decay of weights for decreasing similarity
of patches. This parameter sensitivity increases with the noise variance σ in the
image. Moreover, if the noise level exceeds a certain value, it is no longer possible
to choose a global h such that the noise is removed everywhere without destroying
repetitive structure somewhere else in the image. This is demonstrated in Fig. 2.

The reason for this effect is the weighting function g. By definition we have
gf (x, x) = 1. Suppose there is a highly repetitive patch and the noise level is
rather small. In this case, there will be many similar patches with g(x, y) ≈ 1
and the smoothing between these patches works well. Now suppose a patch
that is hardly similar to other patches in the image, or only very few of them.
Consequently, there will be almost no change at x since g(x, x) = 1 and g(x, y) ≈
0 almost everywhere. In this case, one has to increase h such that there are
enough y with g(x, y) > ε in order to see a smoothing effect.
Buades et al. have been aware of this problem and suggested to set g(x, x) to
maxy 6=x g(x, y). Although this attenuates the problem, it does not resolve it, as
it only ensures the averaging of at least two values. The results shown in Fig. 2,
where we implemented this idea, reveal that the averaging of at least two values
is in many cases not sufficient.
Here, we suggest to approach the problem from a different direction. Instead of
defining a function g that assigns weights to positions y, we choose the number
n of positions that is appropriate to remove a certain noise level. We then simply
take those n patches with the smallest dissimilarity d2(x, y).
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Fig. 3. From left to right: (a) Gaussian noise with σ = 50 added to the reference
image in Fig.1a. (b,c,d) Denoising result of nonlocal means filter with the new sorting
criterion for n = 10, n = 20, and n = 40. Although the noise level is significantly higher
than in Fig. 2, the exact parameter choice is less critical and the results look favorable.

Fig. 4. Iterated nonlocal means. From left to right: (a) Gaussian noise with σ = 70
added to reference image in Fig.1a. (b,c,d) Denoising result of the iterated nonlocal
means filter with the sorting criterion after 1, 2, and 5 iterations (n = 20). Iterations
improve the regularity of the texture.

By considering for any pixel x the n most similar pixels rather than all those
pixels of similarity above a fixed threshold, we allow for denoising which does
not depend on how repetitive the respective structure at x is in the given image.

4 Experimental results

Figure 3 shows the effect of the new sorting criterion. Although the noise level
in the input image has been chosen much higher than in Figure 2, the result
looks more appealing. The noise has been removed while the repetitive texture
patterns have been preserved. Even the contrast did not suffer severely. More-
over, the sensitivity with respect to the parameter choice has been attenuated
considerably: All three results depicted in Figure 3 are satisfactory, although
the parameter n has been varied by a factor 4. For all experiments, also in the
previous sections, we fixed ρ =

√
8 and used a 9×9 window for implementation.

Figure 4 demonstrates the impact of iterating the nonlocal means filter. Again
we increase the noise level. Note that due to the high amount of noise and clip-
ping intensities that exceed the range of [0, 255], the noise is not fully Gaussian
anymore. Nevertheless, the results that can be obtained with the modified non-
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Fig. 5. Denoising of a natural, non-regular image. From left to right, top to bot-
tom: (a) Reference image of size 162 × 120 pixels. (b) Gaussian noise with σ = 30
added. (c,d,e,f) Denoising result of the iterated nonlocal means filter with the sorting
criterion after 1, 2, 4, and 10 iterations (n = 100).

local means filter, in particular with its iterated version, look quite satisfactory.
Clearly, iterating the filter improves the regularity of the texture pattern.

This can lead to interesting effects, if the filter is applied to an image that is
mainly non-regular. Such a case is shown in Fig. 5. For an increasing number
of iterations, the filter acts more and more coherence enhancing reminiscent of
curvature motion or coherence enhancing anisotropic diffusion [14].
While the denoising in Fig. 5 has been achieved with a quite large number
of partners, namely n = 100, Fig. 6 shows what happens if one decreases n
and instead increases the number of iterations. Due to the small number of
neighbors, the filter is not able to fully remove the noise. Interestingly, with

Fig. 6. Hallucination of regular patterns in noise for many iterations and small mask
size. From left to right: (a) Gaussian noise with σ = 30 added to reference image
in Fig.5a. (b,c) Denoising result of the iterated nonlocal means filter with the sorting
criterion after 1 and 300 iterations (n = 10). For small n, the iterated filter creates
structures from the noise.
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further iterations, the filter detects structures in the noise that have not been
present in the image and starts enhancing these.
In Fig. 7 we show a comparison of the modified, iterated nonlocal means filter
to the ROF model. In order to demonstrate the robustness of the parameter
settings, the image contains various different textures of different scales. The re-
sults, in particular the two closeups in Fig. 8, reveal a very precise reconstruction
of all textures despite the fixed parameter setting. Even very fine texture details
are preserved. This is in contrast to the ROF model, which preferably removes
small scale structures. In most cases such structures are noise pixels, but they
may also be important parts of the texture.

Fig. 7. Comparison to ROF denoising model. Top left: (a) Reference image of size
512× 512 pixels. Top right: (b) Gaussian noise with σ = 40 added. Bottom left: (c)
Denoising result with iterated nonlocal means and the sorting criterion (n = 20) after
2 iterations. Bottom right: (d) ROF model for α = 20.
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Fig. 8. Zoom into two regions in Fig. 7. Each row from left to right: (a) Noisy
input image. (b) ROF model. (c) Iterated nonlocal means.

Finally, we performed a quantitative evaluation of various filters, including the
ROF model, conventional nonlocal means, nonlocal means with the suggested
sorting criterion, as well as its iterated version. Table 1 lists the root mean square
(RMS) error

eRMS :=

√√√√ 1
N

N∑
i=1

(r(i)− u(i))2 (15)

between the outcome u of the filter and the undisturbed reference image r. The
test images and the filtering results are shown in Fig. 9 and Fig. 10, respectively.
For a fair comparison, we ensured that exactly the same noise was added in all
test runs and optimized the free parameters.

The numbers only partially support the visual impression, as the results of the
ROF model reveal more unpleasant artifacts than its good RMS errors indicate.
However, the numbers are in line with the impression that the nonlocal means
filter using the sorting criterion, in particular its iterated version, performs best
for regular texture patterns. In case of images that are dominated by piecewise
homogeneous areas, the conventional nonlocal means filter still yields the most
appealing results.
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Fig. 9. Undisturbed reference images for the quantitative comparison in Table 1.

texture (σ = 70) owl (σ = 40) Lena (σ = 30)

Input image 62.28 38.06 29.16
ROF model 34.28 (28) 22.78 (16) 11.33 (18)
Nonlocal means 38.73 (0.45σ) 27.29 (0.6σ) 13.69 (0.6625σ)
Sorting criterion 32.02 (175) 23.95 (40) 13.38 (100)
Iterated sorting criterion 28.16 (75/3) 23.95 (40/1) 12.57 (65/2)

Table 1. Root mean square error for the input images in Fig. 9 and different denoising
techniques. See Fig. 10 for the resulting images. The value in brackets is the optimized
setting of the free parameter(s).

5 Conclusions

We proposed a variational formulation of the recently developed nonlocal means
filter and introduced an additional feedback mechanism at the variational level.
We showed that the solution by a fixed point iteration gives rise to an iter-
ated version of the nonlocal means filter. Moreover, we proposed to replace the
neighborhood weighting in the original formulation by a sorting criterion which
assures that the amount of filtering no longer depends on how repetitive respec-
tive image structures are in the given image. Experimental results demonstrate
that the iterated nonlocal means filter outperforms both nonlocal means and
total variation filtering when applied to the restoration of regular textures. At
the same time, our experiments indicate that the increased feedback may lead
to a hallucination of regular patterns in noise for large iteration numbers.

References

1. F. Andreu, C. Ballester, V. Caselles, and J. M. Mazón. Minimizing total variation
flow. Differential and Integral Equations, 14(3):321–360, Mar. 2001.

2. S. Awate and R. Whitaker. Unsupervised, information-theoretic, adaptive image
filtering for image restoration. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 28(3):364–376, Mar. 2006.

3. A. Buades, B. Coll, and J. M. Morel. A review of image denoising algorithms, with
a new one. SIAM Interdisciplanary Journal, 4(2):490–530, 2005.



Iterated Nonlocal Means for Texture Restoration 11

4. C. K. Chu, I. Glad, F. Godtliebsen, and J. S. Marron. Edge-preserving smoothers
for image processing. Journal of the American Statistical Association, 93(442):526–
556, 1998.

5. A. Efros and T. Leung. Texture synthesis by non-parametric sampling. In Proc. In-
ternational Conference on Computer Vision, pages 1033–1038, Corfu, Greece, Sept.
1999.

6. S. Kindermann, S. Osher, and P. W. Jones. Deblurring and denoising of images
by nonlocal functionals. SIAM Interdisciplinary Journal, 4(4):1091–1115, 2005.

7. M. Mahmoudi and G. Sapiro. Fast image and video denoising via nonlocal means
of similar neighborhoods. Signal Processing Letters, 12(12):839–842, 2005.
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Fig. 10. Images corresponding to the result in table 1. Each column from top to
bottom: Noisy input image, TV flow, nonlocal means filter, nonlocal means with
sorting criterion, iterated nonlocal means. In case of the owl image, the iterated and
non-iterated results are identical.


