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Abstract

In biomedical research we can see a clear tendency towards the study of cells and whole organisms in
their natural 3D environment, away from the studies of isolated flat cells, that were grown in a synthetic
2D environment and were analyzed with 2D techniques. Another trend in biomedical research is the
ever increasing need for high-throughput experiments, e. g., to retrieve statistically relevant informa-
tion. The equipment for the automatic recording of great amounts of 3D volumetric data is available
in many research laboratories today, but the recorded 3D data are still manually evaluated which has
become the main bottleneck in many applications.

In this thesis the development of 3D invariants for the recognition of biological structures is de-
scribed. These invariants are based on the Haar-integration-framework of Schulz-Mirbach (1995b).
The invariance properties are reached by an integration over the desired transformation groups, e. g.
rotation and translation. Several important aspects of the application of the Haar-integration frame-
work to 3D volumetric data sets of biological structures are described. The most important extension
is the introduction of deformation models such that the resulting features are robust to elastic deforma-
tions of the structures. Another important aspect is the reached robustness to even non-linear gray-scale
transformations, that allow certain variations of the recording parameters between the training and the
test objects. The direct computation of these invariants is computationally very expensive. Several
new techniques are introduced that allow a fast computation of the invariants by means of the FFT,
by the expansion of the integral into spherical harmonics series or by simultaneous computation of
multiple invariants based on invertible vectorial kernel functions. Furthermore voxel-wise invariants
are introduced for a simultaneous segmentation and recognition of 3D structures. Vectorial invariants
are developed for a fast and reliable detection of spherical objects in cluttered environments.

A very challenging application that demands many of the requirements to be fulfilled which are
given in the biomedical research is the recognition of pollen grains. The high number of different
pollen grains from different plants contain very different kinds of structures that have to be identified.
For a part of these structures clear one-to-one correspondences can be identified, while for the other
part of these structures only the statistical properties match.

In the given application we use microscopically recorded images to recognize a real-world object.
For the correct interpretation of the gray values it is important to understand the different effects within
a microscope. The main four steps, illumination, interaction of the object with the light, transformation
of the emitted light, and the recording of the light are explained.

In pollen recognition (as in many other applications) we should differentiate between those results
that can be reached within a clean and well-controlled laboratory environment and those results of a
real-world routine application. In this thesis two representative data sets for these scenarios are used:
The first one (denoted as “confocal data set” here) is a typical laboratory data set: The pollen were
collected directly from the corresponding plants. They were carefully prepared on one slide per taxon
and were manually recorded as a full 3D volumetric data set with confocal laser scanning microscopy.
Due to the high costs of such a system and the time-consuming operation, only a small data set con-
taining 389 pollen grains of 26 different taxa (15 grains per taxon) was recorded. The preparation and
recording applied here guarantees a 100% correct labeling of the pollen grains and contains the lowest
possible degree of distortion due to optical effects. On the other hand the used samples do not repre-
sent all variations within each taxon, such as different genera, species or subspecies, different growth
conditions of the plants, etc. Furthermore this data set does not contain deformed, contaminated or
agglomerated pollen grains or pollen grains at different levels of degradation and it does not contain
the vast amount of other particles that are found in real air samples.

The second data set (denoted as “pollenmonitor data set”) is a typical real-world data set. It was
automatically collected, prepared and recorded by the first prototype of the pollenmonitor during the
pollen season 2006 in Freiburg and Zürich. It contains about 22,750 pollen grains from 33 taxa together
with about 170,000 other spherical airborne particles.
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The detection of the pollen grains in the recorded volumetric data sets is done by vectorial voxel-wise
invariants (named “MiSP detector” for Microscopical Spherical Particles). The precise segmentation
of the detected pollen grains is performed by standard algorithms that were adapted to the given re-
quirements. For the confocal data set a graph-cut-based segmentation was used. For the pollenmonitor
data set a combination of a modified canny-edge detector, a model-based weighting of the found edges
and a snake approach was applied. The feature extraction is done by the upper described invariants
(named “MiSP invariants”) which exhibit a high robustness to elastic deformations and nonlinear gray-
value transformations. At the same time these invariants are sensitive to subtle structural changes that
cannot be modeled by deformations. The classification of the objects is performed with support vector
machines that were optimized to deal with the very high dimensionality of the extracted feature vectors
(e.g., 87,296 for the pollenmonitor data set).

The recognition rate on the confocal data set (389 pollen grains of 26 taxa) is very high. In a leave-
one-out validation with a simple 1 Nearest Neighbor classifier only 3 of the 389 pollen grains were
misclassified (99.2% recognition rate). With a support vector machine only 2 incorrectly classified
pollen grains were obtained (99.5% recognition rate). In the second case the misclassified pollen
were confused with another genus from the same family. The best recognition rates obtained by other
approaches on typical “laboratory” data sets are 89% on a data set containing 3,800 pollen grains from
19 taxa, or 70% on a data set containing 16,220 pollen grains from 80 taxa.

For the rating of the results on the pollenmonitor data set another statistical measure that the recog-
nition rate is useful. In pollen samples from the ambient air we are confronted with a very high number
of particles other than pollen that have to be correctly rejected by the recognition system. Here the
precision (fraction of correctly classified pollen within the objects, that were classified as pollen) is
the most important statistical measure. The validation was done by splitting the pollenmonitor data set
(22,750 pollen grains from 33 taxa + about 170,000 dust particles) into a training set and a test set. The
training set contains only samples from Freiburg, while the test set contains samples from Freiburg and
Zürich. The obtained precision for all 33 pollen taxa is 96.7% at a recall of 84.3%. The results for
the five highly allergenic pollen taxa in this data set (that are monitored for the pollen forecasts) are
98.5% precision at a recall of 86.5%. The best results obtained by other approaches on a real-world
data set (3104 pollen grains from 8 taxa + about 30,000 dust particles) is a precision of 30% at a recall
of 64.9%.

The results obtained with the proposed MiSP invariants are significantly better than the state of
the art in pollen recognition. Furthermore these techniques have proven to work not only on a small
laboratory-type data set but also on a very large real-world data set. Especially the reached robustness to
elastic deformations and the full 3D approach seems to be a key requirement for a reliable recognition
of biological structures. We think that the new findings will be a valuable foundation for many further
developments in the field of the recognition of biological structures in 3D volumetric data sets.
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Zusammenfassung

In der bio-medizinischen Forschung ist eine klare Tendenz erkennbar, die weg von der klassischen 2D
Analyse einzelner flacher Zellen in einer synthetischen zweidimensionalen Umgebung hin zur Unter-
suchung von Zellen und ganzen Organismen in ihrer natürlichen dreidimensionalen Umgebung geht.
Außerdem wächst der Bedarf an Experimenten, die an einer großen Zahl gleicher Systeme durchgeführt
werden, um z.B. Daten für statistische Aussagen zu gewinnen. Die apparative Ausstattung zur Auf-
nahme großer Mengen dreidimendionaler Volumendaten ist heutzutage in vielen Forschungslaborato-
rien verfügbar, aber die Auswertung dieser Daten erfolgt immer noch manuell. Diese zeitaufwändige
Auswertung ist inzwischen der Haupt-Engpass in vielen derartigen Anwendungen.

In der vorliegenden Dissertation wird die Entwicklung von 3D Invarianten zur Erkennung von biol-
ogischen Strukturen beschrieben. Diese Invarianten wurden mit Hilfe eines Schemas entwickelt, das
von Schulz-Mirbach (1995b) angegeben wurde und auf der Haar-Integration beruht. Die benötigten
Invarianzeigenschaften werden dabei durch die Integration über die entsprechende Transformations-
gruppe wie z.B. Rotation und Translation erreicht. Verschiedene Erweiterungen des Haar-Integrations-
Schemas werden beschrieben, die für die Anwendung auf 3D Volumendaten biologischer Strukturen
benötigt werden. Die wichtigste Erweiterung ist dabei die Einführung eines Deformationsmodells, so
dass die resultierenden Merkmale robust gegenüber elastischen Deformationen der betrachteten Struk-
turen werden. Ein weiterer wichtiger Aspekt ist die erreichte Robustheit gegenüber nicht-linearen
Grauwert-Transformationen, die gewisse Veränderungen der Aufnahmebedingungen zwischen den
Aufnahmen der Trainings- und der Test-Objekte erlaubt.

Die direkte Berechnung dieser Invarianten ist extrem rechenaufwändig. Mehrere neue Verfahren zur
schnellen Berechnung der Invarianten durch den Einsatz der FFT, durch die Entwicklung des Integrals
in eine Reihe von Kugelfunktionen, oder durch die simultane Berechnung von mehreren Invarianten,
basierend auf invertierbaren vektoriellen Kernfunktionen, werden vorgestellt. Außerdem werden vox-
elweise berechnete Invarianten eingeführt, mit deren Hilfe die Segmentierung und Erkennung von 3D
Strukturen in einem Schritt durchgeführt werden kann. Für eine schnelle und zuverlässige Detek-
tion von kugelförmigen Objekten in sehr heterogenen Umgebungen werden vektorielle Invarianten
entwickelt.

Eine sehr anspruchsvolle Anwendung, bei der viele der Anforderungen erfüllt werden müssen, die
unter anderem in der bio-medizinischen Forschung auftreten, ist die Erkennung von Pollen. Die große
Anzahl von verschiedenen Pollen der verschiedenen Pflanzen enthalten sehr unterschiedliche Typen
von Strukturen, die identifiziert werden müssen. Für einen Teil dieser Strukturen können klare eins-
zu-eins Korrespondenzen gefunden werden, während für einen anderen Teil der Strukturen nur die
statistischen Eigenschaften übereinstimmen.

In der vorliegenden Anwendung soll ein reales Objekt anhand von mikroskopisch aufgenommenen
Bildern erkannt werden. Für die korrekte Interpretation der Grauwerte ist es wichtig, die verschiede-
nen Effekte innerhalb des Mikroskops zu verstehen. Daher werden die vier wichtigsten Schritte, die
Beleuchtung, die Wechselwirkung des Lichtes mit dem Objekt, die Transformation des emittierten
Lichtes und die Aufnahme des Lichtes umfassend erläutert.

In der Pollen-Erkennung (so wie in vielen anderen Anwendungen) sollte man zwischen solchen
Ergebnissen unterscheiden, die in einer sauberen, gut kontrollierbaren Labor-Umgebung erreicht wer-
den können, und solchen Ergebnissen, die in einer realen Routineanwendung erreicht werden. In dieser
Dissertation werden zwei repräsentative Datensätze für diese beiden Szenarien verwendet. Der erste
(hier als “Konfokal-Datensatz” bezeichnet) ist ein typischer Labor-Datensatz: Die Pollen wurden di-
rekt von den entsprechenden Pflanzen gesammelt und sorgfältig auf einem Objektträger pro Taxon
präpariert. Von jedem Pollenkorn wurde manuell ein 3D Volumendatensatz mit einem konfokalen
Laser-Scannnig-Mikroskop aufgenommen. Aufgrund der hohen laufenden Kosten eines solchen Sys-
tems und der zeitaufwändigen Aufnahme wurde nur ein relativ kleiner Datensatz mit 389 Pollen von 26
verschiedenen Taxa (15 Pollen pro Taxon) erzeugt. Dieses Vorgehen garantiert ohne Ausnahme die ko-
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rrekte Zuordnung der Pollen zu der entsprechenden Pflanzenart und die geringst mögliche Verfälschung
der Aufnahmen durch optische Effekte. Andererseits werden in diesem Datensatz nicht alle möglichen
Variationen innerhalb eines Taxons abgedeckt. Dies betrifft vor allem Variationen aufgrund von ver-
schiedenen Genera, Arten oder Unterarten innerhalb des Taxons, oder aufgrund von verschiedenen
Wachstumsbedingungen der Pflanzen. Desweiteren enthält dieser Datensatz keine deformierten, kon-
taminierten oder agglomerierten Pollen, sowie keine Pollen in verschiedenen Zersetzungs-Zuständen
und vor allem nicht die enorm hohe Zahl anderer Partikel, die in echten Luftstaubproben auftreten.

Der zweite Datensatz (hier als “Pollenmonitor Datensatz” bezeichnet) ist ein typischer “Real-
World”-Datensatz. Die Proben wurden in der Pollensaison 2006 vollautomatisch mit dem ersten Pro-
totypen des Pollenmonitors gesammelt, präpariert und aufgenommen an den Standorten Freiburg und
Zürich. Dieser Datensatz enthält insgesamt ca. 22.750 Pollen von 33 Taxa und etwa 170.000 andere
rundliche luftgetragene Partikel.

Die Detektion der Pollen in den aufgenommenen volumetrischen Datensätzen erfolgt mit vekto-
riellen voxel-weisen Invarianten (hier als “MiSP detector” für “Microscopical Spherical Particles”
bezeichnet). Für die nachfolgende Segmentierung der detektierten Partikel werden angepasste Stan-
dardverfahren eingesetzt: Eine graph-cut basierte Segmentierung für den Konfokal-Datensatz und eine
Kombination aus einem modifizierten Canny-Edge-Detector, einer modellbasierten Gewichtung der
gefundenen Kanten und einem Snake-Ansatz für den Pollenmonitor-Datensatz.

Für die Merkmals-Extraktion werden die oben beschriebenen Invarianten eingesetzt (hier als “MiSP
invariants” bezeichnet), die eine hohe Robustheit gegenüber elastischen Deformationen und nicht-
linearen Grauwerttransformationen aufweisen. Trotzdem sind diese Invarianten noch sensitiv für sub-
tile strukturelle Änderungen, die nicht durch eine elastische Deformation modelliert werden können.
Für die Klassifikation der Objekte werden Support-Vektor-Maschinen eingesetzt, die für die Verar-
beitung von sehr hoch-dimensionalen Merkmalsvektoren optimiert wurden (z.B. 87.296 Dimensionen
beim Pollenmonitor Datensatz).

Die erreichte Erkennungsrate auf dem Konfokal-Datensatz (389 Pollen aus 26 Taxa) ist sehr hoch.
In einer “leave-one-out validation” mit einem einfachen 1-nächster-Nachbar Klassifikator wurden nur
drei Pollenkörner falsch klassifiziert (99.2% Erkennungsrate). Beim Einsatz einer Support-Vektor-
Maschine sinkt diese Zahl auf 2 falsch klassifizierte Pollenkörner (99.5% recognition rate), wobei
diese zwar einem anderen Genus zugewiesen wurden, der aber zur selben Familie gehört. Die besten
Erkennungsraten mit anderen Ansätzen auf typischen Labor-Datensätzen liegen bei 89% bei einem
Datensatz mit 3.800 Pollen aus 19 Taxa oder 70% bei einem Datensatz mit 16.220 Pollen aus 80 Taxa.

Für die Bewertung der Ergebnisse auf dem Pollenmonitor-Datensatz ist ein anderes statisches Maß
als die einfache Erkennungsrate sinnvoll. Pollenproben aus der Umgebungsluft enthalten eine sehr
hohe Anzahl von anderen luftgetragenen Partikeln die von dem Erkennungssystem korrekt zurück-
gewiesen werden müssen. In diesem Fall ist die Präzision (Anteil der korrekt klassifizierten Pollen
innerhalb aller Objekte, die als Pollen klassifiziert wurden) das wichtigste statistische Maß. Die Va-
lidierung des Systems auf dem Pollenmonitor-Datensatz (22.750 Pollen aus 33 Taxa + etwa 170.000
Staubpartikel) wurde durch eine Aufteilung in einen Trainings-Datensatz und einen Test-Datensatz
durchgeführt. Der Trainings-Datensatz enthält nur Proben aus Freiburg, während der Test-Datensatz
Proben aus Freiburg und aus Zürich enthält. Die erreichte Präzision bei der Betrachtung aller 33 Taxa
ist 96.7% bei einer Erkennungsrate von 84.3%. Die Ergebnisse für die 5 hoch-allergenen Pollenarten
(die für die Pollenflugvorhersagen relevant sind) liegen noch leicht darüber. Dort konnte eine Präzi-
sion von 98.5% bei einer Erkennungsrate von 86.5% erreicht werden. Die besten Ergebnisse, die mit
anderen Ansätzen auf einem “Real-World”-Datensatz (3104 Pollen aus 8 taxa + etwa 30.000 Staubpar-
tikel) erreicht wurden, liegen bei 30% Präzision bei einer Erkennungsrate von 64.9%.

Die erzielten Ergebnisse mit den vorgeschlagenen “MiSP invariants” sind signifikant besser als der
Stand der Technik. Darüber hinaus konnte demonstriert werden, dass diese Techniken nicht nur auf
kleinen Labor-Datensätzen sondern auch auf sehr großen “Real-World”-Datensätzen sehr gute Ergeb-
nisse liefern. Insbesondere die erreichte Robustheit gegenüber elastischen Deformationen und der
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3D Ansatz scheinen eine wesentliche Voraussetzung für die verlässliche Erkennung von biologischen
Strukturen darzustellen. Wir glauben, dass die neuen Erkenntnisse eine wertvolle Grundlage für viele
weitere Entwicklungen im Bereich der Erkennung von biologischen Strukturen in 3D Volumendaten
sind.
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1 Introduction

1.1 Motivation

1.1.1 The Need for Pattern Recognition in 3D Volumetric Data Sets

All structures in the real world are (at least) three-dimensional. Every two-dimensional representation
of these 3D structures involves a substantial loss of information. While there are several applications
where we can ensure in advance that only irrelevant information is lost, we can identify many important
applications where this loss of information may have serious consequences. One prominent example of
this kind are the medical applications, where wrong conclusions may be drawn, e. g., from conventional
2D radiographs. Consequently, the medicine is one of the driving forces for the development of 3D
techniques, such as CT (“computed tomography”) or MRT (“magnetic resonance tomography”) which
allow to record the three dimensional distribution of the quantity which the particular technique is
sensitive to, like the absorption of X-rays or the density of protons.

Within the last decade the biomedical research has become another driving force for the development
of 3D sensors (especially in the 3D microscopy). While in this field wrong conclusions due to imperfect
2D representations usually have not such serious consequences as in medicine, we can see a clear
tendency towards the study of cells and cell clusters including whole organisms in their natural 3D
environment, away from the studies of isolated flat cells, that were grown in a synthetic 2D environment
and were analyzed with 2D techniques.

Another trend in biomedical research is the ever increasing need for high-throughput experiments,
e. g., to retrieve statistically relevant information. The equipment for the automatic recording of great
amounts of 3D volumetric data is available in many research laboratories today, but the recorded 3D
data are still manually evaluated which has become the main bottleneck in many applications.

A closer analysis of the requirements for an automated analysis of the microscopical 3D data sets re-
veals significant differences between biomedical research and typical medical applications. In medical
applications, the orientation of the object in the data set is mostly well known or can be computed by
means of registration techniques, if, e. g., two data sets (usually from the same individual at the same
time) need to be aligned. Furthermore the medical data sets are usually interpreted by human special-
ists, such that the research mainly focuses on the preprocessing (e. g. denoising), the visualization, the
registration and the segmentation of these data sets, e. g. in order to extract physical parameters like
the size or the precise location of an object.

In contrast to this no prominent direction usually exists in cell and tissue samples. So normaliza-
tion approaches that try to rotate the recorded object into a standard orientation are impractical in most
cases. Furthermore no one-to-one correspondences between the corresponding structures of two differ-
ent individuals exist in many cases. The biological structures only share the same development process
but the resulting patterns, e. g., a venation pattern or the surface pattern on a pollen grain are never
identical but have only the same statistical properties.

Another important feature in the biomedical research compared to the typical medical application
is the great diversity of the examined organisms, the frequent change of the structures that have to be
recognized, and the information that needs to be extracted.

Therefore, the main challenge to the pattern recognition in this field is not only to cope with the large
variations that are found in biological structures but also the need for a fast and easy adaption of the
system to new problems.
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1.1 Motivation

Regarding the mentioned shortcomings of the approaches that are based on registration and normal-
ization, we anticipate that feature based approaches are better suited to fulfill the outlined requirements.
So what we need is a general framework that allows to construct features which exhibit the particular
invariance and the robustness that are specified by the given application.

A framework which has this potential has been introduced by Schulz-Mirbach (1995a). Since then
it has been continuously extended and has been successfully adapted to many different applications.
The method allows to construct any number of invariants of a data set by Haar integration over the
desired transformation group. A brief description of this framework (abbreviated as HI-framework in
the following) is given in chapter 4ff.

A very challenging application which demands to fulfill many of the aforementioned requirements
is the recognition of pollen grains. Taking the recognition of pollen grains as a reference application
has several advantages.

• There is a clear long term need for the automation of pollen counting which will be outlined in
the next section. This need is independent of current research problems.

• While in many other applications a half-automated solution will be sufficient to answer the un-
derlying questions, the pollen recognition system must operate fully autonomously, comparable
to the challenges in very-high-throughput experiments.

• The high number of different pollen grains from different plants contain very different kinds of
structures that have to be identified. For a part of these structures clear one-to-one corresponden-
cies can be identified, while for other structures only the statistical properties match.

1.1.2 Pollen Forecasts for Allergic People

About 15%–20% (Winkler et al., 2001) of the human population is allergic to pollen. Even though
there are several pharmaceuticals on the market that are able to reduce or suppress the symptoms,
many people prefer to keep away from high pollen concentrations by avoiding certain regions or by
staying indoor during the daily pollen concentration peak(s). The allergic potential of the six most
important allergenic pollen taxa in Germany is listed in table 1.1. A complete categorization of the
pollen taxa into different allergenic levels is provided in appendix E.

Table 1.1: Allergenic potential of the most important pollen taxa in Germany

Allergic Stress at
main conventionally measured
flowering Pollen Taxa pollen concentration [1/m3]
preiod botanic name English name German name low moderate high

January–March Alnus(A.2) Alder Erle 1-10 11-100 >100
January–March Corylus(A.5) Hazel Hasel 1-10 11-100 >100
March–April Betula(A.4) Birch Birke 1-10 11-50 >50
May–August Poaceae(A.6) Gras Süßgräser 1-5 6-30 >30
June Secale(A.7) Rye Roggen 1-2 3-6 >6
July–September Artemisia(A.1) Mugwort Beifuß 1-2 3-6 >6

It should be noted that the most important pollen taxon of these six taxa is the Poaceae(A.6) (grass),
because 80% of the pollen-allergy sufferer (including the author himself) are allergic to this type of
pollen.
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1 Introduction

The state of the art of measuring the pollen concentration in the air is still the time consuming and
expensive manual pollen counting1 done by experienced microscopists. For this technique air samples
are taken every day by means of a volumetric spore trap, the trapped particles are manually prepared
on microscopical slides and are evaluated under the microscope. Due to the high costs only very small
areas on these slides are inspected (usually an area that contains the particles of 1 m3 of air), and the
countings are performed only every second day in Germany and only once a week in Switzerland.

1.1.3 Shortcomings of the Manual Pollen Counting

Late Availability and Varying Quality of the Data

The main shortcomings of the current technique are the late availability of the data and (in Germany)
its varying often unknown quality. These two facts make the pollen forecasts more difficult and reduce
their reliability.

In Germany the pollen countings at the about 45 stations are executed by about 100 different persons
with varying experience. In Switzerland the pollen are counted centrally in Zürich and Payerne by
long-experienced experts. At the beginning of the project we performed a direct comparison between
the two main experts who were instructed to label independently the same pollen grains on a computer-
controlled microscope such that a one-to-one correspondence of the labels for each pollen grain was
guaranteed. The result was a nearly 100% correspondence of the labels. The only disagreements were
found for some Taxus(D.12) or Juniperus pollen grains which can hardly (if at all) be distinguished by
visual inspection which both are non-allergenic by the way. This 100% recognition rate for all relevant
pollen taxa by human experts gave reason to define this as the “golden standard” and to base our
training on manually labeled samples.

Insufficient Evaluated Air Volumes

Considering the allergenic potential of some pollen taxa (see table 1.1), the evaluated air volume of
1 m3 in the routine environment is in most situations much too low to provide statistically reliable data
(see (Comtois et al., 1999) for an extensive experimental analysis). To give an optimistic estimate of the
expected uncertainty, we assume a spatial and temporal constant pollen concentration in the air and a
perfect sampling of all particles contained in 1 m3 of air. In this ideal case the statistics can be modeled
by a Poisson distribution, or by the inverse Poisson distribution, if the true pollen concentration shall be
predicted from the counted number of pollen grains. Especially for the very low pollen concentrations
the uncertainty of the predicted value is unacceptably large. If the taken 1 m3-air-sample contains
e. g. 5 pollen grains, the true concentration in the air will be between 1.8 and 10.9 pollen/m3 (95%
confidence interval). Some additional results from the inverse Poisson distribution are listed in table
1.2. Please note that these calculations provide only the lowest estimate of the uncertainty. In the real
world, we find highly temporal variations of the pollen concentrations over the day. So the uncertainty
for a prediction of the current pollen concentration from these data is even much higher.

1.1.4 Goals

Among the shortcomings listed in the previous section the most important one is smallness of the
evaluated air volume. While the volume can easily be enlarged in scientific studies by evaluating
larger areas of the slides (as long as sufficient personal capacities are available) it is not affordable to
significantly enlarge the volume in the daily routine countings, keeping in mind that a reduction of the
uncertainty by a factor of 2 needs an enlargement of the air volume by a factor of 4. For a sufficient

1A standardized protocol about manual pollen sampling and counting is available on the internet by the Pan- American
Aerobiology association http://www.paaa.org
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1.2 State of the Art

Table 1.2: Uncertainty for the true pollen concentration if only 1m3 of the air sample is evaluated,
modeled by the inverse Poisson distribution.

counted true pollen concentration
pollen grains within a [pollen/m3]

1m3-air-sample (68% confidence interval) (95% confidence interval)

0 0 – 1.15 0.0 – 3.0
1 0.27 – 2.5 0.04 – 4.8
2 0.86 – 3.9 0.3 – 6.4
3 1.6 – 5.1 0.7 – 7.9
4 2.3 – 6.4 1.2 – 9.4
5 3.0 – 7.6 1.8 – 10.9

10 7.1 – 13.5 5.0 – 17.6
20 15.8 – 24.8 11.7 – 28.9
50 43.2 – 57.4 37.4 – 65.2
100 90.3 – 110.3 81.6 – 120.9

temporal resolution the evaluated air volume has to be even larger, and a real-time acquisition of the
current pollen concentration is not possible at all by means of manual countings.

All these facts gave reason for the development of an automated pollen recognition system to be
directly integrated into a fully automated pollenmonitor that provides the current pollen concentration
online for the pollen-allergy sufferer.

The system will be based on microscopical image recognition which has several important advan-
tages over other approaches like fluorescence spectra (Takahashi et al., 2000), antibody staining (Raz-
movski et al., 2000), Raman spectroscopy (Ivleva et al., 2005) or photoacoustic microscopy (Miyamoto
and Hoshimiya, 2006). Firstly, the microscopical image recognition allows a very easy and very effi-
cient quality control of the results, because it is based on the world-wide established standard, namely
the visual pollen recognition, secondly, it can be easily extended to other airborne particles of inter-
est (e. g., other pollen taxa in other countries, fungal spores or other particle types, as long as they
are accessible by light microscopy) just by extending the software, and thirdly, a microscopical image
recognition system can be built at affordable costs which is essential for the application within a big
network.

1.2 State of the Art

1.2.1 Automated Pollen Recognition

The idea to automate the identification and counting of pollen grains and spores has been considered
to be beyond any realization for many years. Nevertheless the automation has been proposed nearly 40
years ago by J. R. Flenley (Flenley, 1968). The complexity of the problem may be one of the reasons
why only a few research groups world wide are working on this subject.

Massey University in New Zealand

The oldest and still active group with the most publications concerning pollen recognition, e. g., (Flen-
ley, 1968; Langford et al., 1986, 1990; Stillman and Flenley, 1996; Li and Flenley, 1999; Zhang et al.,
2004; Treloar et al., 2004; Li et al., 2004; Hodgson et al., 2005; Allen et al., 2006) is the group around
John R. Flenley at the Massey University in New Zealand. They published in 1986 the first paper
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concerning automated recognition of fossil pollen in SEM recordings by an analysis of their surface
texture (Langford et al., 1986). A comprehensive summary of the various studies by this group has
been published 2004 in a series of articles "Towards automation of palynology" in the Journal of Qua-
ternary Science (Treloar et al., 2004; Li et al., 2004; Zhang et al., 2004). The recent publications by this
group incorporate the recognition also of fresh airborne pollen (Hodgson et al., 2005) (see also (Zhang
et al., 2005) of Y. Zhang, a former member of this group). Furthermore they have built an automated
low-cost microscope “AutoStage” with dark field illumination, dedicated to pollen recognition (Allen
et al., 2006).

The tools developed by this group are mainly intended to be applied to the recognition of pollen
in fossil samples which are prepared from a suspension. So the authors of (Allen et al., 2006) cre-
ate microscopical slides with at most 500 pollen per slide to avoid clumping. This allows a simple
segmentation by computing an edge image and the application of some morphological operators.

Currently (Allen et al., 2006) use a set of 43 features (Gabor, Wavelet and Haralick features for
texture description, and geometric, histogram and Hu moment features for shape description), which
have turned out to give the best performance during their earlier research.

For the classification, a multilayer perceptron is applied. All published results are based on 2D
images of pure pollen samples containing manually collected pollen grains. In (Hodgson et al., 2005)
the training was done with 64 pollen grains from 4 taxa. The test with 120 pollen grains yielded a
recognition rate of 96%. In another experiment they obtained a recognition rate of 89% on a data set
containing 3800 pollen grains (2850 training and 950 test objects) from 19 species (Allen et al., 2006).
On a selected subset of this data set containing only 7 species, a recognition rate of 98% was reached.

University of Sydney, Australia

In the late 90’th a big commercially oriented Australian project aiming at the automation of pollen
recognition has been undertaken during 2 years with 24 involved persons. Due to patent issues, the
researchers were not allowed to publish their results. The only available information is contained in
abstracts from conferences (Jones et al., 1999; Jones, 2000) and some personal communication by
Allen Jones. The group has used a database containing 16,220 transmitted light microscopic images
(2D) of individual pollen grains from 80 plant species, recorded from manually prepared pure pollen
slides. A set of 20 morphological features, 70 Fourier descriptors and 800 Haralick texture features
were extracted. A subset of 200 of these features has been used to setup a series of binary tree classi-
fiers. By splitting the data set into 2/3 training and 1/3 test objects, mean recognition rates of 76.3% on
genus level (46 taxa) and 70.7% on species level (all 80 taxa) have been obtained.

Bangor University , UK

Ian France worked on the recognition of fossil pollen during his PhD between 1994 and 2000 (France
et al., 1997, 2000). He has been involved in the set up of the only publicly available database of
pollen images, the “Bangor/Aberystwyth Pollen Image Database” (Duller et al., 1999a,b). The pub-
lished results (France et al., 2000) incorporate three of the available 10 species in that database. For
segmentation the authors use a standard threshold on the shading corrected image. The feature ex-
traction and classification is done with a neural network called “Paradise Network”, which includes a
feature extraction layer, a pattern detection layer and a classification layer. The feature extraction layer
mainly computes horizontal and vertical gradients. The pattern detection layer classifies small patches
at certain positions. These positions are varied within a certain range, to become robust to small defor-
mations. Finally the classification layer assigns the objects to clusters, that were found during training
with an unsupervised clustering. These clusters were manually assigned to one of the given pollen
classes. The reported mean recognition rate on the dataset with 204 pollen from 3 taxa was 81.7% with
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a mean precision of 96.7%. Nothing is communicated about the validation scheme used, so maybe the
identical data sets have been used for training and testing.

INRIA, Sophia-Antipolis in France

The third big group (in chronological order), who worked intensively on the automation of pollen
recognition of fresh airborne pollen is the group around Monique Thonnat at INRIA, Sophia-Antipolis
in France. They mainly tried to transfer a human pollen classification scheme (based on the number
of porates or colporates, thickness of the exine, and the like) one-to-one to the computer. Additionally
some global measures like the mean color of the object and several features deduced from the shape of
the pollen have been used. The first investigations deal with pollen recognition in 2D images (Mazière,
1997) recorded with transmitted light microscopy. Within an European project A.S.T.H.M.A. (“Ad-
vanced System of Teledetection for Healthcare Management of Asthma”) the authors transfered this
approach to 3D image stacks (Bonton et al., 2002; Boucher et al., 2002; Boucher and Thonnat, 2002)
from real air samples. All these studies have been done on one data set containing 350 pollen grains
from 30 taxa. The best reported recognition rates are 77% in a leave-one-out test (Boucher et al., 2002).

University of Vigo in Spain

A further project on “Automatic classification and count of pollen from digital optical microscope
images” was founded by the Vigo University in Spain yielding first publications in 2004 (Rodriguez-
Damian et al., 2004; Sa-Otero et al., 2004). The group around Eva Cernadas García concentrates their
work on 3 species of the Urticaceae-family. The used database contains scanned analog photographs
of about 100 pollen grains of each species from manually prepared pure pollen samples (Rodriguez-
Damian et al., 2006).

For the detection of the pollen grains, they use the standard circular hough transform on a pre-
processed Sobel edge image. For the final contour extraction they tested a morphological approach, a
snake-contour and a convex-hull approach.

The feature extraction is done by classical textural and shape features: Geometrical features from
the binary mask, central and Hu Moments on the contour and on the gray values, Fourier descriptors
of the contour and Haralick texture features as well as gray level run length statistics.

For classification they tested a minimum distance classifier with feature selection, a multi-layer-
perceptron and a support vector machine with the RBF (radial basis function) kernel. The best reported
result using a leave-one-out validation was a recognition rate of 89%.

Delft University of Technology, Netherlands

In 2006, the first results of a group around R. P. W. Duin and E. A. Hendriks were published (Chen et al.,
2006). They use 3D transmitted light microscopic stacks with a low resolution in the third direction (8
planes, recorded at 8µm spacing). Their data set contains 254 pollen grains from 3 allergenic pollen
taxa (birch (Betula(A.4)), grass (Poaceae(A.6)) and mugwort (Artemisia(A.1))) which had been recorded from
purified samples of stained pollen.

For segmentation and feature extraction, standard techniques have been applied: A threshold seg-
mentation, 19 shape features from the binary mask and 14 basic gray level features like the distance
to the mean histogram of each taxon. Aside from these features, the authors developed special porate
and colporate detectors. They use a circular hough transform to find the porate of a grass pollen, a
cross correlation based template matching to find the porate of a birch pollen, and a measure for the
regularity of the gray values along the cell wall to detect the colporates of mugword pollen. These
suggested porate and colporate detectors work only with pollen in polar view.

A so-called “linear normal classifier” has been applied yielding a recognition rate of 97.2% by use
of a 5-fold cross-validation. Without the special detectors, the recognition rate drops to 94.9%.
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Caltech and New York University, US

The only group so far that has published recognition results on real-world air samples with a reasonable
number of pollen (3686 pollen grains belonging to 27 species), is the pollen group of the California
Institute of Technology in a cooperation with the New York University (Ranzato et al., 2007).

Their data set consists of air samples that have been collected with the standard Burkard spore
trap and have been recorded by use of 2D transmitted light microscopy. Due to the great amount of
other dust particles and the partially imperfect preparation with lots of bubbles, a simple threshold
segmentation is not possible here.

Instead the DOG (“difference of Gaussian”) salient point detector is applied to detect possible centers
of pollen grains. From these centers the greatest gradients are searched on rays in 8 directions which
allows a robust fit of a circle to the found locations. This circle is used to define the bounding box. As a
next step bubbles are identified by their high mean brightness and rejected using a threshold. Particles
with overlapping bounding boxes are also rejected. With this approach about 83% of the pollen grains
are correctly detected.

The feature extraction is prepared by smoothing with 4 differently sized Gaussians and by extraction
of 9 rotational invariant features computed at each of the pixels from the partial derivatives (like gra-
dient magnitude, Laplacian, etc.). After a nonlinear mapping of the resulting values, the final features
are computed by an average over all the single values in the image. The combination of three different
mapping rules have been identified to provide good results. According to the first two mapping rules
values above, respectively below the background gray value are eliminated, and according to the third
rule the gray values below the background gray value are inverted. The resulting feature vector has
4× 9× 3 = 108 components.

For classification the 108-dimensional feature vector is projected to a 14-dimensional subspace
found by a Fisher’s Linear Discriminants Analysis. Then each class is modeled by a mixture of Gaus-
sians. The final classification is performed with a Bayes classifier.

Several classification results are listed in (Ranzato et al., 2007): On a data set with manually seg-
mented pollen (denoted as “expert patches”) from the 8 most frequent pollen types (3104 pollen grains)
without dust particles a recognition rate of 78,2% is reached. By the usage of the “good patches” out
of the results of the automatic segmentation of these 8 pollen types together with dust particles (1:10)
a recognition rate of 64,9% has been obtained. Finally the authors reduced this data set to the three
most frequent pollen types that are found in January (alder (Alnus(A.2)), ash (Fraxinus(B.4)) and pine
(Pinus(D.10))) which increased the recognition rate to 83%.

For a pollen recognition system that operates on real air samples, a further statistical measure of the
performance is important, namely the precision. It is not reported in the article, but it can be computed
from the provided confusion tables. Assuming that the relative numbers of “good patches” per species
are proportional to the total numbers per species, we obtain a mean precision of about 30% for the
experiment with 8 pollen types and about 54% for the experiment with 3 pollen types.

Others

Apart from the big efforts on this subject which are listed above, a couple of approaches have been
published only as a kind of “notice of intend” with no or very limited results. E. g., Albuquerque Araujo
et al. (2001a,b) report the successful discrimination of two single pollen grains. Other studies are
dedicated to very particular questions, e. g., for the probability of oil deposits in sediment samples
(Ujiie, 2001). In such cases the average brightness of the pollen grains seems to deliver sufficient
information. In several other papers, the pollen were only used as a test of particular techniques, e. g.,
Dahme et al. (2006) used the pollen textures from a database of neotropical pollen (Bush and Weng,
2007) to test their texture recognition algorithms.
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Discussion

20 years after the first attempts on the automation of pollen recognition have been published, many
groups have ceased their work on this subject after several years of research. The most difficult step
from the clean world of manually prepared pure pollen samples to the dirty world of real air samples
was performed only by the INRIA group and by the Caltech group (see table 1.3 and table 1.4 for a
condensed overview)

Table 1.3: Condensed Overview over other approaches to pollen recognition (Pure Pollen Samples)

sample
type

micros-
copy

segmen-
tation

features classifier n samples n taxa recogn.
rate

Massey University
New Zealand
(Hodgson et al., 2005) pure 2D morph. texture,

shape
neural net. 184 4 96%

(Allen et al., 2006) " " " " " 1,400 7 98%
" " " " " " 3,800 19 89%
University of Sydney
Australia
(Jones, 2000) pure 2D ? texture,

shape
binary trees 16,220 46

80

76.3%

70.7%
University of Vigo
Spain
(Rodriguez-Damian et al., 2006) pure 2D morph,

snake
texture,
shape

neural net,
SVM

100 3 89%

Delft University of Technology
Netherlands
(Chen et al., 2006) pure 3D thresh. texture,

shape,
specialized

“linear normal
classifier”

254 3 97.2%

pure: pure pollen samples
SVM: Support Vector Machine

Table 1.4: Condensed Overview over other approaches to pollen recognition (Real-world Samples)

sample
type

micros-
copy

segmen-
tation

features classifier n
samples

n
taxa

recogn.
rate

preci-
sion

Bangor University
UK
(France et al., 2000) pollen

+debris
2D thresh. neural net. neural net. 204 3 81.7% 96.7%

INRIA, Sophia-Antipolis
France
(Boucher et al., 2002) air 3D

color
morph.
+color

shape,
color,
specialized

Mahalanobis 350 30 77% ?

Caltech and New York
University, US
(Ranzato et al., 2007) air 2D DOG +

circle fit
texture Fisher linear

discr. + GMM
3104 8 64,9% 30%

DOG: Difference of Gaussians
GMM: Gaussian mixture model

A second important step (in our opinion) is to use the full 3D information instead of just a 2D image
of the middle layer of the pollen. One of the shortcomings of 2D approaches is the appearance of
defocused particles when two differently sized particles lie side-by-side on the sample. Even more
important is the problem that even pollen experts are not able to make an unequivocal classification of
the pollen taxon, just based on the plain 2D information. Only the INRIA group and the Delft group
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have recorded 3D data with the reserve that the number of planes of the Delft group might be still too
low for a human expert.

One critical point in all the presented studies is the fact that training and test pollen are taken from
the same microscopical slide. This is particularly critical with datasets that consist of one slide per
pollen species. Features, that are sensitive to the mean gray value, to signal-to-noise ratio and to
similar image properties may be biased by the characteristics of the preparation of the slide or the
recording parameters. Such critical preparation and recording characteristics are, e. g., the age of the
pollen grains, the consistency of the embedding medium, the current degree of degradation of the
microscopic lamp, the current adjustment of aperture stop or of the Köhler illumination, etc. A highly-
sophisticated classifier that operates on such features may then use the slide characteristics instead of
the desired characteristics of the pollen grains to make its decision.

Also for mixed pollen slides and real-world air samples, the recording of training and test pollen
from the same slide can bias the results to higher recognition rates. In such a setup, e. g., the mean
gray value of a particle is a very discriminative feature – which is usually not the case on separately
prepared and recorded slides.

From the image recognition point of view one can summarize that all the approaches extract only
global statistics of the gray value distributions within the pollen grains apart from the shape features,
and that each of the approaches contains at least a few features that are sensitive to the mean gray
value (if not the mean gray value itself is used as a feature). Two groups (the INRIA group and the
Delft group) have developed specialized detectors for certain structures in certain pollen taxa at certain
orientations.

According to our experience the “global statistics” work quite well on pure pollen data sets. On real
air samples with very high numbers of non-pollen particles, always lots of other particles appear that
have very similar global statistics as the pollen. The very high number of false positives in the Caltech
study seems to confirm this experience.

1.2.2 The Haar-Integration Framework

As mentioned previously, the Haar-Integration (HI) framework, introduced by Schulz-Mirbach (1995b)
offers a simple but very powerful way of a general feature extraction. The method has initially been de-
scribed for two-dimensional image data (Schulz-Mirbach, 1995a; Burkhardt and Siggelkow, 2001), but
it has been straightforward to extend the HI framework to three-dimensional volumetric data (Schael,
1996, 1998; Schael and Siggelkow., 2000). Even though the computational complexity of the direct
computation is linear in the number of pixels or voxels of the image, the pre-factor is usually so high
that suitable algorithms for a faster computation are needed. For this purpose Siggelkow and Schael
(1999) have proposed a method that is based on a Monte-Carlo integration and that allows a fast esti-
mation of these invariants. Other extensions of the HI framework include the construction of feature
histograms for content-based image retrieval (Siggelkow, 2002), the use of relational kernels for texture
defect detection (Schael, 2004), the integration of transformation knowledge into the kernel functions
(Haasdonk, 2005) or their combination with salient point detectors for the extraction of local features
(Halawani, 2006).

1.3 Main Contributions

In this thesis the development of robust 3D invariants for the recognition of biological structures in vol-
umetric data sets is described. The chosen application is the recognition of pollen grains continuously
sampled from the ambient air for a fully automated online pollen monitoring. Together with partners
from the German Weather Service, from Fraunhofer institutes and from industry the first prototype
of such a fully automated pollenmonitor has been built. The results obtained during a routine-like
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operation of this machine in 2006 are presented in this thesis.
The most important contribution is the development of algorithms that have proven to work not only

on small data sets recorded in a well-controlled laboratory environment, but on a very large data set
recorded in a real-world routine environment.

A pollen recognition system can never be reduced to the plain segmentation and image recognition
part, in other words, the comprehension of the steps taken to provide the initial data have to be taken
into account as well, i.e., the collection, the preparation, the microscopy, the recording and the prepro-
cessing. The aspects of representative sampling of the pollen grains and of the preparation of the slides
are out of scope in a thesis in computer science. However, the influences of the image acquisition to
the further image recognition are so evident, that a pattern recognition task cannot be solved without
controlling every aspect of the image acquisition system (see figure 1.1)

Figure 1.1: Pollen recognition scheme

According to this scheme the main contributions can be grouped into four categories, the pre-
processing, the detection and segmentation, the feature extraction and the classification.
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Image Generation and Pre-Processing

The work that has directly been associated with the image acquisition system includes

• Experiments in order to decide, whether the deconvolution of stacks recorded by a conventional
fluorescence microscope can deliver appropriate image quality for pollen recognition together
with Thorsten Schmidt (Schmidt, 2003)2

• Improved algorithms for the reconstruction of images that have been recorded with structured
light techniques together with Anselm Vossen (Vossen, 2004)3 and the application of structured
light techniques to the recognition of pollen in honey samples together with Raphael Baumgart-
ner (Baumgartner, 2005)4

• Computation of high dynamic range images from multiple fluorescence recordings with different
shutter times and dynamic bleaching-correction.

Detection and Segmentation

Major efforts have been done to establish a fast, robust and accurate detection and segmentation of
biological objects in the recorded 3D stacks. This includes

• A fluorescence-based detection and coarse segmentation of arbitrarily shaped objects with a
subsequent refinement based on the transmitted light channel using morphological techniques

• The development of vectorial voxel-wise invariants together with Janina Schulz and their appli-
cation to cells in the Arabidopsis root (Schulz, 2005; Schulz et al., 2006)5

• A detection of spherical pollen in the transmitted light channel based on vectorial voxel-wise-
invariants and the subsequent refinement using a modified canny edge detector, gradient vector
flow and a fast FFT-based snake algorithm together with Qing Wang (Ronneberger et al., 2007).

• A full 3D segmentation of confocally scanned pollen based on a graph cut algorithm of Boykov
and Kolmogorov (2004)

Feature Extraction

The developed 3D invariants are based on the Haar-Integration framework of Schulz-Mirbach (1995b).

• Meeting the requirements that arise by processing real biological objects recorded in 3D with a
confocal laser scanning microscope. Primarily this is the introduction of a multi-scale approach
together with the fast algorithm for the computation of two-point kernels based on the FFT
(Ronneberger et al., 2000, 2002a,b)

• The definition of the information that can be sensed by a two-point kernel and theoretical con-
siderations how this information can be used for an automatic selection of kernel functions. A
first feasibility study on an automated selection of kernel functions has been done together with
Thorsten Schmidt (Schmidt, 2004)6

2The student project of Schmidt (2003) was initiated and supervised by the author
3The student project of Vossen (2004) was initiated and supervised by the author
4The master thesis of Baumgartner (2005) was initiated and supervised by the author
5The master thesis of Schulz (2005) was initiated and supervised by the author
6The master thesis of Schmidt (2004) was initiated and supervised by the author
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• The extension to voxel-wise invariants and a fast algorithm to compute 3-point kernels by means
of a Spherical Harmonics expansion (Ronneberger et al., 2005a). This algorithms have been
applied to the simultaneous segmentation and recognition of cells in confocal recordings together
with Janis Fehr (Fehr, 2004; Fehr et al., 2005)7

• The introduction of a deformation model, synthetic channels and parameterized kernel functions
to compute great multitudes of deformation-robust invariants with high localization in the object
space that are still sensitive to fine–structural changes within the objects (Ronneberger et al.,
2007)

• The elimination of the dependencies of the invariants on the absolute gray value and high robust-
ness to gray scale transformations, including even nonlinear transformations.

Classification

For the classification of the objects an own highly customizable and extremely optimized support vec-
tor machine library – the libsvmtl (support vector machine template library), based on the publicly
available libsvm from Chi-Jen Lin (Chang and Lin, 2001) has been developed. The optimization in-
cludes the handling of very high–dimensional feature vectors (e. g. 87,304 dimensions in (Ronneberger
et al., 2007)), the full caching of the kernel matrix, and a highly optimized cross-validation, as well as a
leave-one-out validation and grid search capabilities for finding the best training and kernel parameters.

1.4 Structure

The structure of this thesis is mainly oriented at the steps that influence the pollen recognition from the
microscopical recording until the final classification result.

• Microscopic Imaging: In chapter 2 the required theory of the microscopic imaging is outlined.
This includes the illumination, the interaction of the sample with the light, the optical transfor-
mation of the light and the recording (steps d-g in figure 1.1). Additionally a part of the applied
3D image generation and the post-processing techniques (step h in figure 1.1) are explained.

• Data Sets: In chapter 3 the two data sets used within this thesis are presented. The first data
set is a typical laboratory data set containing high quality pollen grains recorded with a confocal
laser scanning microscope. The second data set is a typical real-world data set containing a huge
amount of airborne particles including pollen grains, that have been automatically collected,
prepared and recorded with the first prototype of a pollenmonitor in 2006.

• Theoretical Foundations: In the chapters 4, 5, 6 and 7 the theoretical foundations for the 3D
invariants are described. This includes

– A short introduction to the Haar integration framework in chapter 4.
– The analysis of the properties of the HI framework in chapter 5. E. g., the correct sampling

of the transformation group and the analysis of the maximal information that can be sensed
with two-point-kernels.

– Description of the developed extensions to the HI framework in chapter 6. This includes
the analysis of existing techniques and the presentation of new techniques to ensure the
finiteness of the integral, different techniques in order to integrate prior knowledge into
the HI framework, the introduction of voxel-wise invariants for simultaneous segmentation
and recognition as well as vectorial voxel-wise invariants for the detection of spherical
structures.

7The master thesis of Fehr (2004) was initiated and supervised by the author
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– Several algorithms for a fast computation of the invariants are presented in chapter 7. This
includes algorithms that make use of fast FFT-based convolutions and that use a fully ro-
tation invariant approximation of the kernel functions by truncated Fourier- or Spherical
Harmonics series expansions. For the vectorial voxel-wise invariants a fast simultaneous
computation at multiple positions is presented that is based on an “inversion” of the kernel
function.

• Detection and Segmentation: In chapter 8 the segmentation techniques are described that were
applied to the pollen samples. This includes standard morphological techniques used within the
first feasibility studies. The final segmentation is based on a detector using vectorial voxel-wise
invariants and a subsequent application of snakes to find the contour. For the confocal recordings
a graph-cut based segmentation is used.

• Specialized Invariants for Microscopical Spherical Particles (MiSP): In chapter 9 the deriva-
tion of the finally applied 3D invariants is described. The chapter starts with the definition of the
required invariance properties based on a hypothetical elastic registration between the test and
the training sample. In the following it is shown, how all aspects of such a registration can be
modelled by an invariant approach. Finally a fast computation scheme for this class of invariants
is outlined and a brief interpretation for a more intuitive understanding of the properties of these
invariants is provided.

• Experimental Results: In chapter 10 and the appendices A, B, C and D the experiments and
the obtained results are described. After a short analysis of the relevant statistical measures the
results on the “confocal data set” and on the “pollenmonitor data set” are given and compared
to the state of the art. If we only provide statistical results obtained with the new techniques
on a former unknown data set, a reader has no chance to form an own opinion on the capabili-
ties and shortcomings of these techniques. In order to provide the needed information extensive
appendices have been created, containing automatically selected representative examples of the
true-positive, the rejected, the false-negative and the false-positive pollen grains for each pollen
taxon. At the end of chapter 10 several further results are summarized that have not been inte-
grated into this thesis due to time and space limitations.

• Summary, Conclusion and Outlook: In chapter 11 we summarize the obtained practical and
theoretical results and draw the conclusions. In the summarization several intermediate results
are outlined that have led to important conclusions during our research on automated pollen
recognition. Finally an outlook to the next challenges in this research area is provided together
with some ideas how the obtained results may contribute to their solution.
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1.5 Notation

The used notation is similar to that used in physics. E. g., in most cases, fields are repre-
sented by capital letters, while single values or vectors are represented by lower case letters.
x single (possibly complex) scalar value
x = (x1, x2, . . . , xn) n-dimensional vector
X n-dimensional continuous scalar field
X n-dimensional continuous vector field
X(x) scalar value (e. g., a gray value) at position x of

scalar field X
X(x) vectorial value (e. g., a gradient) at position x of

vector field X
F{·} Fourier transform
Â := F{A} Fourier transformed scalar field
Â(k) Fourier coefficient at position k
C = A ◦B ⇔ C(x) = A(x) ◦B(x) element-wise binary operations of two scalar fields,

where ◦ ∈ {+,−, ·, /}
δ(x) Dirac delta function
Rϕ rotation matrix
x∗ complex conjugate
<(x) real part of a complex value
=(x) imaginary part of a complex value

∇ =
(

∂
∂x1

, ∂
∂x2

, ∂
∂x3

)
del operator, represented by the nabla symbol

∇x′ =
(

∂
∂x′1

, ∂
∂x′2

, ∂
∂x′3

)
del operator with respect to x′

∇X vector field containing gradients of scalar field X
∇X(x) gradient at position x
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2 Microscopic Imaging

To interpret a gray value in a microscopic image and its relation to the real microscopic object, it is
important to understand the main four steps in a microscope equipped with a camera

1. The generation and optical transformation of the illuminating light (e. g., directional, spectral
and spatial distribution)

2. The interaction of the light with the object and its surrounding (e. g., absorption, reflection,
refraction, diffraction, fluorescence)

3. The optical transformation of the emitted light (e. g., magnification, spatial filtering, filtering of
wavelengths, etc.)

4. The recording of the light at certain positions, which is usually the “conversion” of photons
to electrons, the transport of the electrons to the AD-converter and the AD-conversion of the
resulting voltages.

The effects of all these steps have to be taken into account when trying to recognize an object on the
basis of the recorded data. In the following sections the possible variations between images taken from
the same object are described.

2.1 Optics

2.1.1 Illumination

There are lots of possible variations in the illumination part of the microscope. Most of them can and
should be fixed by proper adjustment of the microscope, so that the intensity, as well as the spectral
and spatial distribution of light is the same when recording the reference objects and the test objects. If
it is not possible to ensure a constant light intensity, at least the ratio between the different wavelengths
(or colors) of the light emitted by the light source should not change, otherwise the gray image of
multicolored objects will change unpredictably. On the other hand, if we can control the spectrum in
a reproducible way (e. g. with different filters) we can utilize this to sense different properties of the
objects by taking multiple images with different settings.

Another effect which influences the integrated light intensity is the 50Hz oscillation of the intensity
when using a lamp running on AC (e. g. HBO-50 fluorescence lamp from Zeiss). The only way to
get reproducible images here is to adjust the exposure time to multiples of 20ms, so that the integrated
light intensity does not depend on the exposure start time.

Even though we use the Köhler illumination, the distribution of the light intensity is not perfectly
uniform. This shading should be corrected in the resulting image to ensure that the objects gray values
do not change when the object moves from the middle of the visible region to the border.

Most microscopes have also the aperture stop integrated into the illumination part. Thus a change
of the aperture will change the whole three dimensional spatial light distribution and therefore will
change the appearance of the objects. As we are not able to compensate those effects at acceptable
time and costs when using transmitted light microscopy (see next section), we have to ensure that the
reference and test objects are recorded with the same aperture. Here again we can utilize this effect to
sense different properties of the objects provided we are able to control the aperture in a reproducible
way.

28



2.1 Optics

2.1.2 Interaction of Light with Objects

In the interaction of light with the object we take three different classes of effects into account. The first
is absorption which only changes the intensity of the light rays but not their direction. If we illuminate
the object with white light and if the absorption of a region depends on the wavelength, we see the
region at a certain color. The amount of the transmitted light is proportional to the intensity of the
incident light, which means that the absorption factor of two consecutive regions is the product of the
single absorptions factors (see figure 2.1)

Light absorption of particles that are far out of focus results in slightly darker regions in the image
and can therefore be modeled as a variation of the illumination. This also has to be taken into account
when a shading correction is performed.
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Figure 2.1: Absorption of light: the absorption factor of two consecutive objects is the product of the
single absorption factors a1, a2

The second class of effects results from the variation of the speed of light, respectively, the refraction
index within the light paths. This results in a refraction and reflection of the light rays at the gradients
of the refraction index (see figure 2.2)
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Figure 2.2: refraction due to different refraction indices of the object and the ambient medium

In figure 2.3 this effects can be observed especially at the three pores of the Betula(A.4) pollen which
are nearly identical in reality but produce very different gray images in the camera plane.

For a known 3D object these effects can be simulated by a ray tracing approach. However, the
inverse problem (computing the 3D object from one or more images) is nearly impossible to solve at
acceptable time and costs.

The third class of effects is the primary fluorescence of certain molecules within the object. The
absorption of a photon raises a covalent bond of the molecule into an excited state. Via multiple vibra-
tional sub-levels it falls back into its ground state and emits a lower-energy photon (at a larger wave-
length) into a random direction. Usually only a very small fraction of the bonds within the molecule
fulfill these conditions, which results in a very low intensity of the emitted light compared to the inci-
dent light. Furthermore there is a certain probability that the bond in the excited state breaks, which
destroys the molecule and of course its fluorescence properties (“bleaching”). Every excited molecule
can be considered as an omni-directional small light source (see figure 2.4). If the absorption and the
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z = −7.5µm −5.0µm −2.5µm 0.0µm +2.5µm +5.0µm +7.5µm x = 0µm
(vertical cut)

Figure 2.3: transmitted light microscopic images of a Betula(A.4) pollen grain recorded with a 100x oil-
immersion objective at different vertical positions. The rightmost image shows a vertical
cut through the recorded 3D data set which was reconstructed from 256 single images.

excitation

emission

Figure 2.4: Primary fluorescence: each molecule can be considered as a small light source.

variance of the refraction indices in the object are negligible, the resulting image is just a sum of all
these small lights, which simplifies the interpretation significantly. Figure 2.5 shows an example of a
pollen grain recorded with fluorescence microscopy.

z = −7.5µm −5.0µm −2.5µm 0.0µm +2.5µm +5.0µm +7.5µm x = 0µm
(vertical cut)

Figure 2.5: fluorescence microscopic images of a Betula(A.4) pollen grain recorded with a 100x oil-
objective at different vertical positions. The rightmost image shows a vertical cut through
the recorded 3D data set which was reconstructed from 256 single images.

2.1.3 Optical Transformation of the Emitted Light

After the interaction between the light and the object, the emitted light field is optically transformed by
the lenses and filters of the microscope (see figure 2.6).

The effects of the optical transformation of the emitted light will be modeled within three steps. A
magnification step, a spectral filtering step and a spatial filtering step.
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infinity corrected objective

object

optional filter

tubus lens

image plane (CCD sensor)

Figure 2.6: Microscopical optics for digital image recording

The effect of the magnification step is obvious: The light that originates from two points in the object
plane with distance dobj is projected onto two points in the image plane with distance dimg. The factor
between these two distances is the magnification factor m, such that

dimg = m · dobj . (2.1)

If the light is recorded by a CCD sensor (as depicted in figure 2.6) no ocular is used. In this case the
magnification factor m is just the magnification factor that is written on the objective. E. g., if we use a
20x objective, the image of an object with 1µm diameter will have 20µm diameter in the image plane
on the CCD sensor. And if we use a CCD sensor with a pixel size of 6.45µm the diameter of the object
in this recorded image will be 3.1 pixel.

The spectral filtering step influences the intensity of the light depending on its wavelength (or color).
This is necessary, e. g., for fluorescence microscopy where an appropriate long–pass filter guarantees
that only the emitted fluorescence light reaches the image plane, but not any reflected excitation light.

While the magnification and the spectral filtering are the wanted effects of a microscope, the imaging
process always introduces a spatial filtering of the image. The main cause of this spatial filtering is the
wave nature of light, as well as the fact that the structural dimensions under consideration are in the
order of the wavelength (the wavelength of visible light is between 0.4µm and 0.8µm, the smallest
considered pollen grains have a diameter of 10µm)

The origin of the spatial filtering is explained by means of wave-optics. In the wave-optical model
each point of the object is viewed as a source of a Huygens spherical wave. The waves that originate
from a very small object (idealized as a spatial delta function) are shown in figure 2.7.

Only a part of the spherical wave that originates from the point source is captured by the objective.
The half–angle of the light cone that enters the lens, α, is an important characteristic of an objective
and is quantified by the numerical aperture

NA = n sinα , (2.2)

wherein n is the refraction index of the immersion medium (1.0 for air up to 1.56 for oils). So in
objectives with a high numerical aperture more of the emitted light is collected which results in brighter
images. Especially for low intensities in fluorescence microscopy this is an important fact.

Another feature of an objective that depends on the numerical aperture is its ability to truly recon-
struct the original light field in the image plane. This can be visualized by drawing Huygens waves
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objective

CCD sensor

tubus lens

object plane

light cone that enters the lens

Figure 2.7: Spatial filtering effects in a microscopical setup. Only a part of the emitted light can be
captured for the reconstruction of the object in the image plane.

1/6π 1/4π

1/3π 1/2π

Figure 2.8: Reconstruction of the light field around the image plane for different apertures, depicted by
Huygens spherical waves. The half angle of the entering light cone is written below each
image.
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(see figure 2.8). When the optical setup of figure 2.7) is used, the virtual origins of the Huygens waves
are located on a sphere around the image of the original point source.

It is clearly seen in this illustration that the reconstruction of the spatial delta function in the image
plane becomes sharper when the aperture in increased. In a first order approximation this effect can be
modeled by the convolution of the ideal 3D intensity distribution Iideal around the image plane with the
so-called point-spread-function (PSF) Hpsf of the optical system.

Ireal = Iideal ∗Hpsf (2.3)

2.2 Recording of the Light

For the correct interpretation of a digital image it is important to take the different effects into account
that arise during the conversion of light intensities (or photon counts) into digital gray levels.

2.2.1 Charge Coupled Devices (CCD) Sensor

In a conventional microscope the light in the image plane is usually recorded with a charged coupled
device “CCD” (see figure 2.9).

sensitive areas

micro lenses

incident light

6,7µm

Figure 2.9: CCD sensor

On a CCD sensor the incident light is sampled with regularly spaced light sensitive areas. To fulfill
the requirements due to the sampling theorem (and hence be able to reconstruct the original signal from
the discrete samples) the user must ensure by optical low-pass-filtering that the intensity distribution
does not contain spatial frequencies higher than the Nyquist critical frequency.

fc =
1

2∆x
(2.4)

with ∆x = distance between to CCD elements. Many CCD sensors are equipped with micro lenses
in front of each pixel to collect as much of the incident light as possible. A positive side effect is that
these lenses already introduce a certain low-pass filtering that reduces the under-sampling-effects if the
image contains too high spatial frequencies.

Besides these spatial sampling effects there are several further effects that influence the final digital
gray level. The incident light can be best modeled by single photons here. These photons are “con-
verted” to electrons, the resulting charge is read out and is converted to a digital gray value (see figure
2.10).

During this “conversion” the following effects have to be taken into account. The first is the quan-
tum nature of light: The light intensity corresponds to a certain number of photons per second. The
temporally and spatially occurrence of the photons is random. So if we measure a light intensity, this
corresponds to the counting of photons within a certain area and a certain time interval. The counting
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Full well 
capacity
(e.g., 
20,000 
electrons)

Photons (Poisson distributed)

thermic noise (e.g., 
20 electrons per 
second)

AD converter
(e.g., 1 gray 
level per 3 
electrons)

read out process via 
other CCD elements 
(read out noise, e.g., 

+- 11 electrons)

digital 
gray 
level

Quantum 
efficiency: If two 
photons are 
needed, to lift one 
electron, the CCD 
has a quantum 
efficiency of 50%

Figure 2.10: CCD element: Important effects during “conversion” of photons to digital gray levels

results are Poisson distributed in this case. The “Poisson noise”, i. e. the variance of the resulting
countings is equal to the number of the counted photons Nphot. So the relative error is

∆Nphot

Nphot
=

√
Nphot

Nphot
=

1√
Nphot

. (2.5)

For low intensities, short illumination times or small CCD elements, this error is the dominant error
source in the whole conversion pipe. E. g., a gray value that corresponds to 100 photons has an error
of 10%. For high intensities, long illumination times or large CCD elements this error is usually
negligible compared to the other errors within the process. E. g., for a gray value that corresponds to
20,000 photons this error is only 0.71%.

The first step in the CCD element is the “conversion” of the incoming photons to electrons by means
of the photoelectric effect, i. e. by lifting electrons into a potential well. An important property of
the CCD sensor is its quantum efficiency αqe, namely the fraction of photons which successfully lift
electrons. For the estimation of the error due to this step, the probability αqe can be combined with the
probability of the occurrence of a photon. So the number of photo-generated electrons Ne for a given
light intensity is also Poisson distributed such that the quantum efficiency just increases the relative
error by a certain factor

∆Ne

Ne
=

√
αqe ·Nphot

αqe ·Nphot
=

1
√

αqe
·
∆Nphot

Nphot
. (2.6)

E. g., a quantum efficiency of 0.5 will increase the relative error by a factor of 1/
√

0.5 =
√

2.
Another cause for lifting electrons into the potential well are the thermal fluctuations. The number of

electrons due to this effect depends on the temperature of the CCD element and the exposure time, but
is independent of the incident light intensity. Therefore the rate of thermally lifted electrons is called
the dark current. To reduce the resulting “dark noise” the CCD sensor can be cooled.

An important property of a CCD element is its full well capacity which denotes the maximum
number of photo-generated electrons that can be stored in the potential well. At higher exposures
the sensor is saturated. In applications which allow to increase the light intensity (e. g. in transmitted
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light microscopy) or allow to increase the exposure time, the full well capacity is usually the limiting
factor for the overall signal-to-noise ratio.

After the illumination of the CCD elements, the collected charges in each of the potential wells are
transported to the AD-converter. This read-out process introduces several error sources that are usually
described by one combined read-out-noise. This read-out-noise is independent of the light intensity
and the exposure time. It can be modeled by a Gaussian distribution. It is important to note that the
read-out-noise produces also negative charges in contrast to the aforementioned error sources, i. e. with
zero light intensity also negative gray values may occur.

The last error source in the whole pipe is the quantization error introduced by the conversion of the
charges into digital values. This error is proportional to the quantization step that is chosen for the AD
conversion. The number of quantization steps is usually somewhere between 256 (using 8 bit numbers)
and 16,384 (14 bit numbers). The size of the quantization step can be controlled by the gain. Some
cameras also allow to adjust the offset, which specifies the gray value for zero light intensity. If the
image is recorded for a further analysis with image processing techniques, it is recommendable to set
this offset to a value greater than zero. In this case, the “negative intensities” that may originate from
the read-out-noise at very low light intensities, can be properly recorded, and the average over multiple
pixels will return an unbiased result.

Another source of errors on CCD sensors are production errors which result in imperfect CCD
elements. In most such cases we are confronted with “dead pixels” which always return a zero gray
value independent of the light intensity, and “hot pixels” which always return the highest possible
gray value. Such pixel defects are usually found in cheap CCD’s that are used in consumer cameras.
Cameras that are designed for scientific applications usually contain selected CCD’s without any such
defect.

2.3 Reduction of Out-Of-Focus Light

The main error source in microscopical images is the unwanted contribution of non-focused planes to
the image of the focused plane due to the optical transfer function (OTF) of the optics.

To eliminate or at least reduce these effects, one can use either confocal microscopy which eliminates
unwanted light by hardware components providing images with the highest possible quality at very
high costs, though.

A fully software–implemented alternative are deconvolution techniques (e. g., Wiener filter) which
remove the light dispersion by post-processing the digital images taken with a conventional fluores-
cence microscope.

A mixture of hardware and software solutions is a structured illumination with a consecutive post-
processing of the digital images (e. g. with Zeiss “ApoTome”).

Instead of the efforts to avoid or to compensate the non-focus contributions in the images, one may
appropriately adapt the feature extraction and classification to be robust against blurring due to the 3D
point spread function.

2.3.1 Pure Hardware Approach: Confocal Microscopy

In conventional microscopy the whole sample volume is illuminated with uniform intensity. Out-of-
focus points become only darker due to the point spread function of the detection optic.

In confocal microscopy (see figure 2.11) the sample is illuminated through a pinhole that is in the
conjugated focal plane (“con-focal”) with respect to the detector pinhole.

The central effect is that object points other than the point of interest experience lower intensity
illumination such that the light emitted from these points is less than in conventional microscopy. To
record the whole volume, the sample must be scanned in all three dimensions with this focused point.
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2 Microscopic Imaging

Figure 2.11: The confocal principle. The illumination is limited by a pinhole located in the conjugated
focal plane of the detector pinhole. Object points outside the focal plane are illuminated
with less intensity.

Quite similar to the conventional microscopy the confocal microscopy can also be described by
Fourier optics. The intensity distribution of the illumination light Iillum is modeled by the convolution
of the ideal image of the illumination pin-hole with the point-spread function,

Iillum = δ ∗Hpsf = Hpsf . (2.7)

The light Iobj emitted from the respective object point is proportional to the local density of the object
Dobj and the local illumination intensity, i. e.

Iobj = Dobj · Iillum = Dobj ·Hpsf . (2.8)

The intensity distribution Iimage around the image of the focused point is modeled by the convolution
of the ideal image of the object points with the point-spread function,

Iimage = Iobj ∗Hpsf = (Iideal ·Hpsf) ∗Hpsf . (2.9)

Finally the resulting signal must pass through the detector pinhole which is located in the coordinate
origin.

Iimage(0) =
∫
R3

Iideal(x) ·Hpsf(x) ·Hpsf(x) dx . (2.10)

To obtain the full 3D data set the object is moved and the resulting intensity at the detection pinhole
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2.3 Reduction of Out-Of-Focus Light

Iscan(t) is recorded as a function of the location t of the focal point within the scanned object:

Iscan(t) =
∫
R3

Iideal(x + t) ·Hpsf(x) ·Hpsf(x) dx

=
(
Iideal ∗ (Hpsf ·Hpsf)

)
(t) .

(2.11)

So the ideal light distribution is convolved with the squared point spread function. The decay of the
PSF in axial direction is approximately∝ 1/r2. So in conventional microscopy the contribution of out-
of-focus signals decay ∝ 1/r2. In confocal microscopy this contribution decays much faster namely
∝ 1/r4.

The most common variant of such a confocal microscope is a confocal laser scanning microscope
(abbreviate with LSM in the following). Here the pinhole and the lens in the illumination part are
replaced with a laser that already emits parallel light.

2.3.2 Pure Software Approach: Deconvolution

A pure software based approach to the reconstruction of the true intensity distribution is the deconvo-
lution. As the obtained intensity distribution can be modeled by the convolution of the true intensity
distribution with the point spread function of the optical system, see eq. (2.3), one can try to perform a
reconstruction by a deconvolution with the PSF.

Various deconvolution techniques have been studied together with Thorsten Schmidt. For more
information please refer to (Schmidt, 2003) and the summary in section 10.5.1.

The main disadvantage of the deconvolution techniques is that it is principally not possible to re-
construct those spatial–frequency components that have not been transmitted by the optical system due
to its finite bandwidth, and that it is always necessary to record and process the whole volume even if
only one slice is needed.

2.3.3 Combined Hardware+Software Approach: Structured Light

An interesting approach that combines additional hardware in the microscope with an appropriate post-
processing of the recorded data is the optical sectioning by structured light (Neil et al., 1997).

For this technique a grid is placed in the illumination path, such that it is projected into the object
plane (see figure 2.12).

Figure 2.12: Optical sectionioning by structured light
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This results in a grid shaped illumination pattern in the focal plane. With increasing distance to the
focal plane this grid pattern becomes defocussed resulting in a more and more homogeneous illumina-
tion.

The resulting intensity distribution in the image plane can therefore be interpreted as a sum of the
spatially modulated signal originating from the focus plane and the non-modulated signal originating
from the out-of-focus regions.

Now multiple images are taken at different translations of the grid. The reconstruction algorithms
then separate the modulated signal (originating from the focal plane) from the non-modulated signal.

The advantages of this technique is the improved z-resolution (compared to conventional microscopy
and the deconvolution techniques), and the much faster recording times (compared to a confocal mi-
croscope).

The most important disadvantage is that the object must not change between the different recordings,
e. g. due to movements or due to bleaching effects.

The imperfect reconstructions with the techniques described in Neil et al. (1997) (these algorithms
leave visible stripes in the images) gave reason for further analysis of the effects and the search for
better reconstruction algorithm together with Anselm Vossen (Vossen, 2004).

Meanwhile better algorithms are available (Schaefer et al., 2004) and are implemented in the com-
mercial software provided by Zeiss for their structured light extension, called “ApoTome”.

2.4 Improvement of the Dynamic Range (HDR Images)

The intensity of the primary fluorescence exhibits great variations between the different pollen taxa.
Even pollen grains of the same taxon on one and the same slide may show significantly different
fluorescence intensities due to different effects that may have destroyed the fluorophores within the
molecules.

To record fluorescence from all particles with a reasonable signal-to-noise ratio for both the very
weak and the very strong fluorescent objects within one image, the same image is recorded repeatedly
while either the laser power (LSM) or the shutter time of the CCD-camera (conventional fluorescence
microscopy) is varied.

The final goal of the fluorescence recording is to measure the fluorophore density at each position
within a given object. In thick objects, a significant fraction of the excitation photons and of the emitted
photons may be absorbed on the way to and back from the examined position. This results in a darker
appearance of structures located deeper in the object, even if they have the same fluorophore density.
In a usual microscopical setup we cannot measure these absorption effects. Therefore we combine all
these effects in the following analysis and just consider the measurable “apparent fluorophore density in
the focal point” D. The number of photons Ni(x) measured at position x in recording i is proportional
to this apparent fluorophore density,

Ni(x) = ci ·D(x) + ∆Ni

(
D(x)

)
(2.12)

with a factor ci depending on all microscopical settings, which influence either the number of the
excitation photons or the number of the measured photons, e. g. the illumination time, the laser power,
the aperture of the objective, the pinhole diameter, the selected filters and beam splitters, etc. ∆Ni

is a noise term, that also depends on the selected microscopical settings and the apparent fluorophore
density.

As mentioned above, the best way to control ci is to keep all microscopical settings constant and
to vary only the laser power or the illumination time. Both parameters allow a fast, well-defined and
reproducible control of the number of photons that reach the sensor. In the following we only refer to
the “laser power” in order to keep the description brief and intuitive. Of course any other parameter,
that allows a well-defined control of ci can be used instead.
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Both, the respective CCD element and the photo-multiplier can measure the light intensity only up
to a certain number of photons Nsat. Exceeding this number the CCD sensor saturates and the photo-
multiplier becomes nonlinear. This is illustrated for a hypothetical sensor that is fully saturated at 1000
photons and a hypothetical fluorophore that emits 1000 photons at density 1 and laser power 1 (figure
2.13). In confocal microscopy there are four main sources of noise (Wilhelm et al., 2006):
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Figure 2.13: Model for number of measured photons for different fluorophore densities and different
laser powers. The assumed sensor is fully satured at 1000 photons

1. The laser noise q caused by random fluctuations of the population of the excited state in the
laser medium. This noise is proportional to the number of detected photons N

2. The shot noise (Poisson Noise) ∆NPoisson =
√

N caused by the quantum nature of light.

3. The secondary emission noise αse caused by random variation of photoelectron multiplication
at the dynodes of a photo multiplier tube.

4. The dark noise due to random generation of “dark electrons” Nd. Its standard deviation is about√
Nd

The total error for a given number of photoelectrons N (photons that reached the sensor when a
photo-multiplier is used) is therefore (Wilhelm et al., 2006)

∆N = αse ·
√

(N + Nd)(1 + q2) . (2.13)

The signal-to-noise ratio

R =
N

∆N
(2.14)

obtained with different laser powers is depicted in figure 2.14 for the parameters that have been used
in an example in (Wilhelm et al., 2006), namely Nd = 100, αse = 1.2, and q = 0.05

For the reconstruction of one high dynamic range image from multiple recordings, a weighted aver-
age over the measured non-saturated intensities is computed for each position x. We define

n : number of recordings

pi : laser power of the ith recording, beginning with the highest

Ni(x) : number of detected photons at position x in the ith recording

Ri(x) : computed signal-to-noise ratio at position x in the ith recording

W (x) =
{

i |
(
1 ≤ i ≤ n

)
∧
(
Ni(x) < Nsat

) }
indices of well exposed recordings at position x.

(2.15)
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Figure 2.14: Signal-to-noise ratio of measured fluorophore density for different laser powers, according
to the noise model of (Wilhelm et al., 2006)

The best way to estimate the number of photons NHDR(x) that have been received by the virtual
non-saturation-limited sensor at the highest laser power p1 is to compute the weighted average of
the recorded intensities,

NHDR(x) =
1∑

i∈W (x)

R2
i (x)

·
∑

i∈W (x)

R2
i (x) · p1

pi
·Ni(x) . (2.16)

Finally one obtains for the signal-to-noise ratio at the location x within the resulting image

RHDR(x) =
√ ∑

i∈W (x)

R2
i (x) . (2.17)

This is shown in figure 2.15 as a function of the apparent fluorophore density for the parameters
given above. It is interesting to compare the signal-to-noise ratio between the considered HDR image
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Figure 2.15: Signal-to-noise ratio of computed HDR-image
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and the conventional average over a 3-fold recording at the lowest laser intensity which takes the same
time as the multiple exposures for the HDR image (see figure 2.16 for the considered LSM example):
While the SNR for medium fluorophore densities is comparable for both techniques, the HDR image
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Figure 2.16: Comparison of Signal-to-noise ratio from the HDR image to a conventional 3-fold aver-
aging at the lowest laser power.

has a significantly better SNR in dark regions at the expense of a lower SNR in bright regions. This
more homogeneous SNR of a HDR image is preferable, especially for image analysis tasks, because
structures that are located at different depths and therefore are subject to different absorption of the
excitation and emitted photons, can be compared with less bias than in a conventional image.

2.4.1 Computing the Number of Photons from the Gray Values

In order to apply the HDR formula (2.16) in a real setup, the ratio a between the required “number of
photons” and the recorded gray value

N(x) = a · I(x) (2.18)

is needed. This ratio is usually unknown, and therefore must be determined experimentally.
The required information can be extracted from multiple recordings Ij , j = 1 . . .m of the same

sample that contains all gray values. For each pixel, the mean and standard deviation are computed,

Iµ(x) =
1
m

m∑
j=1

Ij(x)

Iσ(x) =

√√√√ 1
m− 1

m∑
j=1

(
Ij(x)− Iµ(x)

)2
,

(2.19)

which are inserted into (2.13)

a · Iσ(x) != αse ·
√(

a · Iµ(x) + Nd

)(
1 + q2

)
⇒ 0 != a2 · I2

σ(x)− a · Iµ(x) · α2
se

(
1 + q2

)
−Nd · α2

se

(
1 + q2

)
.

(2.20)

Thus the value of a can be determined by a least-square fit.
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2.4.2 Compensation of Uniform Bleaching Effects and Offsets

First HDR experiments both, with images recorded by a LSM and by a CCD camera mounted to
a conventional fluorescence microscope resulted in factors between the exposure times, respectively
between the laser intensities which did not comply with equation (2.16).

One of the main reasons for this discrepancy is the bleaching of the fluorophores by the illumination
which directly changes the fluorophore density. The second reason are the various effects, that add
a fixed offset to the recorded gray values such that a zero of detected photons does not result in a
zero gray value. Especially with CCD sensors (their noise is caused significantly by the electrical
processing, and therefore may lead to negative output), the zero photon point is mapped intentionally
to a positive gray value to avoid systematic errors at low intensities.

If we can assume, that the bleaching causes a decrease of the fluorophore density by a factor which
is independent of the position in the image, the HDR reconstruction is still possible. Using this as-
sumption we can estimate the bleaching factor from those regions that are well exposed in at least two
recordings. If we furthermore assume that the gray value offsets are independent of the position in the
image, we can rewrite the HDR equation (2.16) to

NHDR(x) =
1∑

i∈W (x)

R2
i (x)

·
∑

i∈W (x)

R2
i (x) ·

(
si ·Ni(x) + bi

)
. (2.21)

The factor si combines the bleaching factor and the laser power factor. This factor si and the offset bi

of the recording with the highest laser power are set to s1 = 1 and b1 = 0, such that the gray values in
the reconstructed image correspond to this setting. Let

Pi = { x | Ni(x) < Nsat } (2.22)

be the set of well exposed positions in recording i. Then the parameters s2 and b2 can be found by a
linear regression

s2 ·N2(x) + b2
!= N1(x) ∀ x ∈ {P1 ∩P2} (2.23)

and iteratively the parameters si and bi for i = 3 . . . n from the successive recordings,

si ·Ni(x) + bi
!= si−1 ·Ni−1(x) + bi−1 ∀ x ∈ {Pi ∩Pi−1} . (2.24)

After the si and the bi have been determined, the final HDR image can be computed by equation (2.21).

2.4.3 Compensation of Nonuniform Bleaching Effects

While the uniform bleaching correction according to the previous section provides satisfactory results
on stained samples, it was not able to reconstruct HDR images from unstained real air samples without
visible discontinuities. The main reason for this was found to be the different bleaching characteristics
of the diverse types of natural fluorophores in such samples. So the previous assumption that factor si

is independent of the position in the image is not fulfilled.
To keep the model simple, all the offsets bi are set to zero. So we are confronted with the task to

estimate the combined bleaching and laser power factors, denoted by Si(x), in those regions, where
one of the images is saturated, from those regions, where both images are well exposed. For this
purpose we compute the “factor image” for two successive recordings, e. g. the first two:

S2(x) =
{

N1(x) / N2(x), if x ∈ {P1 ∩P2}
missing value, else .

(2.25)

The task to find the missing values in S2(x) can now be formulated as an interpolation problem. See
fig 2.17 for an illustration. Several interpolation algorithms have been tested for this purpose. The
requirements to the algorithms are
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Figure 2.17: In samples with nonuniform bleaching, the factor S2(x) depends on the position in the
image. For the HDR reconstruction it must be appropriately interpolated in the “missing
values” regions.

• The resulting array must be continuous

• The experimental errors cause some scatter of the raw values in S2 which may be reduced by
smoothing before or as part of the interpolation. In the first case the smoothing algorithm must
be able to cope with the missing values.

• The missing value regions are not compact, they usually have very random borders.

• For the application in the pollenmonitor the interpolation algorithm must be fast (only a few
seconds for three stacks with about 100 mega voxels each) and must not use too much memory.

An obvious approach which meets these requirements is a weighted average over the non-missing-
values in the surrounding of a missing value. With a mask

M(x) =
{

1, if x ∈ {P1 ∩P2}
0 else ,

(2.26)

and a smoothing kernel K(x) the interpolated array can be computed as

S2,interp. =
(M · S2) ∗K

M ∗K
, (2.27)

wherein (M · S2) denotes an element-wise multiplication (M · S2)(x) := M(x) · S2(x). By the use
of the separable kernel

K(x, y, z) = α|x| · α|y| · α|z| with 0 < α < 1 , (2.28)

which decays exponentially along each coordinate axis and which can be effectively computed in
the image domain by a recursive scheme, the timing constraints can be fulfilled on a down-scaled
array. While this interpolation scheme works well for small regions of missing values, the results are
disappointing within large regions: It was not possible to find a value of α that smoothly interpolates
such large regions while the important local variations of S2 are retained. Furthermore numerical
problems occurred within such large regions.

After testing several alternative interpolation schemes, the following procedure was found to best
fulfill the above criteria: The scattering of the factor array S2 from N1 and N2 is reduced by taking the
local maxima in a certain rectangular surrounding |q|∞ < k

S2a(x) =
max

{
N1(x + q)

∣∣∣ |q|∞ < k ∧ (x + q) ∈ {P1 ∩P2}
}

max
{

N2(x + q)
∣∣∣ |q|∞ < k ∧ (x + q) ∈ {P1 ∩P2}

} . (2.29)
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2 Microscopic Imaging

A further advantage of the local maximum is, that it selects the pixels nearest to the boundary of the
“missing value” regions. Together with this local maximum extraction a sub-sampling of the arrays is
performed to reduce the further computational costs. The next step is the line-wise linear interpolation
of the missing values from their nearest left and right neighbors `(x) and r(x) with “non-missing”
values. Using

`

x1

x2

x3

 =

max{ q | q ≤ x1 ∧ (q, x2, x3) ∈ {P1 ∩P2}}
x2

x3

 (2.30)

and

r

x1

x2

x3

 =

min{ q | q ≥ x1 ∧ (q, x2, x3) ∈ {P1 ∩P2}}
x2

x3

 (2.31)

the line-wise interpolation can be written as

S2b(x) =

∥∥x− r(x)
∥∥ · S2a

(
`(x)

)
+
∥∥x− `(x)

∥∥ · S2a

(
r(x)

)∥∥r(x)− `(x)
∥∥ ∀x /∈ {P1 ∩P2} . (2.32)

After smoothing with the cheap recursive filter mentioned above

S2c = S2b ∗K , (2.33)

and up-scaling to the original size, the resulting array S2c can be used for the HDR reconstruction. The
factor arrays Sic for the successive recordings are computed accordingly.

2.5 Improvement of Homogeneity

2.5.1 Compensation of Errors from Illumination and Recording Step (Static
Shading Correction)

Most of the errors that occur in the recording step (CCD dark signal, photo response non-uniformity,
dead pixels, digitalization offset, inhomogeneous illumination) do not vary from image to image and
can therefore be compensated by a pixel-wise calibration. As CCD’s are linear over a wide range
of intensities, we can limit this calibration to a linear compensation. To measure the offset and the
factor (true gray value / measured gray value) it is sufficient to record an empty sample with different
exposure times and perform a linear regression for each pixel resulting in an “offset image”, a “gain
image” and a “correlation coefficient image” , that shows the linearity between the exposure times and
the measured gray value. The detection of defect pixels can be done by searching outliers in these three
images.

2.5.2 Compensation of Inhomogeneities due to Out-Of-Focus Dust (Dynamic
Shading Correction)

Additionally to the static inhomogeneities in the illumination of the sample, there can be absorption of
light by out-of-focus dust or other particles. As this “background” changes from image to image, we
need some more prior knowledge to separate it from the focussed particles.

With the following assumptions

• All wanted particles (e. g. pollen) together cover less than half of the pixels of the image

• the maximum area of a wanted particle is known
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2.5 Improvement of Homogeneity

• the background changes only slightly within the diameter of a particle

we can estimate the background gray value for each pixel by computing the median gray value of an
area around this pixel that is twice as large as the maximum particle area (see figure 2.18).

Figure 2.18: To estimate the background gray value at the position of the cross, the median of all gray
values within the circle is computed
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3 Data Sets

3.1 Confocal Data Set

3.1.1 Collection, Preparation and Recording

The “confocal data set” was recorded in order to do the first feasibility studies for pollen recogni-
tion from 3D volumetric data. We selected confocal laser scanning microscopy to ensure the highest
available data quality.

The pollen grains were manually collected from the plants and embedded in glycerine to avoid
fluorescence background from the embedding media. They were glued directly to the cover slip. A
spacing ring ensured that they were not deformed by the preparation (see figure 3.1).

cover slip
spacer

glycerine

slide

glue pollen grains

Figure 3.1: Preparation of pollen grains for confocal recording

For each of the 28 most common pollen taxa in Germany one slide was prepared and about 15
individual pollen grains were scanned with a confocal laser scanning microscope (Zeiss LSM 510)
equipped with a Plan-Neofluar 40x/1.3 oil-immersion objective. The used excitation wavelength was
488 nm and the emitted light (using the natural fluorescence of pollen grains) was recorded above
515 nm (Zeiss filter set 09). The voxel-size was set to 0.20µm × 0.20µm × 0.20µm to receive cubic
voxels. The laser power and photo multiplier gain were adjusted such that no overexposure occurred,
the data were digitized with 8 bit per gray value.

Due to the preparation of pure samples, no additional labeling from pollen experts was needed. An
example for the recorded raw data is shown in figure 3.2.

It is obvious that the outer layer, the exine, of the pollen grain show only a very low fluorescence
compared to the inner parts. As these outer structures are crucial for the identification of the pollen
grains, the first pre-processing step of the data was usually a gamma correction (with γ ≈ 2) of the
gray values,

vcorr = 255 · (v/255)(1/γ) . (3.1)

After that correction the overall structure of the pollen grain is much better visible (figure 3.3), and the
brightness of the structures corresponds better to their importance for the classification.

The mean diameter of the recorded pollen grains range from 15µm (Urtica(D.15)) to 85µm (Larix(D.8))
resulting in volumetric data sets from about 603 voxels to 4253 voxels.

For the two largest pollen taxa (Larix(D.8) and Pinus(D.10)) significant problems occurred during record-
ing. Due to absorption effects, the lower layers of the pollen grains were nearly invisible such that these
two pollen taxa were excluded from the further analysis. The remaining largest pollen grains were Se-
cale(A.7) with a mean diameter of 50µm (about 2503 voxels).
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Scale 500:1

0 10 20 30 40 50 75 100µm

Figure 3.2: Raw data from the confocal laser scanning microscope. Every second slice of a recorded
Betula(A.4) pollen is shown (scale 500:1).

Scale 500:1

0 10 20 30 40 50 75 100µm

Figure 3.3: Gamma corrected data set of Betula(A.4) pollen (scale 500:1). After a gamma correction with
γ = 2 the important outer structures become brighter.
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3.1.2 Representative Table

In the following table a short overview over the 26 used pollen taxa is given. For every taxa the two
representative pollen grains are shown in different representations. The complete data set is presented
in the Appendices A (highly allergenic pollen taxa), B (moderately allergenic pollen taxa), C (lowly
allergenic pollen taxa) and D (non-allergenic pollen taxa). There a better impression of the inner class
variations can be received. (In the electronic version of this document you can click on the pollen
names to jump directly to the corresponding page in the Appendix).

In the table the following data are shown:

• central plane: The central plane was selected by the center of mass of the gray values in the
whole dataset. For a less noisy display, the mean of this plane and its two neighboring planes
was computed.

• shaded volume rendering: The shaded volume rendering is based on the maximum intensity
projection of the gray values combined with a maximum intensity projection of a very simple
illumination model using two light sources and ambient light. The reflection properties of each
voxel were defined by the gradient direction and the gradient magnitude. No absorption model
was applied such that in some renderings small bright spots appear from the reflection at strong
gradients within the inner structures.

• shaded volume rendering of cropped pollen: Finally to see the inner structure of the pollen,
a part of the volumetric data set was set to zero and also processed with the shaded volume
renderer. This cropping needed some smooth blending at the cut surfaces to avoid interference
patterns originating from the voxel grid.

The pollen grains are sorted according their their allergenic level (see Appendix E for a complete list
and a discussion of this classification).

All images are presented here at the same scale (500:1) such that 1 mm in the image corresponds to
2µm in reality.

Highly Allergenic Pollen Taxa

latin name central shaded volume shad. vol. rend.
(German name) plane rendering cropped pollen

Artemisia(A.1)

(Beifuß)

Alnus(A.2)

(Erle)

Scale 500:1

0 10 20 30 40 50 75 100µm

48



3.1 Confocal Data Set

Highly Allergenic Pollen Taxa

latin name central shaded volume shad. vol. rend.
(German name) plane rendering cropped pollen

Alnus
viridis(A.3)

(Alpen-/
Grün-Erle)

Betula(A.4)

(Birke)

Corylus(A.5)

(Hasel)

Poaceae(A.6)

(Süßgräser)

Secale(A.7)

(Roggen)

Scale 500:1

0 10 20 30 40 50 75 100µm
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Moderately Allergenic Pollen Taxa

latin name central shaded volumeshad. vol. rend.
(German name) plane rendering cropped pollen

Carpinus(B.1)

(Hainbuche)

Quercus(B.3)

(Eiche)

Fraxinus(B.4)

(Esche)

Plantago(B.5)

(Wegerich)

Rumex(B.6)

(Ampfer)

Scale 500:1

0 10 20 30 40 50 75 100µm
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Lowly Allergenic Pollen Taxa

latin name central shaded volume shad. vol. rend.
(German name) plane rendering cropped pollen

Fagus(C.2)

(Rotbuche)

Populus(C.3)

(Pappel)

Salix(C.4)

(Weide)

Scale 500:1

0 10 20 30 40 50 75 100µm

Non-Allergenic Pollen Taxa

latin name central shaded volume shad. vol. rend.
(German name) plane rendering cropped pollen

Acer(D.1)

(Ahorn)

Scale 500:1

0 10 20 30 40 50 75 100µm
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Non-Allergenic Pollen Taxa

latin name central shaded volume shad. vol. rend.
(German name) plane rendering cropped pollen

Chenopodium(D.3)

(Gänsefuß)

Compositae(D.4)

(Korbblüter)

Cruciferae(D.5)

(Kreuzblüten-
gewächse)

Aesculus(D.6)

(Roßkastanie)

Juglans(D.7)

(Walnuß)

Scale 500:1

0 10 20 30 40 50 75 100µm
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Non-Allergenic Pollen Taxa

latin name central shaded volume shad. vol. rend.
(German name) plane rendering cropped pollen

Platanus(D.11)

(Platane)

Taxus(D.12)

(Eibe)

Tilia(D.13)

(Linde)

Ulmus(D.14)

(Ulme)

Urtica(D.15)

(Brennessel)

Scale 500:1

0 10 20 30 40 50 75 100µm

3.1.3 Left–out Taxa

The Larix(D.8) and Pinus(D.10) pollen grains were too big for the selected confocal setup and showed
too strong absorptions. They are not allergenic and they can be classified very easy just by the size
(Larix(D.8)), or the non-spherical shape (Pinus(D.10)). So they were not included in the experiments. Note
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that they are presented here at the same scale (500:1) as the pollen in the previous table.

Non-Allergenic Pollen Taxa (not used due to bad image quality)

code latin name central shaded volume
(German name) plane rendering

Larix(D.8)

(Lärche)

Pinus(D.10)

(Kiefer

Scale 500:1

0 10 20 30 40 50 75 100µm

3.1.4 Discussion

Even though we tried to make the preparation and the recording as reproducible as possible, we cannot
fully exclude that the recorded data may contain a certain systematic bias, that might lead to positively
biased results. Furthermore the pollen grains for each taxon were only collected from a single plant (or
very limited number of plants) and do not show all the inner class variations, that occur on a real air
sample.

There are two reasons why we did not fully discard these data. The most probable systematic bias

54



3.2 Pollenmonitor Data Set

(a certain gray value offset and a gray value scaling) was removed from the data by normalization (for
the global invariants), and by designing features that are invariant to such variation (MiSP invariants).
The second even more important reason is that all other publications concerning pollen recognition are
based on similarly produced data (see section 1.2.1). So for a reasonable comparison of our algorithms
to the published “state of the art” we should use data which is comparable to the data used in these
studies.

3.2 Pollenmonitor Data Set

The “pollenmonitor data set” contains the air samples that were recorded with the first prototype of
the pollenmonitor between March, 10th and September, 22nd 2006 in Freiburg and Zürich.

3.2.1 Collection

The pollenmonitor uses a two stage virtual impactor for taking the air samples (see figure 3.4). It

Figure 3.4: (From (Scharring et al., 2006) with kind permission of the authors) Schematic of the design
of the sampling and deposition method used in the pollenmonitor. The overall sample flow
is maintained by a fan. The internal flows are controlled by orifices. From the overall air
stream Qin = 1167 l/min a representative side stream of Qs = 100 l/min is taken isokineti-
cally and subsequently concentrated up resulting in a final flow rate of Qd = 2 l/min.

collects the particles of 100 l air per minute and deposits them smoothly (at only 1.7 m/s) on the surface
of the embedding medium (glycerine gelatine) on the sample carrier. The sample carrier is a metal plate
with 24 holes of about 12 mm diameter (see figure 3.5). Each hole is covered at its bottom with a cover
slip, building a small chamber, and filled with glycerine gelatine as embedding medium (see figure
3.6).

After impaction the collected particles cover a circular area with about 5 mm radius. For more details
refer to (Scharring et al., 2006). From these parameters we can compute the desired conversion factor
cair between the area on the sample and the corresponding air volume as

cair =
100 l/min

π · (5 mm)2
=

6 m3/hour
78.54 mm2

= 0.07639
m3

mm2 · hour
(3.2)
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Figure 3.5: Sample carrier of the pollenmonitor containing 24 small chambers for hourly air samples.

pollen grains and other dust

cover slip

glycerine gelatine
sample carrier

Figure 3.6: Side view of one chamber of the sample carrier (not true to scale)

The sampling duration was usually one hour. In rare cases the sampling duration was reduced in
order to avoid too high particle densities.

During 2006 the pollenmonitor was placed in the measurement field of the German weather service
in Freiburg downtown (see figure 3.7). At this location some local pollen sources, e. g., the Urtica(D.15)

(in German: “Brennessel”) located in the background of the image, may have influenced the total
number of collected pollen grains.

Figure 3.7: The pollenmonitor in the measurement field of the German Weather Service in Freiburg.
The image was taken on April 28th, 2006.

In the weeks 10-18 the 24-hour-operation of the pollenmonitor was tested by taking one sample
every second hour. Later in the year the sampling rates were reduced to about 3 air samples per day
just to collect enough pollen for building a complete reference data base. The dates and times of the
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day, when the samples were taken are shown in figure 3.8.
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Figure 3.8: Date and time of the day of all air samples within the “pollenmonitor data set”. The samples
of the second half of week 18 were taken during a four-day-demonstration of the machine
in Zürich

3.2.2 Preparation

In the pollenmonitor an automatic preparation unit prepares the air samples for the microscopical eval-
uation. To keep the system as simple as possible, the impactor places the pollen grains on the surface
of the embedding medium, and the cover slip is already integrated as bottom of the sample carrier, such
that the only operation for the preparation is the melting of the glycerine gelatine (see figure 3.9)

a) b) c)

Figure 3.9: Preparation of air samples in the pollenmonitor (from (Scharring et al., 2006) with kind
permission of the authors): a) The dried up pollen grains from the air are deposited on
the surface of the embedding medium (Glycerine gelatine). b) The embedding medium is
heated and melts, such that the pollen grains sink into it. c) After a short period, the pollen
grains swelled to their original shape due to the absorption of the water from the embedding
medium.
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For the data set recorded in 2006, the preparation of the air samples in the pollenmonitor was done
immediately after the sampling time ended. In 2005 we noticed significant changes in the morphology
of the pollen grains, when the preparation was done several weeks later. To build a reference data base,
that can be used in a routine environment it is important to keep this parameters identical to the later
application.

3.2.3 Microscopic Recording

The readily prepared sample were microscopically scanned with the integrated inverse microscope.
It uses a high-end Zeiss objective “Plan-Apochromat” with 20x magnification and a numerical aper-
ture of 0.8. The light source for the transmitted light images was a green LED (wavelength 533 nm;
power 35 mW), and the excitation light for the fluorescence recordings was obtained from a violet LED
(wavelength 380 nm; power 85 mW). The broad band emitted light from the pollen grains was recorded
above 455 nm.

For the recording a digital firewire camera (AVT Dolphin F-145B from Allied Vision Technologies)
equipped with a 2/3" CCD sensor with 1392× 1040 pixels and a cell size of 6, 45 µm× 6, 45 µm was
used. The shutter time for the transmitted light images was about 0.4 ms allowing the full frame rate of
15 fps. The fluorescence recordings were done at 3 different shutter times (50 ms, 150 ms and 400 ms)
to cover the high dynamic range of the fluorescence signals. For a faster transfer of the images only
8bit of the available 10bit were used. But even in 8bit mode the main noise source was still the photon
noise and readout-noise from the CCD sensor such that the left out 2 bits would not have contributed
any valuable information.

Due to performance reasons, all stacks were recorded at the highest possible frame rate of the camera.
For this purpose, the camera was started in continuous mode, and every time, when the first firewire
packet of a new frame arrived at the computer (signaling that the exposure time was over) the command
to move to the next z-position was sent to the translation stage.

From each air sample a certain number of multi-channel image stacks were recorded. Until the mid
of the year the stacks for each channel were recorded sequentially (see algorithm 3.1) which is less
critical to timing, but the channels in the resulting data set are not well-aligned.

Algorithm 3.1 Sequential Scheme for recording a multi-channel image stack within the pollenmonitor.
Output: 1 transmitted light stack and 3 fluorescence image stacks

1: Switch to transmitted light mode
2: Set the desired stack center in the air sample according to the current grid position
3: Record about 100 levels for a focus stack with reduced camera resolution (2x2 binning) around

the current position (0.1 ms shutter time, 5 µm step size); Find the sharpest level in the focus stack
and compute its z-coordinate

4: Set the desired stack center in the air sample with the corrected z-coordinate
5: Record all 70 levels for the transmitted light image stack (0.4 ms shutter time, 1, 5 µm step size)

6: Switch to fluorescence mode
7: Record all 70 levels for the “long” fluorescence image stack (400 ms shutter time, 1, 5 µm step

size)
8: Record all 70 levels for the “middle” fluorescence image stack (150 ms shutter time, 1, 5 µm

step size)
9: Record all 70 levels for the “short” fluorescence image stack (50 ms shutter time, 1, 5 µm step

size)

While at the begin of the year the alignment of the channels was satisfactorily, it became worse
with the increasing abrasion of the translation stage mechanics. Due to this fact and the significant
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progresses in the segmentation algorithms that made the fluorescence image less important, several air
samples were scanned with transmitted light microscopy only, resulting in single-channel image stacks.

In the mid of the year we finished the new version of the recording software with an interleaved
recording of the channels for each image stack (see algorithm 3.2). Here the correspondence of the
channels is much better.

Algorithm 3.2 Interleaved scheme for recording a multi-channel image stack within the pollenmonitor.
Output: 1 transmitted light stack and 3 fluorescence image stacks

1: Find best focus as described in sequential recording scheme
2: Move Stage to begin of stack
3: for all levels do
4: Switch to transmitted light mode
5: Record level i for the transmitted light image stack (0.4 ms shutter time)
6: Switch to fluorescence mode
7: Record level i for the “short” fluorescence image stack (50 ms shutter time)
8: Record level i for the “middle”fluorescence image stack (150 ms shutter time)
9: Record level i for the “long” fluorescence image stack (400 ms shutter time)

10: Move Stage 1.5 µm in z-direction
11: end for

The arrangement of all the inner components of the pollenmonitor are shown in figure 3.10.
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Figure 3.10: Inner components of the pollenmonitor
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3.2.4 Evaluated Area per Air Sample

The number of recorded stacks per air sample was varied between 5 × 5 stacks and 15 × 15 stacks,
according to the number of the air samples taken at this day, the needed scanning time (depending on
the number of fluorescence channels that were recorded), the needs for more (or less) examples of the
current pollen taxa, etc. (see figure 3.11).
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Figure 3.11: Area (in number of stacks) that was scanned from each air sample. This area was varied
over the year due to several reasons (see text)

Each stack contains 1392 × 1040 × 70 voxels of size 0.3225 µm × 0.3225 µm × 1.5 µm. To avoid
partially cropped pollen only those particles whose center has a minimum distance of 30 pixels (≈
10 µm) to the x/y borders are taken into account, which reduces the evaluated area to (1392 − 60) ×
(1040− 60) pixels2 = 0.1358 mm2. Using the conversion factor cair from (3.2) and the usual sampling
time of 1 hour the particles on a sample with 5× 5 stacks originate from 0.26 m3 air, and the particles
on a sample with 15×15 stacks originate from 2.33 m3 air. An example for an air sample taken at July
25th, 2006, 16.00h that was scanned with 15× 15 stacks is shown in figures 3.12, 3.13 and 3.14. The
total number of evaluated stacks is 27,280, which corresponds to an air volume of 282.94 m3

3.2.5 Labeling

Overall 420 air samples were collected, prepared and scanned in 2006. During the year 325 air samples
were selected for manual labeling. (see figure 3.15).

On the selected air samples the segmentation found about 180,000 spherical particles. All of these
particles were manually labeled by several pollen experts resulting in about 22,700 labeled pollen
grains. (see figure 3.16)

The labeling was done at the computer where the pollen experts had access to the full 3D stack of
each particle by using the specially developed programs pfm (“pollen file manager”) which displays all
segmented particles (sharpest layer only) in an editable list and polvi (“pollen viewer”) that is started
on demand to focus through the whole image stack.

The pollen taxonomy was chosen according to the taxonomy which is used in the daily pollen counts
in Germany and Switzerland and which is mainly oriented to the level of visual discernment and to the
allergic relevance of the taxa: Most of the pollen are classified at genus level (e. g., Alnus(A.2), Betula(A.4),
Corylus(A.5)), some of them can be classified on family level only, e. g. Poaceae(A.6), Compositae(D.4),
Ericaceae (the names have the suffix “ae”). Very few of them can be classified on species level, e. g.
Alnus viridis(A.3), Ostrya Carpinifolia(B.2) or Fraxinus ornus. The distinction on species level usually
needs more than only the morphology. E. g., Alnus viridis(A.3) can usually be differentiated from the
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Scale 20:1

0 500 1000 2000µm

Figure 3.12: Air sample from July 25th, 2006, 16.00h (week 30) taken in Freiburg with the pollen-
monitor. At this display scale (20:1) you can see a small insect (about 1mm long) but not
the pollen grains. The three black blobs in the center of the image are bubbles from an
imperfect preparation. Each of the 15×15 tiles (stacks) contains 1392×1040×70 voxels,
resulting in 22.8 Gigavoxels.

Scale 200:1
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Figure 3.13: Central layer of image stack containing one of the bubbles. The marked pollen grain lies
in a slightly different layer.
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Scale 500:1

0 10 20 30 40 50 75 100µm

Figure 3.14: Cropped image stack of the pollen grain. By looking at its central layer and some layers
above and below, a pollen expert (and our pollen recognition system) can identify it as a
Plantago(B.5) pollen.
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Figure 3.15: Number of air samples taken with the pollenmonitor in 2006. The samples from week 18
are recorded in Zürich, the others are recorded in Freiburg.
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Figure 3.16: Number of spherical particles, and number of pollen grains (manually labeled) that were
found in the air samples of the pollenmonitor during 2006

other Alnus(A.2) species, only due to its significantly later flowering period. All pollen that could not be
identified unequivocally were labeled as “indeterm.”

The majority of the non-spherical pollen grains (Pinus(D.10) and Picea(D.9)) were not correctly seg-
mented. The fragments of these pollen were labeled as “non-pollen”. Only some of them were spheri-
cal enough to be correctly segmented. They were included into the database, even though they do not
represent the true characteristics of this pollen type. The total number of pollen grains for each taxon
are listed in figure 3.17.

The co-occurrence of the different pollen taxa over the year is shown in figure 3.18

3.2.6 Discussion

Too low Number of Pollen Grains for Several Taxa

Even though the total number of particles and pollen grains in this data set is quite impressive, there are
still many pollen taxa where the number of obtained pollen grains during this year is much too low to
express all important variants. For the highly allergenic pollen taxa the main reasons for low numbers
is the location. E. g., the highly allergenic Secale(A.7) (engl. “rye”, germ. “Roggen”) pollen, are not
present in Freiburg, because there are no rye producing areas nearby. The relatively low numbers for
Alnus(A.2) and Corylus(A.5) are caused by the late start of the measurements in March, when their main
flowering period was already over. So it is relatively easy to obtain large numbers of pollen grains of
these taxa just by running the pollenmonitor at the appropriate place in the appropriate season. For
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3.2 Pollenmonitor Data Set

Figure 3.17: Number of pollen grains for each taxon in the pollenmonitor dataset. The numbers for
Pinus(D.10) and Picea(D.9) in this dataset do not represent the true number on the air samples
(see text)
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3 Data Sets

Figure 3.18: Upper figure: The number of different pollen taxa that are found on the samples within
each week. Lower figure: Pollen taxa in the pollenmonitor data set, sorted by their apper-
ance in the year. The colors show their allergic relevance, red: highly allergenic, orange:
moderately allergenic; yellow: lowly allergenic, gray: non-allergenic. One can clearly see
the main flowering period.
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3.2 Pollenmonitor Data Set

several other pollen taxa the low number really represents their typical concentrations in the air. For
those taxa it might be difficult to collect a sufficient number of training pollen with these techniques.

Low Quality of Fluorescence Recordings

There are some other avoidable shortcomings of this data set, which have a significant impact on the
final recognition results. The most important one is the very low image quality of the fluorescence
image stacks, compared to the resulting images taken with a standard fluorescence microscope from
Zeiss, due to some misfortune with the responsible partner. Even though the fluorescence allows to
extract significant additional information from the pollen grains, the better choice was to disregard the
recorded fluorescence stacks from the pollenmonitor and to use only the stacks from transmitted light
microscopy.

Vibrations During Stack Recording

Another problem in this data set are the vibrations that occurred occasionally during the stack record-
ings. The main sources for this vibration, the pump and the air conditioning, were mechanically de-
coupled from the system, but other sources (wind, vibrations of the stepper motors themselves) could
not be avoided. Here an appropriate re-alignment of the recorded image stacks by a cross correlation
analysis of the successive layers was at least able to compensate the displacements in xy-direction.

Non-Uniformity in the Illumination

The strong non-uniformities of the illumination in the transmitted light microscopy can be corrected
by an appropriate shading correction (see section 2.5.2), or by the use of features that are invariant to
gray scale changes.

Mis-adjusted Optics in Zürich

All stacks that were recorded in Zürich have significantly different image characteristics than those
from Freiburg due to mis-adjusted optics (see figure 3.19)

Alnus(A.2) pollen
recorded in Freiburg

Alnus(A.2) pollen
recorded in Zürich

Scale 1000:1

0 5 10 15 20 30 40 50µm

Figure 3.19: Effects of the mis-adjusted optics in Zürich. The images are brighter and show a lower
richness of details

To compensate mechanical problems the objective was slightly displaced towards the sample by the
addition of a small shim, while the position of the condenser was not accordingly corrected. This
resulted in much brighter images with lower contrast and lower richness of details.
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3 Data Sets

Imperfect Embedding of Some Pollen Grains

Another effect that still occurs in this data set is an imperfect embedding for some pollen grains (see
figure 3.20 for an example).

Scale 1000:1

0 5 10 15 20 30 40 50µm

Figure 3.20: Imperfectly embedded Betula(A.4) and Urtica(D.15) pollen grains, resulting in a white spot in
the center of the object

While, in the year before, a large fraction of the pollen grains was not fully embedded in the em-
bedding medium, this effect was significantly reduced by a changed composition of the embedding
medium and an adapted temperature curve for the preparation process. Nevertheless there are still
some pollen grains that did not fully re-hydrate. These dry regions within the pollen grain produce
strong reflections that make an identification very difficult even for humans experts.

Avoidable Failures of the Pollenmonitor

During the operation of the prototype of the pollenmonitor several failures of the machine occurred.
In most cases these failures have led to strong distortions such that the recorded image stacks were
not useful for further evaluations. E. g., a loose contact in the transmitted light illumination caused a
randomly distributed dark frames in the image stacks. Another example is the failure of the integrated
air conditioning during the preparation and recording of the air sample from June, 18th 16.00h. This
resulted in an extreme number of tiny water droplets on the sample (see figure 3.21). These water
droplets have the same size and gray value distribution as pollen grains but no corresponding droplets
exist in the training data set, which would have led to biased results in some experiments (especially in
those where the classifier is forced to assign each particle to a known class). In a final pollenmonitor
it is easy to integrate a sensor, that can detect such a failure. As we are interested in the expected
performance of the machine during normal operation, this sample was left out in most experiments.
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3.2 Pollenmonitor Data Set

Scale 20:1

0 500 1000 2000µm

Figure 3.21: Due to a failure of the air conditioning on June, 18th thousands of tiny water droplets
cover the air sample.

69



4 The Haar Integration (HI) Framework

The Haar-Integration framework, introduced by Schulz-Mirbach (1995b) offers a simple but very pow-
erful way of a general feature extraction.

The goal of such a feature extraction is to find a representation of an object that is invariant to a given
set of transformations, e. g., the Euclidean motions: The set of all possible 3D volume data sets of one
individual pollen grain – scanned in all possible positions and orientations (Euclidean motion) – is an
equivalence class. An invariant transformation is able to map all elements of this equivalence class into
one point of the feature space and there represents one piece of information on the intrinsic structure
of the considered pollen grain, independent of its position and orientation (Figure 4.1).

volume data set X
(16,000,000-dim.)

feature space
(n-dim.)

Figure 4.1: Invariant transformation: All representations of an object (here: the object at any orienta-
tion or position) are mapped into the same point in the feature space.

4.1 Invariance by Integration over the Transformation Group

The basic recipe to compute these features is to take a non-linear kernel function f(X) in order to
relate or combine the gray values of some neighboring pixels or voxels and to integrate the result of
this function over all possible representations of the object in the equivalence class (Schulz-Mirbach,
1995a).

T [f ](X) :=
∫
G

f(gX)dg (4.1)

G : transformation group
g : one element of the transformation group
f : Kernel function
X : image or volume data

gX : transformed image or volume data
dg : (normalized) Haar measure

An illustrative example for the computation of such an invariant is shown in figure 4.2.
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4.2 Direct Computation Using General N-Point-Kernel Functions

a) T

( )
=

1
N

(
f

( )
+ f

( )
+ f

( )
+ · · ·+ f

( ))
= 42

b) T

( )
=

1
N

(
f

( )
+ f

( )
+ f

( )
+ · · ·+ f

( ))
= 42

Figure 4.2: Simple example for the computation of invariants using the Haar integration framework for
the group of rotations on a very friendly pollen species (not yet discovered in the natural
environment): f() is an arbitrary non-linear function, that computes a scalar value from the
given image. N is the number of selected rotation angles. The resulting invariant T = 42 is
identical for a) and b), independent of the orientation of the test image. Proof: rearranging
of the summands.

4.2 Direct Computation Using General N-Point-Kernel Functions

If the kernel function f only depends on a few gray values of the image or volume, i. e., if we can rewrite
f(X) as f

(
X(x1), X(x2), . . . , X(xk)

)
we only need to transform the kernel points x1,x2, . . . ,xk

accordingly instead of the whole data set X (Schulz-Mirbach, 1995a). This transformation of the
kernel points will be denoted here as sg(xi) such that

(gX)(xi) = X
(
sg(xi)

)
∀g,xi (4.2)

With this we can rewrite eq. 4.1 as

T [f ](X) :=
∫
G

f

(
X
(
sg(x1)

)
, X

(
sg(x2)

)
, . . . , X

(
sg(xk)

))
dg (4.3)

This considerably speeds up the computation, because instead of all pixels/voxels of the image only k
points must be transformed for each element of the transformation group.

Furthermore the number of elements of the transformation group, that must be evaluated to correctly
compute the integral on discretized data (see next section “correct sampling of invariants”) can also be
reduced by the use of sparse kernels. E. g., for the group of Euclidean motions on a 2D image with
N × N pixels, we need O(N2) translations and O(N) rotations, which results in O(N3) operations
for each pixel. The evaluation of the Haar integral then takes O(N5) operations just for transforming
all pixels according to all transformations.

Using a sparse kernel function we need a fixed number of rotations depending only on the “radius”
of the kernel function q, and (as mentioned above) only k points instead of N2 pixels need to be
transformed. This results in a linear complexity O(k · q ·N2) in the number of pixels N2 of the image
(see figure 4.3 for an example of a kernel function that depends only on two points and the Euclidean
transformation group).
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4 The Haar Integration (HI) Framework

a)

f(X) := X(0, 0) ·X(3, 0)

X : gray-value image
X(x, y): (interpolated) gray value

at position x, y

b)

Tϕ = X(0, 0) ·X(3, 0)
+ X(0, 0) ·X(2.7, 1.1)
+ X(0, 0) ·X(2.1, 2.1)
+ . . .

c)

T = X(0, 0) ·X(3, 0)
+ X(0, 0) ·X(2.7, 1.1)
+ X(0, 0) ·X(2.1, 2.1)
+ . . .
+ X(1, 0) ·X(4, 0)
+ X(1, 0) ·X(3.7, 1.1)
+ X(1, 0) ·X(3.1, 2.1)
+ . . .

Figure 4.3: Computation of an invariant using a two-point-kernel on a 2D image: (a) Selection of a
non-linear kernel function for combining some neighboring pixels: In this example the
kernel function f(X) is defined as the multiplication of two gray values at distance 3. (b)
This kernel function is evaluated for all angles and the results are summed up, to become
invariant to rotations of the object. (c) This set of rotated kernel functions is evaluated at
all possible positions of the image and the results are summed up, to become invariant to
translations of the object. As a result, identical values of T are obtained independently of
the angle and position of the object in the image.
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5 Analysis of the Properties of the HI framework

5.1 Correct Sampling of the Transformation Group for the
Computation of Invariants

As soon as we want to compute the invariants with the technique described in section 4.2, the question
arises, how many sampling steps (angular and translational) are needed for an unbiased result.

While in earlier studies on these invariants the required sampling steps were just heuristically deter-
mined (Schulz-Mirbach, 1995b; Siggelkow, 2002; Schael, 2004), for a fast but unbiased computation
it is desirable to know the minimal number.

One advantage of these invariants compared to other feature extraction methods is their exact for-
mulation in the continuous space and therefore the independence of the selected parameterization. So
for the final computation of the invariants on discretely sampled sensor data, we can use the sampling
theorem (Shannon, 1949) to ensure, that the computed features are invariant to any translation and
rotation and not only to integer shifts or rotations in 90 degree steps.

To compute the invariants from eq. 4.3 we firstly select a parameterization λ of g so that we can
rewrite eq. 4.3 as

T [f ](X) :=
∫

f

(
X(sλ(x1)), X(sλ(x2)), . . . , X(sλ(xk))

)
dλ (5.1)

For a given data set X and given kernel points x1, x2, . . . , xk we can substitute X(sλ(xi)) (which are
the gray values, that are touched by the i’th kernel point xi during all transformations described by λ)
with vi(λ), resulting in

T =
∫

f

(
v1(λ), v2(λ), . . . , vk(λ)

)
dλ (5.2)

A simple example for the resulting one-dimensional curves v1, v2 and v3 when using a three-point-
kernel on a 2D image and only the transformation group of rotations is given in figure 5.1.

For volumetric data and Euclidean transformations the transformation can be parameterized as λ =
(t1, t2, t3, ϕ1, ϕ2, ϕ3)T (see fig 5.2).

In this case vi(λ) describes for each kernel point i a 6-dimensional continuous scalar field. The
required sampling intervals can be computed from the positions of the kernel points and the required
sampling intervals of the underlying volumetric data set X as follows:

If X is bandwidth limited along the q-axis (with q ∈ {1, 2, . . . , 6}) with the Nyquist critical fre-
quency ωc,Xq the sampling interval must be

∆Xq =
1

2ωc,Xq

(5.3)

or smaller. For the parameterization λ = (t1, t2, t3, ϕ1, ϕ2, ϕ3)T , mentioned above, we find the neces-
sary sampling intervals for each component of λ and each kernel point xi by
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Figure 5.1: When using a three-point kernel on a continuous 2D image and only the transformation
group of rotations, the gray values, that are touched by the kernel points x1, x2 and x3,
are one-dimensional functions v1(ϕ), v2(ϕ) and v3(ϕ) of the rotation angle. The required
number of angular sampling steps can be computed from the spectra of these functions
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t3

ϕ1

ϕ2

ϕ3

Figure 5.2: Parameterization of Euclidean transformation with λ = (t1, t2, t3, ϕ1, ϕ2, ϕ3)T
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∆t1 = ∆X1

∆t2 = ∆X2

∆t2 = ∆X3

∆ϕ1 = arcsin
min(∆X1,∆X2,∆X3)

‖xi‖

∆ϕ2 = arcsin
min(∆X1,∆X2,∆X3)

‖xi‖ · sin(ϕ1)

∆ϕ3 = arcsin
min(∆X1,∆X2,∆X3)√

x2
i,1 + x2

i,2

.

(5.4)

Now we know the required sampling steps for each vi(λ), but for the final integration we need the
sampling step for the nonlinear “element-wise” combination of these vi’s, which we call Q(λ),

Q(λ) := f
(
v1(λ), v2(λ), . . . , vk(λ)

)
. (5.5)

Due to the nonlinear combination, the maximum frequencies in the spectrum of the resulting Q(λ)
may be much higher than in the vi’s (see figure 5.3)
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Figure 5.3: Example for nonlinear combination of two vi’s. In this case a simple multiplication is
done, which corresponds to a kernel function of the type f(X) = X(x1) · X(x2). The
two input functions are band-limited with a maximum frequency of 10, while the nonlinear
combination is band-limited with a maximum frequency of 20 and therefore needs twice
the number of sampling points to fulfill the sampling theorem

There is no general way to describe the effects in the frequency domain, when applying non-linear
operations in the spatial domain. But if we can rewrite or approximate the non-linear function with a
polynomial (e. g. by Taylor series expansion and truncation of higher terms), we only need element-
wise additions and element-wise multiplications, whose spectral effects can be described with the
following rules:
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5 Analysis of the Properties of the HI framework

With ωc,1 being the Nyquist critical frequencies of the data set v1(λ), where each component of
ωc,1 corresponds to one component of the parameterization λ we get

vres(λ) = C + v1(λ) ⇒ ωc,res = ωc,1 ∀C ∈ R
vres(λ) = C · v1(λ) ⇒ ωc,res = ωc,1 ∀C ∈ R
vres(λ) = v1(λ) + v2(λ) ⇒ ωc,res = max(ωc,1, ωc,2)
vres(λ) = v1(λ) · v2(λ) ⇒ ωc,res = ωc,1 + ωc,2

(5.6)

where max() denotes the element-wise maximum. The proof of the first three equations is simple,
for the last equation we can use the “Convolution Theorem” (e. g., (Bracewell, 1999)), which allows to
interpret the multiplication in the spatial domain as a convolution in the frequency domain:

vres(λ) = v1(λ) · v2(λ) ⇐⇒ F{vres} = F{v1} ∗ F{v2} (5.7)

In that convolution it is obvious, that the resulting maximum frequency is the sum of the maximum
frequencies of each source function.

The most interesting consequence of this result is, that the sampling interval in t1, t2, t3 direction
must be smaller than 1 pixel for nearly all kernel functions, e. g., a monomial of degree 3 like f(X) =
X(0, 0, 0) ·X(3, 0, 0) ·X(3, 0, 1) must be sampled in t1, t2, t3 direction with an interval of 1

3 pixel to
fulfill the sampling theorem!

Of course, this worst-case-estimation of the resulting spectrum by summing the Nyquist critical
frequencies for a multiplication in the spatial domain only applies to a spectrum that has a significant
part of its energy in the highest frequencies. For a more realistic estimation, we can model the spectra
as Gaussian distributions. A convolution of two Gaussian distributions is again a Gaussian distribution
with a variance that is the sum of the variances from the source distributions, σ2 = σ2

1 + σ2
2 . Therefore

we can estimate the Nyquist critical frequencies of the resulting signal by

vres(λ) = v1(λ) · v2(λ) ⇒ ωσ,res =
√

ω2
σ,1 + ω2

σ,2 (5.8)

Here again, the operations on ω are element-wise operations. For the above example this will result
in a sampling interval of 1√

3
≈ 0.577 pixel.

5.1.1 Consequences of Under-Sampling

In this section the consequences of under-sampling will be analyzed. Such an under-sampling may be
chosen to save computation time.

We assume a continuous signal that is not bandwidth limited to less than the Nyquist critical fre-
quency ωc. When sampling such a signal any frequency component ω1 outside the range (−ωc, ωc) is
aliased to that frequency ω2 into that range, which differs from ω1 by a multiple of 1/∆ = 2ωc.

For the Haar integration we are not interested in reconstructing the signal but only in the integral of
the signal. Therefore the only relevant frequency component is the zero frequency component1. All
the others do not contribute to the integral and may be disturbed by aliased frequency components (see
figure 5.4).

The first frequency outside the Nyquist range, that contributes falsely to the zeroth frequency is
ω = 2ωc. From that we can draw the following conclusions:

1. As long as the highest frequency of a signal Q is less than twice the Nyquist critical fre-
quency ωc, the integral of the reconstructed signal will still be exact

1Thanks to Lokesh Setia for this hint
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true spectrum

reconstructed spectrum

ω
cunbiased 

part of 
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c

Figure 5.4: When violating the sampling theorem only a part of the reconstructed spectrum is biased.

2. If the highest frequency of the signal Q is equal or higher than twice the Nyquist critical
frequency ωc, the error of the integral is

Err =
∑
n∈Z

Re
(
F{Q}(n · 2ωc)

)
(5.9)

5.2 Maximal Information that can be Sensed with
Two-Point-Kernels and the Euclidean Transformation Group

Kernel functions, that depend only on two gray values will be called “Two-Point-Kernels” in the fol-
lowing.

f(X) = f
(
X(0), X(q)

)
(5.10)

An example for the direct computation of invariants using a two-point-kernel in 2D is shown in fig-
ure 4.3

The big advantage of this class of kernel functions is, that they can be computed efficiently via the
Fast Fourier Transformation (see section 7.4) and are therefore well suited for large 3D datasets like
confocal recordings of pollen. Due to the arbitrary function that combines these two gray values they
are still quite powerful, which will be shown in the following sections.

To analyze the maximal information that can be sensed with any two-point-kernel function, the Haar
integration can be split into two parts: The first part just describes the effects of the integration over
all angles and all positions (Euclidean motion) and the second part describes the effects of the selected
kernel function.

5.2.1 The Gray Value Co-Occurrence Distribution “GVCD”

Each kernel function of type f(X) = f
(
X(0), X(q)

)
can be rewritten as an integral over delta

distributions, where each of them only “senses” exactly one gray value,

f(X) =

∞∫
−∞

∞∫
−∞

f(v1, v2) · δ
(
v1 −X(0)

)
· δ
(
v2 −X(q)

)
dv2dv1 . (5.11)

When we insert this kernel function into the rewritten Haar integral from eq. 4.3 we can move the
kernel function outside of the group integral,
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T [f ](X) =
∫
G

∞∫
−∞

∞∫
−∞

f(v1, v2) · δ
(

v1 −X
(
sg(0)

))
· δ
(

v2 −X
(
sg(q)

))
dv2 dv1 dg

=

∞∫
−∞

∞∫
−∞

f(v1, v2) ·
∫
G

δ

(
v1 −X

(
sg(0)

))
· δ
(

v2 −X
(
sg(q)

))
dg

︸ ︷︷ ︸
=: gray value co-occurrence distribution “GVCD”

dv2 dv1 ,

(5.12)

and define a gray value co-occurrence distribution “GVCD”. Now, the action of a specific kernel func-
tion can be described by the dot product of the kernel function with this GVCD in the Hilbert space,

T [f ](X) =

∞∫
−∞

∞∫
−∞

f(v1, v2) · GVCD(q, v1, v2) dv2 dv1 . (5.13)

Due to the integration over all rotations within the Haar integral, the orientation of q does not influ-
ence the final feature. So all information that can be extracted by invariants with two-point-kernels, is
contained in the 3D gray value cooccurence distribution (“GVCD”):

GVCD(q, v1, v2) =
∫
G

δ

(
v1 −X

(
sg(0)

))
· δ
(

v2 −X
(
sg(q)

))
dg with q =

∥∥q∥∥ (5.14)

A visualization, how the GVCD works is shown in fig 5.5.
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Figure 5.5: The gray value co-occurrence distribution (for a given kernel span q and integration over the
group of Euclidean motions) “counts” how often each combination of gray values appears
in the image

The quantized version without rotational invariance of the GVCD is well known as GLCM (“Gray
Level Co-occurrence Matrix”) and was introduced by Haralick et al. (1973) to compute textural fea-
tures. The traditional GLCM of Haralick only uses a fixed offset between the two pixels and is therefore
only invariant to integer shifts of the image. The introduced GVCD is invariant to any fractional shifts
of the object and invariant to rotations (as long as the sampling theorem is fulfilled).

An illustration, how the invariants are computed from an extracted GVCD, is given in figure 5.6
Some additional plots of other typical kernel functions are shown in figure 5.7.
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T [f ](X) =

∞∫
−∞

∞∫
−∞

√
v1 · v2

·

GVCD(4, v1, v2)

dv2dv1

Figure 5.6: Example for the computation of an invariant with a two-point-kernel via the GVCD. The
selected kernel function is f(X) =

√
X(0, 0, 0) ·X(0, 0, 4)

v1 · v2 sigmoid

Figure 5.7: Further typical two-point-kernel functions
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5.2.2 Using the GVCD to Estimate the Robustness of the Invariants

The splitting of the Haar integral into the GVCD and the kernel function provides a new view and a
more intuitive understanding of the processes that happen behind the scenes during the computation
of features with the HI framework. E. g. we can see directly the robustness of the kernel functions to
variations in the gray values: slight variations in the gray values cause slight shifts of the peaks in the
GVCD in v1 and v2 direction. When using a “smooth” kernel function like

√
v1 · v2 the contribution

of each peak to the final integral will change only marginally. This means, the resulting feature will be
quite robust to variations in the gray values.

In the case of a sigmoid kernel (as proposed by Schael (2004) for the classification of textures) we
can see that the robustness of the resulting feature strongly depends on the distribution of the gray
values in the image and correspondingly the location of the peaks in the GVCD. If significant peaks
are located near the “step” in the kernel function, already slight variations in the gray values of the
image will cause significant variations in the final features. If the majority of the peaks is far away
from this “step” the final feature will be very robust to gray value variations.

5.2.3 Using the GVCD to Find Appropriate Kernel Functions

Another possible application of the GVCD is to find the best suited kernel functions for a given prob-
lem. By analyzing the GVCD’s for each training pattern one can directly see the inner-class variations
and the intra-class differences. Basing on these insights it might be easier to select appropriate kernel
functions.

Of course it should also be possible to automatically find the best suited kernel functions with such
an analysis. A first feasibility study on this topic was done together with Thorsten Schmidt (Schmidt,
2004). A summary of the results is given in section 10.5.3.

5.2.4 Using the GVCD to Analyze the Completeness of the Invariants

The decomposition of the Haar integration into a dot product of the kernel function with the three-
dimensional GVCD allows to answer the question, whether it is possible to reach completeness when
using any number of nonlinear two-point-kernel functions of the type f(X) = f

(
X(0), X(q)

)
.

A complete set of invariants uniquely describes any manifold in the pattern space, that is spanned by
an image and the transformed versions of this image.

So we want to know, if there are two different images (that are not equivalent under the group of
Euclidean motions) that have the identical GVCD and therefore have identical features for any possible
two-point-kernel function.

To find such an example, we can limit ourselves to a binary image with a fixed number of non-
zero pixels, which results in a GVCD, where the “planes” for all q are identical and only those who
match a distance between to white pixels are different, e. g. in a two pixel example, the column for
(v1, v2) = (1, 1) has only one non-zero entry at q = d, where d is the distance between the two points,
see figure 5.8

For more than two white pixels this column will just contain the distance histogram for all white-
pixel distances within the image. The task can therefore be reduced to find two sets of points, that
have an identical distance histogram, but that are not identical under the group of Euclidean motions.
An example for such two images is shown in figure 5.92. The GVCD’s of these two images are still
identical when the points are replaced by small circles and the drawn lines between the points become
part of the binary image.

So the result is:

2Thanks to Bernard Haasdonk for finding this example
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5.2 Maximal Information that can be Sensed with Two-Point-Kernels and the Euclidean Transformation Group

Figure 5.8: gray value co-occurrence distribution for a binary image with only two white pixels

image 1 image 2

Figure 5.9: Images of two different objects, which have the identical GVCD

It is not possible to describe an image completely with any number of Euclidean invariants
that only use two-point-kernels of type f(X) = f

(
X(0), X(q)

)
To overcome this problem but still benefit from the fast computation algorithms for two-point-

kernels, we can use an appropriate pre-processing of the data set, e. g. the low-pass filtering introduced
in section 6.4. For the demonstration here, we just take images from figure 5.9, which have an identical
GVCD, and convolve them with a disk. For the sake of clearness, we reduce these images to their four
points (leaving away the lines) before convolution. If the disk is big enough, such that the disks of two
points overlap, the GVCD’s of the two images become different (see figure 5.10)

Figure 5.10: When convolving images that have identical GVCD’s, with a rotational symmetric func-
tion (here a disc), their GVCD’s will become unique as soon as the discs overlap

We did not manage to find an example of two different objects with identical GVCD’s if this pre-
processing step is included. This of course can not be taken as a proof that such objects do not exist,
but at least it is a hint that this class of features has a high discrimination power.
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6 Extensions of the HI framework

6.1 Constraints for Transformations, Kernel Functions and Data
Sets

For the application of the HI framework for the construction of invariants some constraints have to be
taken into account. The goal of this section is not to provide extensive analysis of the mathematical
properties of Haar integrals. Instead we want to give a more intuitive understanding for its limitations
and how to cope with them in the daily use.

Firstly we want to introduce the different parts, that have to operate together:

• The pattern space is a high-dimensional space. Each possible image is represented by one
single point in this space. e. g., for images of size 100× 100 this space is 10,000-dimensional.

• The transformation group describes the transformations of the images in this pattern space.
Each element of a transformation group is an operator, that maps an image to its transformed
version. E. g. if X is an image and g1 is one element of the transformation group, then g1X is
the transformed image (see figure 6.1).

• The kernel function is a nonlinear function that extracts a scalar value t from a given image X
as t = f(X).

X

g1X

g2X

Figure 6.1: Illustration of the pattern space. Each image X corresponds to one point in the pattern space
(e. g. for images of size 100x100 this pattern space is 10,000-dimensional). The recorded
image X and the transformed versions of it, giX , are located in a manifold. In the case
of a planar rotation this manifold is a one-dimensional trajectory that can be parameterized
with the rotation angle ϕ

Depending on the required invariances in a given problem we have to select an appropriate transfor-
mation group.

6.2 Categorization of the Transformation Groups

In the earlier studies on the HI framework (Schulz-Mirbach, 1995b; Siggelkow, 2002; Schael, 2004)
only cyclic transformations (rotations and cyclic shifts) were taken into account, which leads to well de-
fined integration limits for the Haar integration (e. g., [0 . . . 2π] for rotations or [1 . . . Nx] and [1 . . . Ny]
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6.2 Categorization of the Transformation Groups

for the translations, where Nx ×Ny is the size of the image). The Euclidean group was modeled there
with a combination of a rotation and a cyclic shift, knowing well, that a rotation in such a cyclic rect-
angular environment is not well defined. With several additional constraints (e. g., the object must be
on a black background, fully visible in the image, the black border around the objects must be larger
than the support of the kernel functions), the authors excluded that the undefined regions influence the
result.

A closer analysis of these constraints show that they just take care that none of the cyclic shift effects
has an influence on the final features (or roughly spoken, only black background pixels are allowed to
move from one border to the other). So the only remaining justification for the cyclic shifts is to define
a region for the integration in the implementation.

Consequently we replace this combination of rotations and cyclic shifts with the real Euclidean
group (where the translations must be integrated from −∞ to +∞) and implicitly limit the integral to
a finite result with nearly the same conditions. This allows a clear distinction between the theoretically
essential constraints and those which are just necessary for the selected implementation.

As a consequence we find two categories of transformation groups: case 1, if we can find a cyclic
parameterization of the transformations, or case 2, if such a parameterization does not exist. These two
cases are described in detail in the following sections.

6.2.1 Case 1: Group of Rotations or Cyclic Shifts

The best case for the application of the HI framework is a transformation group that can be described
by a cyclic parameterization, like the group of rotations or cyclic shifts. In this case, we can use
any reasonable kernel function, the start- and end-point of the integration in the pattern space are just
identical, and this start-point can be selected arbitrarily on the manifold. E. g., for a planar rotation,
parameterized by the rotation angle ϕ and the corresponding rotation operator gϕ, the Haar integral can
be written as

T [f ](X) =
∫ π

−π
f(gϕX) dϕ . (6.1)

Alternatively we could set the limits to [0...2π], etc. See figure 6.2 for an illustration. Independent of
the kernel function, this integral is usually finite.

start− and end−point of the integral are identical 
and can be selected arbitrarily on the manifold

X

g1X

g2X

Figure 6.2: Best case for Haar-integration, (e. g., group of rotations or cyclic translations): The
trajectory is closed, we can arbitrarily select the start- and end-point for the integration, and
the integral is usually finite for any reasonable kernel function

83



6 Extensions of the HI framework

6.2.2 Case 2: Group of Euclidean Transformations, Scalings and Similar

If no cyclic parameterization of the transformation group exists, the straight forward application of the
HI framework will usually result in an infinite result. E. g., for the group of translations in x-direction,
parameterized by the distance tx and the translation operator gtx , the integration limits must be set to
[−∞...∞], resulting in

T [f ](X) =
∫ ∞

−∞
f(gtxX) dtx . (6.2)

To ensure a finite result, we have to introduce additional constraints to the kernel function and the
image X .

6.3 Ensuring a Finite Result for Infinite Transformations

6.3.1 Implicit Limitation of the Integral by Appropriate Kernel Functions

The best possibility to avoid an infinite result, but to keep the full invariance properties is to limit the
integral implicitly by pre-processing of the image and an appropriate kernel function. This approach
was already used in (Schulz-Mirbach, 1995b) but with a slightly different motivation, to avoid that the
cyclic boundary conditions destroy the invariance in Euclidean transformations.

Firstly we select a kernel function with local support. Local support means in this context that the
input values for the kernel function are extracted from a small region, i. e. the kernel functions “see”
only a small part of the image (see fig 6.3)

Figure 6.3: Illustration of a kernel function with local support. These kernel functions “look” only to a
small part of the image

Now we can try to find a combination of such a kernel function f and a pre-processing of the image
X , such that the kernel function returns non-zero values only within a certain area in the pattern space.
E. g., this is fulfilled for a segmented object that is placed on a zero background combined with a kernel
function that evaluates to zero if it finds only zero values within its “sensing area” (see figure 6.4).

The resulting implicit limits of the integration are bounded to the pattern space, which guarantees
always the same result, independent of the initial position of the test object.

6.3.2 Explicit Limitation of the Integral by Partial Haar Integration

If no appropriate combination of kernel function and pre-processing can be found for an implicit limi-
tation of the integral, we can limit the integral explicitly relative to the test pattern, but we will loose the
invariance properties of the resulting features. Instead we will get some robustness to the considered
transformations.
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6.3 Ensuring a Finite Result for Infinite Transformations

start− and end−point of the integration 

are bounded to the pattern space

X

g1X
g2Xg

−1Xg
−2X

Figure 6.4: Implicit limitation of the Haar integral. For transformation groups like the group of
translations, the trajectory is infinite and not closed. With an appropriate combination of
a kernel function with local support and a pre-processing of the image, the start- and end-
point of the integration are bounded to the pattern space, independent of the initial position
of the test pattern.

For certain applications this non-invariance is exactly the desired behavior. E. g., in optical character
recognition, features that are fully invariant to rotations will return identical values for “M” and “W”.
For such applications Haasdonk et al. (2004) introduced such an explicit limitation of the integral
as “partial Haar-integration features”, where only a subset of the transformation group is used. The
resulting limits of the Haar integral are bounded to the test object. An example for small rotations is

T [f ](X) =
∫ 0.1π

−0.1π
f(gϕX) dϕ , (6.3)

(see figure 6.5).

W

start− and end−point of the integration are 

bounded to the test pattern

W

W

X

g
−1X

g1X

Figure 6.5: The partial Haar-integration features (introduced by Haasdonk et al. (2004) for optical char-
acter recognition) only use a subset of the transformation group. The images (marked in
blue) that contribute to the final integral depend on the given test object. The resulting
features are robust, but not invariant to the given transformations.
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6 Extensions of the HI framework

6.3.3 Explicit Limitation of the Integral by Probability-Weighted Haar
Integration

For highly structured objects or a pre-processing of the images that generates strong discontinuities,
the partial Haar-integration from the previous section might show big changes for small variations of
the test-pattern. For this we introduce here a generalization of this idea to a probability-weighted Haar
integration, that replaces the hard limits in (6.3) with “soft” limits,

T [f ](X) =
∫ ∞

−∞
f(gqX) p(q) dq , (6.4)

where p(q) is the probability for the occurrence of the transformation q on the test image (see figure
6.6).

start− and end−point of the intregal are bounded to 
the test pattern

X g1X

g2X

g3X

g
−1X

g
−2X

g
−3X

Figure 6.6: Probability-weighted Haar integration: For several important transformations no tech-
niques for an implicit limitation of the integral can be found. Here we can use the same
“trick” as in the partial Haar-integration to ensure the finiteness of the Haar integral. For
more robustness, the hard limits are replaced by “soft” limits by introducing a probability-
weighted Haar-integration.

6.3.4 Implicit Limitation of the Integral by the Use of Synthetic Channels

In the following we present a new idea for an implicit limitation of the integral for cases, where we can-
not apply the implicit limitation from section 6.3.2 to ensure a finite result and where just a robustness
by an explicit limitation (section 6.3.2 and 6.3.3) is not sufficient.

If we have further information about the object (e. g. a mask from a prior segmentation process),
we can incorporate this prior knowledge by adding a synthetic channel to the input data – resulting
in a multi-channel data set. This synthetic channel is computed from the raw data using the prior
knowledge. By using an appropriate multi-channel kernel function with local support, we can reach
the desired implicit limitation of the integral which ensures a finite result and keeps the full invariance
properties.

For an illustrative example we take the group of scalings. The further assumptions are, that the object
under consideration has a well defined border, and that an algorithm exists, that extracts this border,
independent of the actual scaling of the object. Then we can render this border into a synthetic channel
and set the rest of this channel to zero (see figure 6.7)

The selected multi-channel kernel function “senses” a certain area in the raw-data channel and in
the synthetic channel and evaluates to zero if it finds only zero values within the synthetic channel (see
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6.3 Ensuring a Finite Result for Infinite Transformations

raw data

synthetic channel

Figure 6.7: Adding of a synthetic channel that contains the border of the object

start− and end−point of the integration 
are bounded to the pattern space

X

g1X
g2Xg

−1Xg
−2X

Figure 6.8: Implicit limitation of the integral with a synthetic channel: Extension of the dataset to a
multi-channel-data set by adding a synthetic channel. In combination with a multi-channel
kernel the required implicit limitation of the Haar integral, and therefore the full invariance
properties are reached.
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6 Extensions of the HI framework

figure 6.8 for an illustration). As we can see, the kernel function returns a nonzero result only for that
scalings of the object, where the border is within its “sensing area”. So independent of the scale of the
test object, the points in the pattern space that contribute to the Haar integral are always the same.

Of course in a real application a scale invariance can only be reached down to that object size, where
the sensor can resolve the desired structures and up to that size, where the full object is within the range
of the sensor.

A more detailed discussion of the synthetic channels and their application to radial deformations is
found in section 9.2.2.

6.4 Multi–Scale Approach to Enhance Richness of Sparse Kernel
Functions

In the general formulation of the invariants, eq. (4.1), appropriate kernel functions can be used in order
to sense any features of the structures at any scales. Computable kernel functions (4.3) depend only on
a few gray values at certain points. To use these sparse kernels for sensing also large-scale structures it
is usually not sufficient to just increase the distance between the kernel points. Only in an application
where the test image is a rotated and translated exact copy of the reference image this results in reliable
features. But in real applications with much more variations between the test and the reference image,
it is not a good idea to base the features on the relation of two single gray values, that are, e. g., 200
pixels away from each other. It is obviously much better in this case to compare the mean gray value
of a certain region with the mean gray value of another region 200 pixels away (see figure 6.9)

x1x1

x2

x2

x3

x3

Figure 6.9: Computable kernels rely on a small number of sampling points. To sense information at
multiple scales, the sampling points are “enlarged” with Gaussians of multiple size.

To integrate this desired behavior into the HI framework, but still use the fast-computable sparse
kernels, we can apply a low-pass filtering (e. g. convolution with a Gaussian) to the data set before the
evaluation of the kernel functions.

These techniques were proposed and used already since (Ronneberger et al., 2002a) and were based
just on the above mentioned considerations. In section 9.1.3ff. we will show, that a description of the
possible transformations by a local deformation model and probability-weighted integration over these
deformations leads to very similar results and confirms the considerations above.

6.5 Integration of Prior Knowledge into the HI framework

For nearly all applications a significant amount of prior knowledge about the objects, their possible
variations, the kind of distortions or noise in the data set, the background, etc. is available. For a
reliable recognition we should integrate as much as possible of this prior knowledge into the recognition
framework.

There are several possibilities to integrate prior knowledge into the HI framework. They can be
categorized into the following classes:
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6.5 Integration of Prior Knowledge into the HI framework

1. adaption of the transformation group

2. adaption of the kernel functions

3. pre-processing of the raw data

4. creation of multi-channel datasets by computation of synthetic channels

5. post-processing of the resulting invariants

There is a smooth transition between these categories, and often the identical formulas can be de-
rived, e.g, by incorporating the previous knowledge via a pre-processing or an adapted kernel function.
This identity can also be used to speed up the computation of certain invariants.

6.5.1 Constraints of the Different Techniques

For the application of the above mentioned techniques some constraints have to be taken into account,
to guarantee the desired invariance of the resulting features.

Adaption of the Transformation Group and the Kernel Function

The conditions for a specially adapted transformation group are the same that apply for any transfor-
mation group that shall be used within the HI framework and was discussed in detail in section 6.3.

The same can be stated for the selection of the kernel function. While here no direct limitations
exist, it has to be selected such that the Haar integral is finite.

Pre-Processing of the Data and Generation of Synthetic Channels

The mapping, that is used for the pre-processing of the raw data or the generation of synthetic channels
must be commutable with the action of the transformation group. I. e., for the pre-processing (mapping)
ω it must be guaranteed that

gωX = ωgX ∀g ∈ G , (6.5)

where G is the selected transformation group. Schulz-Mirbach (1995b) further weakened this condition
and called it “weak-commutative mapping”: A mapping w : V → V , that maps the space V onto itself
is called weak-commutative, if for each X ∈ V and g1 ∈ G you can find a g2 ∈ G such that

wg1X = g2wX . (6.6)

For our purposes, the general commutation was sufficient. A simple example of a mapping that is
commutable with the group of Euclidean motions is a convolution of the image with a rotationally
symmetric Gaussian. The result is identical, no matter, if you first apply a rotation and second the
convolution or if you first apply the convolution and second the rotation, see figure 6.10 for an example.

The same conditions apply for the creation of synthetic channels. Even though for the extraction of
the outer surfaces it is quite difficult to prove their invariance (see chapter 8 for details). An example
for the creation of a synthetic channel is given in fig 6.11.

Post-Processing of the Invariants

Once the invariants are computed, you can apply any post-processing to them without destroying the
invariance properties. The motivation for such a post-processing might be to deform the feature space,
such that it matches better to the needs of the classifier or to decompose the features in such a way, that
certain variations in the raw data are removed or only affect a few features.
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pre−processing

action of the 
transformation group

action of the 
transformation group pre−processing

Figure 6.10: A pre-processing of the data must be commutable with the action of the transformation
group, to ensure the desired invariance properties.

computation of
synthetic channel

action of the
transformation group

action of the
transformation group

computation of
synthetic channel

Figure 6.11: The extraction of a synthetic channel must be commutable with the action of the transfor-
mation group.

E. g., if we construct multiple invariants, that are proportional to a scaling of the gray values α of the
raw image,

T [fi](α ·X) = α · T [fi](X) (6.7)

we can create features, that are invariant to such gray value scalings, by normalization with one of the
invariants,

Tnorm[fi](α ·X) =
α · T [fi](X)
α · T [f0](X)

=
T [fi](X)
T [f0](X)

= Tnorm[fi](X) , (6.8)

or (for more robustness) with the sum of all these invariants,

Tnorm[fi](X) =
T [fi](X)∑
j T [fj ](X)

. (6.9)

6.6 Parameterized Kernel Functions

In most real applications one needs more than just a few invariants that result from a few manually
selected kernel functions. A solution for this problem is to insert one or more freely selectable param-
eters p1, p2, . . . into the kernel-function. For a clearer notation we’ll combine them into the parameter
vector p = (p1, p2, . . . ):

f(X) = f(X,p) (6.10)

When this kernel is used within the HI framework, we will get an invariant feature for each selected p:

T [f ](X,p) :=
∫
G

f(gX,p)dg (6.11)
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6.7 Voxel-Wise Invariants for Simultaneous Segmentation and Recognition

For multiple kernel parameters, we now have a multidimensional invariant feature array describing the
object. Each single feature in this array shares the same invariance and robustness properties, which
are automatically generated by the Haar integration.

An obvious example for such a parameterized kernel is a two-point-kernel with a variable span p1:

f(X,p) = f
(
X(0, 0, 0), X(0, 0, p1)

)
(6.12)

A less obvious example is to express the computation of the GVCD from section 5.2 as an invariant
with a parameterized “co-occurrence kernel” with the first gray value p1, the second gray value p2 and
the span p3:

f(X,p) = δ
(
p1 −X(0, 0, 0)

)
· δ
(
p2 −X(0, 0, p3)

)
(6.13)

Especially in combination with synthetic channels these parameterized kernels allow to integrate
several classical feature extraction techniques into the framework, while the framework guarantees the
invariance to the selected transformation group.

6.7 Voxel-Wise Invariants for Simultaneous Segmentation and
Recognition

For the recognition of objects or structures in a cluttered surrounding, we are often confronted with the
following problem. For a reliable classification of the object, the object must be segmented from the
background, but for the reliable segmentation we need to know to which class the object belongs.

A possible solution of this dilemma is to extract local features, that describe the structure around
each voxel independent of a segmentation. To compute voxel-wise invariants using the HI framework,
the transformation group is just a rotation, where the origin of the coordinate system is set to a certain
voxel in advance. The resulting features from different kernel functions are collected in a feature vector,
which then describes the surrounding of this voxel in a unique and rotation invariant way. This is done
for all voxels in a volume. In a following step the feature vector of each voxel can be classified by a
support vector machine (see figure 6.12 for an illustration).

Figure 6.12: Example usage of voxel-wise invariants for simultaneous segmentation and recognition of
objects.
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6 Extensions of the HI framework

6.7.1 Limitations of Centered Two-Point-Kernels for Voxel-Wise Invariants

Centered Two-point-kernel functions, i. e. kernels, whose first point is located at the rotation cen-
ter1, perform quite well in Haar integrals over Euclidean motions. For voxel-wise invariants they are
somewhat limited in their discrimination power, because the resulting features are not only invariant to
rotation of the surrounding but also to any random permutation of the gray values at the same radius
(see figure 6.13).

For this application, centered three-point-kernels are much better suited, because they are able to
sense the order of the gray values along the rotation path (see figure 6.14).
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Figure 6.13: Voxel-wise invariants using the centered two-point kernel function T =
∫ 2π
0 v1(ϕ) ·

v2(ϕ) dϕ are not only invariant to rotation but also to any random permutation of the
gray values in v2(ϕ). In this toy-example this results in nearly identical features for very
different surroundings.
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Figure 6.14: Voxel-wise invariants using centered three-point kernel functions T =
∫ 2π
0 v1(ϕ) · v2(ϕ) ·

v3(ϕ) dϕ are sensitive to such permutations and allow to distinguish between these sur-
roundings.

6.8 Voxel-Wise Vectorial Invariants to Detect Spherical Structures

In cooperation with Janina Schulz (Schulz, 2005) another important class of kernel functions for voxel-
wise invariants was developed. They are predestined for the detection of spherical structures in very
cluttered environments. Besides their high robustness to even nonlinear gray value changes, a fast
computation scheme with linear complexity (and a very small pre-factor) exists, which makes them
suitable for even very large 3D volumetric data sets (see section 7.10)

1Due to the close relation of the voxel-wise invariants to the full invariants over the group of Euclidean motions, the
nomenclature for the number of kernel points was kept. This introduces a further restriction to these kernels, i. e. the first
kernel point must be located in the rotation center. For full Euclidean motions this restriction does not apply, because for
this transformation group the result is identical for kernels with the first kernel point located in the rotation center and for
translated versions of it (see section 7.2).
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6.8 Voxel-Wise Vectorial Invariants to Detect Spherical Structures

These kernel functions operate on the gradient image ∇X and contain only one kernel point q,

f(X) =
∥∥∇X(q)

∥∥ · δ(1− q∥∥q∥∥ · ∇X(q)∥∥∇X(q)
∥∥
)

. (6.14)

the δ-function in the second term effects that this kernel returns a non-zero value only for certain
conditions – Due to this we call it a “sparse vectorial kernel” function. By inserting this kernel into the
HI framework,

T =
∫
G

f(gX)dg =
∫
G

∥∥∥(∇(gX)
)
(q)
∥∥∥ · δ

1− q∥∥q∥∥ ·
(
∇(gX)

)
(q)∥∥∥(∇(gX)
)
(q)
∥∥∥
 dg , (6.15)

we see that the gradient must be computed on the transformed image, such that the replacement of the
image transformation with the transformation of the kernel points (Schulz-Mirbach, 1995b) cannot be
applied directly. Our definition for the image transformation is (4.2)

(gX)(x) = X
(
sg(x)

)
∀g,x . (6.16)

By inserting the transformed image into the computation of a gradient,

(∇X)(x) = lim
ε→0

1
ε

 X(x + ε · e1)−X(x)
X(x + ε · e2)−X(x)
X(x + ε · e3)−X(x)

 (6.17)

with e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , and e3 = (0, 0, 1)T , we get

(
∇(gX)

)
(x) = lim

ε→0

1
ε


X
(
sg(x + ε · e1)

)
−X

(
sg(x)

)
X
(
sg(x + ε · e2)

)
−X

(
sg(x)

)
X
(
sg(x + ε · e3)

)
−X

(
sg(x)

)
 . (6.18)

If the transformation group is the Euclidean motion, parameterized by

x′ = Rx + t , (6.19)

we can rewrite (6.18) to

(
∇(gX)

)
(x) = lim

ε→0

1
ε

 X
(
R · (x + ε · e1) + t

)
−X

(
Rx + t

)
X
(
R · (x + ε · e2) + t

)
−X

(
Rx + t

)
X
(
R · (x + ε · e3) + t

)
−X

(
Rx + t

)


= lim
ε→0

1
ε

 X
(
Rx + t + ε ·Re1

)
−X

(
Rx + t

)
X
(
Rx + t + ε ·Re2

)
−X

(
Rx + t

)
X
(
Rx + t + ε ·Re3

)
−X

(
Rx + t

)


= R−1
(
(∇X)(Rx + t)

)
.

(6.20)

We can insert this result into the Haar integral (6.15), resulting in

T (t) =
∫
O3

∥∥∥∥R−1
((

∇X
)
(Rq + t)

)∥∥∥∥ · δ
1− q∥∥q∥∥ · R−1

((
∇X

)
(Rq + t)

)
∥∥∥∥R−1

((
∇X

)
(Rq + t)

)∥∥∥∥
 dR , (6.21)
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6 Extensions of the HI framework

where O3 denotes the group of all rotation matrices. As a rotation does not change the norm of a vector,
this can be simplified to

T (t) =
∫
O3

∥∥∇X
∥∥ (Rq + t) · δ

1− q∥∥q∥∥ · R
−1
((

∇X
)
(Rq + t)

)
∥∥∇X

∥∥ (Rq + t)

 dR . (6.22)

The dot product of two vectors is identical, if both vectors are transformed with the same transforma-
tion, x · R−1y = Rx · RR−1y = Rx · y. This allows to further simplify the second term of the
integral, yielding

T (t) =
∫
O3

∥∥∇X
∥∥ (Rq + t) · δ

(
1− Rq∥∥q∥∥ ·

(
∇X

)
(Rq + t)∥∥∇X
∥∥ (Rq + t)

)
dR

=
∫
O3

∥∥∇X
∥∥ (Rq + t) · δ

(
1− Rq∥∥q∥∥ · ∇X∥∥∇X

∥∥(Rq + t)

)
dR .

(6.23)

Now we can clearly see the properties of the Haar integral with this kernel function. For a given t
every point on a sphere (or circle for planar rotations) with the radius

∥∥q∥∥ is examined during the
integration. Only if the normalized gradient ∇X

‖∇X‖ (which is a unit vector that points into the gradient

direction) is co-linear to the radial direction Rq

‖q‖ , then the dot product will become 1 and the argument

of the δ-function becomes 0 such that the gradient magnitude
∥∥∇X

∥∥ at this position contributes to the
integral (see figure 6.15 for an illustration). For a perfect black circle on white background with sharp

Rq

t

∇X

‖∇X‖

Rq

‖Rq‖
·

∇X

‖∇X‖
= 1

Figure 6.15: Voxel-wise Invaraints for the detection of spherical structures. Only those gradients
(marked in yellow) whose direction matches the direction of the rotated kernel contribute
to the integral.

edges (high gradient magnitude) this integral returns a high value. For smother edges or a deformed
border a lower value is returned. For a real application the δ-function should be replaced with a less
strict function (e. g. a sharp Gaussian) to also detect noisy and slightly deformed circles.
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7 Fast Computation of the Invariants

For nearly all applications, the direct computation of the invariants (described in section 4.2) is too
expensive. Therefore Siggelkow and Schael (1999) proposed a fast estimation of the integrals by
a Monte-Carlo approach. While this technique is universally applicable to any kernel function and
transformation group, the resulting features change from experiment to experiment. Furthermore this
technique requires to specify the required accuracy for each feature. From this accuracy the needed
number of evaluation points is computed. Especially for highly sophisticated classifiers like support
vector machines, there is no general way to compute the required accuracy for each feature in advance,
and even for a given setup we can just repeat the same experiment multiple times and try to find the
needed number of evaluation points for each feature by an analysis of the statistics.

Due to these shortcomings we developed a framework for the fast and exact computation of the Haar
integrals for certain kernel functions that makes use of convolutions based on the Fast Fourier Trans-
form (FFT). For more complicated kernels, an approximative method based on Fourier- and Spherical-
Harmonic-series expansion will be introduced later in this chapter. In contrast to the Monte-Carlo-
estimation this approximation concerns only the given kernel function but not the result of the integral,
such that the exact invariance properties are preserved.

7.1 Separable N-Point-Kernel Functions

This framework can only be used directly for the class of separable N-point-kernel functions,

f(X) = f1

(
X(q1)

)
· f2

(
X(q2)

)
· . . . · fN

(
X(qN )

)
. (7.1)

For the class of general N-point-kernel functions,

f(X) = f
(
X(q1), X(q2), . . . , X(qN )

)
, (7.2)

it can be applied, if the kernel function can be decomposed into a sum of separable kernel functions.
E. g., the kernel

f(X) =
(
X(q1)−X(q2)

)2 (7.3)

can be decomposed into

f(X) = X2(q1) − 2 ·X(q1) ·X(q2) + X2(q2) , (7.4)

where each summand is a separable kernel function and can be computed separately by the framework.
In cases, where no such decomposition can be found, we can approximate the function with a (trun-
cated) Taylor series expansion and subsequently evaluate each term of this series with the framework.

7.2 Using the Equivalence of Kernels

One central property of the HI framework is the existence of equivalent kernels for which the Haar
integral returns the identical results. For a given kernel, the equivalent kernels can be constructed by
applying any element of the transformation group gk to the kernel points:
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7 Fast Computation of the Invariants

If f2 was constructed by the application of gk ∈ G from the kernel function f1 such that f2(X) =
f1(gkX) ∀X , then f1 and f2 are equivalent kernels and the Haar integral over these two kernels will
be identical.

Proof by using the group properties of G:

T [f2](X) =
∫
G

f2(gX) dg =
∫
G

f1(gkgX) dg =
∫
G

f1(g2X) dg2 = T [f1](X) . (7.5)

E. g., for any two-point kernel we can find an Euclidean transformation, that shifts the first kernel point
to the origin and places the second kernel point on the x-axis (see fig 7.1).

f(X) = X(4, 2) ·X(7, 6) f(X) = X(0, 0) ·X(5, 0)

Figure 7.1: In the HI framework it is always possible to construct equivalent kernels by the application
of any element of the transformation group to the kernel points. E. g., a Haar integration
over the group of Euclidean transformations returns the identical results for the left and the
right kernel, because the right kernel is just a shifted and rotated version of the left one.

We make use of this property for the fast computation of the Haar integral by replacing the kernel
with an equivalent kernel such that certain kernel points become invariant to parts of the transforma-
tions, e. g. the point (0, 0) is invariant to rotations.

7.3 Categorization of the Methods

Before going into detail we give a short overview of the possible applications of this framework, de-
pending on the number of kernel points and the given transformation group (see table 7.1). In this table,
the boldface entries describe, whether the result is exactly the same as the direct implementation, or if it
is approximated (as mentioned above, this approximation only concerns the kernel, not the invariance
properties of the final feature). Below the boldface entries the needed main operations are listed. The
details are found in the following sections.

7.4 Two-Point-Kernels with 3D Euclidean Transformations

The first step in the fast computation of the Haar integral over Euclidean transformations with a two-
point-kernel is to find the kernel equivalent to the given kernel(see section 7.2), where the first kernel
point is located in the origin and therefore is invariant to rotations.

f(X) = fa

(
(X)(0)

)
· fb

(
(X)(q)

) fa, fb : any nonlinear functions that
transform the gray values

q : span of the kernel function
(7.6)
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Table 7.1: Possible application of the proposed fast computation schemes depending on the kernel func-
tion and the transformation group. The term “sphere” is used here in its mathematical defi-
nition, which denotes the “spherical surface”, not a “ball”

kernel function transformation group
3D translation 3D translation no translation no translation
+ planar rotation + 3D rotation planar rotation 3D rotation

f1

“
X(q1)

”
exact
(direct mean of
full dataset)

exact
(direct mean of
full dataset)

exact
(direct mean on
circle)

exact
(direct mean on
sphere)

f1

“
X(q1)

”
· f2

“
X(q2)

”
exact
(convolution with
circle)

exact
(convolution with
sphere)

approx.
(Fourier trafo’s on
circles)

approx.
(SH-trafo’s on
spheres)

NY
i=1

fi

“
X(qi)

”
(N = 3) approx.

(convolutions with
e−ikϕ-weighted
circles)

approx.
(convolutions
with SH-weighted
spheres)

approx.
(Fourier trafo’s on
circles)

–

NY
i=1

fi

“
X(qi)

”
(N > 3) approx.

(convolutions with
e−ikϕ-weighted
circles)

– approx.
(Fourier trafo’s on
circles)

–

by splitting the Euclidean group into the group of translations Gt and the group of rotations Gr the
Haar integral (5.1) becomes

T [f ](X) =
∫
Gt

∫
Gr

fa

(
(gtgrX)(0)

)
· fb

(
(gtgrX)(q)

)
dgr dgt . (7.7)

Obviously the rotation gr of the image before extracting the value at position 0 has no effect and can
be omitted, which allows to move this term in front of the integral

T [f ](X) =
∫
Gt

fa

(
(gtX)(0)

)
·
∫
Gr

fb

(
(gtgrX)(q)

)
dgr dgt . (7.8)

By defining A := fa(X) and B := fb(X) and the parameterization for the transformed kernel point
q′ = Rq + x, where R is a rotation matrix and x the translation vector, the Haar integral becomes

T [f ](X) =
∫
R3

A(x) ·
∫
O3

B(Rq + x) dR dx . (7.9)

where O3 is the group of all rotation matrices R. The integration over all rotations just describes
the integral over a sphere (or a circle for planar rotation) with radius

∥∥q∥∥ and the center x. We can
therefore substitute the second integral with an integration over R3 and an appropriate δ-function,

T [f ](X) =
∫
R3

A(x) ·
∫
R3

B(t) · δ
(
‖t− x‖ −

∥∥q∥∥) dt dx , (7.10)

which allows to rewrite it as

T [f ](X) =
∫
R3

A(x) ·
(
B ∗ S

)
(x) dx with S(t) := δ

(
‖t‖ −

∥∥q∥∥) , (7.11)
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7 Fast Computation of the Invariants

which is the convolution of B with the surface of a sphere (for 3D rotations) or with a circle (for planar
rotations) and the subsequent point-wise multiplication with A. An intuitive derivation for this formula
is shown in figure 7.2

(a) The sequential evaluation of the rotated
kernel functions (as shown in figure 4.3b) is
split into two steps: step 1: the gray values
touched by the second kernel point within
the rotation are summed up. step 2: the re-
sult is multiplied with the gray value of the
first kernel point.

·

Tϕ(0, 0) = X(0, 0) · ( X(3, 0)
+ X(2.7, 1.1)
+ X(2.1, 2.1)
+ . . . )

(b) step 1 could now be replaced by a pixel-
wise multiplication with an image of a cir-
cle and the Integration of the results.

·
P

0BBBBBBB@
·

1CCCCCCCA
Tϕ(0, 0) = X(0, 0) ·

X
x

X(x) · C(x)

(c) The evaluation of step 1 for all positions
in the image is a simple convolution which
could efficiently be computed by means of
the Fast Fourier Transform (FFT).

·

0BBBBBBB@
∗

1CCCCCCCA

T =
X
x

X(x) · (X ∗ C)(x)

T =
X
x

X(x) ·
„

FFT−1
“

FFT(X) · FFT∗(Cpadded)
”«

(x)

Figure 7.2: Fast computation of Euclidean invariants with separable two-point kernels

The Fourier transformed circle or spherical surface can be computed in advance either directly in
Fourier space or via an FFT. So only 2 FFT’s are needed to compute one feature.

This method is preferred, when the integration over translations should be omitted (e. g. for voxel-
wise features) or if the integration is replaced e. g. by computing a histogram over the resulting values.

7.4.1 Alternative Approach

In the second method1 the integration over all translations is done first and can be expressed as a
cross-correlation. For this we rewrite eq. 7.9 using q =

∥∥q∥∥ as

T [f ](X) =
∫

‖t‖=q

∫
R3

A(x) ·B(x + t) dx dt =
∫

‖t‖=q

ccf(A,B)(t) dt (7.12)

1proposed by Qing Wang
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which is the integration of the values on a sphere in the cross correlation function ccf. This integra-
tion of the cross correlation function can be done directly in the Fourier space

T [f ](X) =
∫

‖t‖=q

(
F−1

{
F{A}∗ · F{B}

})
(t) dt (7.13)

=
∫

‖t‖=q

∫
R3

Â∗(k) · B̂(k) · eikt dk dt (7.14)

=
∫
R3

Â∗(k) · B̂(k) ·
∫

‖t‖=q

eikt dt

︸ ︷︷ ︸
=: Cq(k)

dk (7.15)

T [f ](X) =
∫
R3

Â∗(k) · B̂(k) · Cq(k) dk (7.16)

In 2D images Cq(k) is a Fourier-transformed circle (which is the Bessel function Cq(k) = J0(
∥∥k∥∥ q)).

In 3D images Cq(k) is a Fourier-transformed sphere surface, which is the sinc-function Cq(k) =
sinc(

∥∥k∥∥ q). This can be directly computed in Fourier space, such that only the two forward Fourier
transforms of A and B are needed.

7.4.2 Comparison of the Computational Costs of the Two Approaches

The differences in computational costs show up, when computing more than one invariant on the same
data set. Depending on the variation of the kernel functions, the intermediate results of the first com-
putation can be reused, see table 7.2.

Table 7.2: Number of FFT’s needed for the fast computation of invariants using two-point-kernels and
Euclidean transformations

Method A (7.11) Method B (7.16)

first run on a new image 2 FFT’s 2 FFT’s
Variation of fa 0 1 FFT
Variation of fb 2 FFT’s 1 FFT

Variation of kernel span
∥∥q∥∥ 1 FFT 0

Depending on the selected kernel functions Method A or Method B or a mixture of both has to be
selected to get the maximum speedup in the computation.

7.5 Three-Point-Kernels with 3D Translations and Planar
Rotations

The first step here is again the replacement of the kernel function by an equivalent kernel, with its first
point located at the rotation center,

f(X) = f1

(
X(0)

)
· f2

(
X(q2)

)
· f3

(
X(q3)

)
, (7.17)
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which allows (analogous to (7.8)) to move the first term out of the “rotation integral”,

T [f ](X) =
∫
Gt

f1

(
(gtX)(0)

)
·
∫
Gr

f2

(
(gtgrX)(q2)

)
f3

(
(gtgrX)(q3)

)
dgr dgt . (7.18)

but now two terms remain in the “rotation integral” such that it cannot be replaced by a single convo-
lution as in the previous section.

In the following sections we present an expansion into a series of convolutions with the favorable
property, that every truncated evaluation of this series still fulfills the invariance criterion.

For an easier understanding, we describe this solution first for planar rotations, because the required
Fourier series expansion is more intuitive. The generalization for full 3D rotations (using spherical
harmonic series expansion) will be given later.

The transformed kernel points are q′i = Rϕqi + x, where Rϕ is a rotation matrix that describes a
planar rotation with angle ϕ around a given axis. To keep the further analysis clear, we choose w.l.o.g.
a coordinate system, where the rotation axis is the z-axis. Now we can write the Haar integral as

T =
∫
R3

f1

(
X(x)

)
·

π∫
−π

f2

(
X(Rϕq2 + x)

)
f3

(
X(Rϕq3 + x)

)
dϕ dx . (7.19)

Defining the scalar values that are sensed by each kernel point during the integration as

v1(x) := f1

(
X(x)

)
(7.20)

v2(x, ϕ) := f2

(
X(Rϕq2 + x)

)
(7.21)

v3(x, ϕ) := f3

(
X(Rϕq3 + x)

)
, (7.22)

allows to rewrite the integral as

T =
∫
R3

v1(x) ·
π∫

−π

v2(x, ϕ) v3(x, ϕ) dϕ dx . (7.23)

For each given x, v2(x, ϕ) and v3(x, ϕ) are periodic in ϕ and square-integrable, such that we can
express them as Fourier series. By defining Vj,k(x) as the k’th Fourier coefficient of vj(x),

Vj,k(x) =
1
2π

π∫
−π

vj(x, ϕ) e−ikϕ dϕ (7.24)

we can replace v2(x, ϕ) and v3(x, ϕ) in (7.23) by their Fourier series expansions,

T =
∫
R3

v1(x)

π∫
−π

 ∞∑
k2=−∞

V2,k2(x) · eik2ϕ

 ·

 ∞∑
k3=−∞

V3,k3(x) · eik3ϕ

 dϕ dx . (7.25)

Utilizing the orthogonality relationships between the basis functions

π∫
−π

eik2ϕeik3ϕ dϕ = 0 ∀k2 6= −k3 (7.26)
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allows to reduce this integral to a simple summation of products of these Fourier coefficients

T =
∫
R3

v1(x) ·
∞∑

k=−∞
V2,k(x)V3,−k(x) ·

π∫
−π

eikϕe−ikϕ dϕ dx

=
∫
R3

v1(x) ·
∞∑

k=−∞
V2,k(x)V3,−k(x) · 2π dx .

(7.27)

If f1 and f2 are non-complex functions operating on non-complex gray values (which is the usual
definition), we can use the symmetries in the Fourier transform of real-valued functions for a further
reduction of the complexity.

T = 2π

∫
R3

v1(x) ·
∞∑

k=0

<
(
V2,k(x)V ∗

3,k(x)
)

dx (7.28)

(where < denotes the real part of a complex variable). Furthermore we can truncate the series after
the N ’th Fourier coefficient to compute the integral approximately

T = 2π

∫
R3

v1(x) ·
N∑

k=0

<
(
V2,k(x)V ∗

3,k(x)
)

dx , (7.29)

which is still perfectly invariant to rotation. This invariance can be proven by interpreting the truncated
series as prior low-pass filtering of v2(x, ϕ) and v3(x, ϕ) in ϕ-direction (which is rotation invariant)
and the subsequent evaluation of the full series.

To compute the Fourier coefficients V2,k(x) and V3,k(x) efficiently for each voxel, we use a frame-
work similar to (7.11).

First the nonlinear gray value transformations f1, f2, and f3 are applied to each voxel of the image X

A1(x) := f1

(
X(x)

)
(7.30)

A2(x) := f2

(
X(x)

)
(7.31)

A3(x) := f3

(
X(x)

)
. (7.32)

Then we combine for each x the extraction of v2(x, ϕ) (which are the gray values along a circle with
center x in image A2) and the integration over the products v2(x, ϕ) · e−ikϕ from (7.24) (see figure
7.3) to a pixel-wise multiplication of image A2 with a pre-computed image of a circle, that contains

x
1

x
2

x
3

↓

V2,k(x) =
1
2π

2π∫
0

· dϕ

v2(x, ϕ) e−ikϕ

Figure 7.3: Direct computation of the Fourier coefficient Vbk (k=1) for the second kernel point x2

the values e−ikϕ along its circumference Sqi,k (see figure 7.4).
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Figure 7.4: The extraction of the gray values along the circle v2(x, ϕ) and the integration over the
point-wise products of v2(x, ϕ)·e−ikϕ, is replaced by a pixel-wise multiplication with a pre-
computed image of a circle Sq2,k, that contains the values e−ikϕ along its circumference.

This Sqi,k can be best described in cylinder coordinates (xr, xϕ, xz). The i’th kernel point in cylinder
coordinates is qi = (qri , qϕi , qzi). Then

Sqi,k(xr, xϕ, xz) = δ
(
xz − qzi

)
· δ
(
xr − qri

)
· e−ik(xϕ+qϕi ) (7.33)

This allows to compute the Fourier coefficients for each position of the kernel function simultane-
ously by a convolution of image A2 with Sq2,k (see figure 7.5):

V2,k(x) =
∫
R3

A2(x + t) · Sq2,k(t) dt (7.34)

= (A2 ∗ Sq2,k)(x) (7.35)

Analogously the Fourier coefficients V3,k are computed as:

V3,k(x) = (A3 ∗ Sq3,k)(x) (7.36)

Inserting these results into (7.29), results in

T [f ](X) = 2π

∫
R3

A1(x) ·
N∑

k=0

<
((

A2 ∗ Sq2,k

)
(x) ·

(
A3 ∗ Sq3,k

)∗
(x)
)

dx , (7.37)

where the convolutions can efficiently be computed via the FFT.

7.6 N-Point-Kernels with 3D Translations and Planar Rotations

For N-point kernel functions and planar rotations (with or without translations) the fast computation
scheme described in the previous section 7.5 can be directly applied. For a clearer notation we describe
it here without the translations. For the N-point kernel function

f(X) = f1

(
X(q1)

)
· f2

(
X(q2)

)
· . . . · fn

(
X(qn)

)
, (7.38)

the transformed gray values, that are sensed by each kernel point during rotation are defined as

vj(ϕ) := fj

(
X(Rϕqj)

)
. (7.39)
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Figure 7.5: Effective computation of the Fourier coefficients for all translations of the kernel function
by convolutions (via FFT)

The Haar integral then becomes

T =

π∫
−π

v1(ϕ) · v2(ϕ) · . . . · vn(ϕ) dϕ . (7.40)

Using the Fourier series expansion (7.24), we get

T =

π∫
−π

 ∞∑
k1=−∞

V1,k1e
ik1ϕ

 ·

 ∞∑
k2=−∞

V2,k2e
ik2ϕ

 · . . . ·

 ∞∑
kn=−∞

Vn,kneiknϕ

 dϕ . (7.41)

Moving the Fourier coefficients before the integral

T =
∑

(k1,...,kn)∈Zn

V1,k1 · V2,k2 · . . . · Vn,kn ·
π∫

−π

eik1ϕ · eik2ϕ · . . . · eiknϕdϕ

︸ ︷︷ ︸
6=0 iff (k1+···+kn)=0

, (7.42)

allows to use the orthogonality relationships, such that

T =
∑

(k1,...,kn)∈Y∞

V1,k1 · V2,k2 · . . . · Vn,kn · 2π

where Y∞ =
{

(k1, . . . , kn)
∣∣∣ (k1, . . . , kn) ∈ Zn ∧ (k1 + · · ·+ kn) = 0

}
.

(7.43)

By truncating the Fourier series after the m’th Fourier coefficient, we get

T =
∑

(k1,...,kn)∈Ym

V1,k1 · V2,k2 · . . . · Vn,kn · 2π

where Ym =
{

(k1, . . . , kn)
∣∣∣ (k1, . . . , kn) ∈ {−m, . . . ,m}n ∧ (k1 + · · ·+ kn) = 0

}
.

(7.44)
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If this scheme is used together with the group of translations, the integral becomes

T = 2π ·
∫
R3

∑
(k1,...,kn)∈Ym

V1,k1(x) · V2,k2(x) · . . . · Vn,kn(x) dx (7.45)

Analogously to (7.37) we can compute the voxel-wise Fourier coefficients with a convolution. By
pre-computing the images with the nonlinearly transformed gray values as

Ai(x) = fi(X(x)) (7.46)

and the images of the e−ikϕ-weighted circles corresponding to each kernel-point as

Sqi,k(xr, xϕ, xz) = δ
(
xz − qzi

)
· δ
(
xr − qri

)
· e−ik(xϕ+qϕi ) (7.47)

the final integral can be written as

T [f ](X) = 2π ·
∫
R3

∑
(k1,...,kn)∈Ym

(
A1 ∗ Sq1,k1

)
(x) ·

(
A2 ∗ Sq2,k2

)
(x) · . . . ·

(
AN ∗ Sqn,kn

)
(x) dx

(7.48)

7.7 Three-Point-Kernels with 3D Euclidean Transformations

The same techniques as in section 7.5 can be applied for 3D rotations, with the only difference, that
rotations must be parameterized by three angles λ = (x1, x2, x3, ϕ1, ϕ2, ϕ3)T (see figure 7.6).

t1

t2

t3

ϕ1

ϕ2

ϕ3

Figure 7.6: Parameterization of the 3D rotation with λ = (x1, x2, x3, ϕ1, ϕ2, ϕ3)T

As in the previous sections the first step is to replace the given kernel by an equivalent kernel, such
that the first kernel point is located at the origin. Additionally we rotate the second kernel point to the
the z-axis,

q1 = (0, 0, 0)
q2 = (q21 , q22 , 0)
q3 = (q31 , q32 , p33)

(7.49)
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7.7 Three-Point-Kernels with 3D Euclidean Transformations

The grayvalues that are sensed by the kernel-points as function of the transformation parameters are

v1(x) = f1

(
X(x)

)
v2(x, ϕ1, ϕ2) = f2

(
X
(
R(ϕ1,ϕ2,0) · q2 + x

))
v3(x, ϕ1, ϕ2, ϕ3) = f3

(
X
(
R(ϕ1,ϕ2,ϕ3) · q3 + x

))
.

(7.50)

Therefore v1(λ) is invariant to all three rotations, v2(λ) invariant to ϕ3-rotations and only v3(λ) de-
pends on all rotations. With this parameterization the Haar integral becomes

T =
∫
R3

v1(x)

π∫
0

π∫
−π

v2(x, ϕ1, ϕ2)

π∫
−π

v3(x, ϕ1, ϕ2, ϕ3) dϕ3 dϕ2 sin(ϕ1)dϕ1 dx . (7.51)

The integration over ϕ3 in the last term can be interpreted as a convolution of the gray values on the
spherical surface with a circle on this spherical surface. The result only depends on the first two rotation
angles, such that we define

v3conv(x, ϕ1, ϕ2) :=
∫ π

−π
v3(x, ϕ1, ϕ2, ϕ3) dϕ3 (7.52)

This reduces the evaluation of the Haar integral to an element-wise multiplication and subsequent
integration of two scalar fields defined on the 2-sphere. (see figure 7.7).
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Figure 7.7: The integration of the kernel function over the third rotation angle ϕ3 (a) can be replaced
by a convolution (in spherical coordinates) with a circle (b) on the sphere and a subsequent
multiplication of the corresponding gray values on the inner and the outer sphere (c).

The Haar integral becomes

T =
∫
R3

v1(x)

π∫
0

π∫
−π

v2(x, ϕ1, ϕ2) · v3conv(x, ϕ1, ϕ2) dϕ2 sin(ϕ1)dϕ1 dx . (7.53)

Analogous to Fourier series in 2D, the second term can be approximated with spherical harmonics as
basis functions,

Y `
m(ϕ1, ϕ2) =

√
(2` + 1)(`−m)!

4π(` + m)!
P `

m(cos ϕ1)eimϕ2 (7.54)
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7 Fast Computation of the Invariants

planar rotation 3D rotation

<(e0) <(Y0,0)

<(e−iϕ) =(e−iϕ) <(Y1,0) <(Y1,1) =(Y1,1)

<(e−i2ϕ) =(e−i2ϕ) <(Y2,0) <(Y2,1) =(Y2,1) <(Y2,2) =(Y2,2)

<(e−i3ϕ) =(e−i3ϕ) <(Y3,0) <(Y3,1) =(Y3,1) <(Y3,2) =(Y3,2) <(Y3,3) =(Y3,3)

Figure 7.8: Fast Computation of voxel-wise invariants for 3D rotation. Instead of e−ikϕ functions on
circles, we need spherical harmonics on spherical surfaces

where P `
m are the associated Legendre polynomials. In figure 7.8 the basis functions are depicted. The

SH-coefficients for the values sensed by the second kernel point are computed by

W2,`,m(x) =

π∫
0

π∫
−π

v2(x, ϕ1, ϕ2) Y `
m
∗
(ϕ1, ϕ2) dϕ2 sin(ϕ1) dϕ1 , (7.55)

where Y `
m
∗(ϕ1, ϕ2) = (−1)mY `

−m(ϕ1, ϕ2). The SH-coefficients of the values sensed by the third
kernel point (already integrated around ϕ3) are

W3conv,`,m(x) =

π∫
0

π∫
−π

v3conv(x, ϕ1, ϕ2) Y `
m
∗
(ϕ1, ϕ2) dϕ2 sin(ϕ1) dϕ1 , (7.56)

This allows to write the Haar integral as

T =
∫
R3

v1(x)

π∫
0

π∫
−π

 ∞∑
`1=0

`1∑
m1=−`1

W2,`1,m1(x) · Y `1
m1

(ϕ1, ϕ2)


·

 ∞∑
`2=0

`2∑
m2=−`2

W3conv,`2,m2(x) · Y `2
m2

(ϕ1, ϕ2)

 dϕ2 sin(ϕ1) dϕ1 dx (7.57)

Using the orthogonality relationships between the basis functions Y `
m and the precondition, that our

data is real-valued, allows to reduce this integral to a simple summation of products of the spherical
harmonics coefficients

T ∼
∫
R3

v1(x) ·
N∑

l=0

l∑
m=0

<
(
W2,`,m(x) ·W ∗

3conv,`,m(x)
)

dx , (7.58)
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7.7 Three-Point-Kernels with 3D Euclidean Transformations

where the series may be truncated after the N ’th coefficient without violating the rotation invariance.
Here again we can compute the spherical harmonics coefficients for the surrounding of each voxel via
a fast FFT-based convolution. So for each kernel function we need 2 forward FFT’s and 2(N + 1)2

backward FFT’s of the whole data set.
In the case of a first order approximation (N = 1) these are 10 FFT’s. For a volume of 1283

voxels a conventional 3GHz Pentium can compute such a real-to-complex FFT in about 60ms (using
the “Fastest Fourier Transform of the West” FFTW (Frigo and Johnson, 2005)). So in this case the
whole feature extraction could be done in less than a second for each kernel function.

7.7.1 Convolution on the 2-Sphere

For the computation of v3conv(x, ϕ1, ϕ2) in (7.52) we need the convolution of a signal defined on the
2-sphere with a circle on the 2-sphere. Similarly to the convolution theorem for Fourier transforms,
there is a convolution theorem for spherical harmonics transforms (Driscoll and Healy, 1994): Let
f, h ∈ L2(S2). Then ̂(f ∗ h)(`,m) = 2π

√
4π

2` + 1
f̂(`,m)ĥ(`, 0) . (7.59)

As we anyhow need the spherical harmonics coefficients only of v3conv(x, ϕ1, ϕ2), we can first develop
the signal into a spherical harmonics series, were the kernel point q3 is rotated to the z-axis (as depicted
in 7.7c),

q3
′ = (0, 0,

∥∥q3

∥∥) , (7.60)

such that the sensed signal of this kernel point only depends on two rotation angles ϕ1, ϕ2:

v′3(x, ϕ1, ϕ2) = f3

(
X
(
R(ϕ1,ϕ2,0) · q3

′ + x
))

(7.61)

The extracted SH coefficients are then

W ′
3,`,m(x) =

π∫
0

π∫
−π

v′3(x, ϕ1, ϕ2) Y `
m
∗
(ϕ1, ϕ2) dϕ2 sin(ϕ1) dϕ1 . (7.62)

Now we can compute the required coefficients W3conv,`,m(x) just by a band-wise multiplication with
the coefficients of a SH-transformed circle around the north pole Wcirc,`,0:

W3conv,`,m(x) = 2π

√
4π

2` + 1
W ′

3,`,m(x) ·Wcirc,`,0 . (7.63)

Due to the fact, that the circle is just a delta pulse in ϕ1 direction with a unit integral in ϕ2 direction,

C(ϕ1, ϕ2) =
1

sinϕcirc
δ(ϕ1 − ϕcirc) , (7.64)

where ϕcirc is the colatitude of the circle, its SH-coefficients Wcirc,`,0 are

Wcirc,`,0 =

π∫
0

π∫
−π

1
sinϕcirc

δ(ϕ1 − ϕcirc) · Y `
0
∗
(ϕ1, ϕ2) dϕ2 sin(ϕ1) dϕ1

=

π∫
−π

Y `
0
∗
(ϕcirc, ϕ2) dϕ2

=

√
2` + 1

4π
P `

0(cos ϕcirc) ·
π∫

−π

ei·0·ϕ2dϕ2

=

√
2` + 1

4π
P `

0(cos ϕcirc) · 2π .

(7.65)
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7 Fast Computation of the Invariants

So they can be directly computed from the associated Legendre polynomial. By inserting this result in
(7.63), we get

W3conv,`,m(x) = 4π2P `
0(cos ϕcirc) ·W ′

3,`,m(x) . (7.66)

This can be inserted into equation (7.58), and the P `
0(cos ϕcirc) (which has no imaginary component

and does not depend on m) can be moved before the sum, such that

T ∼
∫
R3

v1(x) ·
N∑

l=0

P `
0(cos ϕcirc) ·

l∑
m=0

<
(
W2,`,m(x) ·W ′∗

3,`,m(x)
)

dx . (7.67)

7.8 Variations of the Kernel Angles

One important advantage of the fast algorithms described above is, that we can reuse the computed
Fourier- or SH-coefficients for further kernels, if these kernels differ from the first just by the angles
between their “arms” (see figure 7.9 for an illustration).

q1q1

q2q2

q3

q3

qϕ3

qϕ3

Figure 7.9: Two 3-point-kernels that differ only by the angle between their “arms”

If two N-point-kernels

fa(X) =
N∏

i=1

fa,i

(
X(qa,i)

)
and fb(X) =

N∏
i=1

fb,i

(
X(qb,i)

)
(7.68)

have identical sub-functions and the kernel points have the identical distances to the rotation center,

fa,i(x) = fb,i(x) ∀i ∈ {1, . . . , N},∀x ∈ R∥∥∥qa,i

∥∥∥ =
∥∥∥qb,i

∥∥∥ ∀i ∈ {1, . . . , N} ,
(7.69)

then the required Fourier- or SH- coefficients for a fast computation of the Haar integral with the second
kernel can be computed directly from the Fourier- or SH- coefficients of the first kernel. For the Fourier
coefficients this is a simple phase shift, that can be performed by a complex multiplication:

Vb,j,k(x) = e−ik∆ϕj · Va,j,k(x)
with ∆ϕj := qϕb,j

− qϕa,j ,
(7.70)

where qϕa,i and qϕb,i
are the angular components of the kernel points in cylinder coordinates.

For the 3-point-kernels that we can compute via the spherical harmonic expansion, the computation
for further kernels with different angles is even simpler: the only parameter that changes, is the colat-
itude ϕcirc of the circle (depicted in figure 7.7c) that is required for the convolution on the 2-sphere.
W2,`,m(x) and W ′∗

3,`,m(x) keep identical, such that we can directly compute T using equation (7.67)
with the modified ϕcirc.
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7.9 Fast Computation of Voxel-Wise Invariants with Separable Kernels

7.9 Fast Computation of Voxel-Wise Invariants with Separable
Kernels

For the fast computation of the voxel-wise invariants for simultaneous segmentation and recognition
that were introduced in section 6.7, the above described techniques can be directly applied (except
for the alternative approach of section 7.4.1). The only difference is that the final integration over all
translations is left out. The different steps, that need to be applied for such a computation of voxel-wise
invariants using a 3-Point-Kernel and full 3D rotations is depicted in figure 7.10.
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Figure 7.10: Computation of voxel-wise invariants using three-point-kernels f(X) = fa(X(0)) ·
fb(X(q2)) · fc(X(q3)) on multi-channel volumetric data. For each kernel function this
scheme simultaneously calculates the features for all voxels.

7.10 Fast Computation of Voxel-Wise Invariants with Sparse
Vectorial Kernels

For the fast computation of voxel-wise invariants with sparse vectorial kernels (introduced in section
6.8)
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7 Fast Computation of the Invariants

T (t) =
∫
O3

∥∥∇X
∥∥ (Rq + t) · δ

(
1− Rq∥∥q∥∥ · ∇X∥∥∇X

∥∥(Rq + t)

)
dR (7.71)

a different scheme is used, that does not base on FFT’s or spherical harmonics. In this case the sparse-
ness of the kernel function (the kernel returns a non-zero-result only in very sparse cases) allows a
significant speedup by a simultaneously “inverse” computation of the kernel for multiple positions.

The direct computation would be to translate the coordinate origin to position t and then to iterate
over all rotation matrices to evaluate the kernel function at the resulting position Rq + t and integrate
the results. After that, this procedure is repeated for the next position t. As mentioned above in most
cases, the result of the kernel function will be just zero, but we can not know this in advance until we
have checked the gradient at position Rq + t.

The idea is now, to evaluate all integrals simultaneously by setting up an individual accumulator
for each position t. Then we iterate over all positions x and check, to which integral this voxel will
contribute, i. e. for which R and t the position x will be reached.

x != Rq + t (7.72)

For a non-sparse kernel function this would result in an iteration over all rotation matrices R. For each
given R we could compute the according t and add the kernel result to the attached accumulator. This
would result in exactly the same complexity like the direct evaluation.

For the sparse kernels, we can compute in advance, for which R the kernel returns a non-zero result.
For this the argument of the δ-function must be zero,

1− Rq∥∥q∥∥ · ∇X∥∥∇X
∥∥(x) != 0

⇒ Rq∥∥q∥∥ · ∇X∥∥∇X
∥∥(x) != 1 .

(7.73)

The dot product of two normalized vectors equals only to 1, if the are identical, i. e.

Rq∥∥q∥∥ =
∇X∥∥∇X

∥∥(x) . (7.74)

From this we can compute Rq as

Rq =
∥∥q∥∥ · ∇X∥∥∇X

∥∥(x) . (7.75)

Without the need to compute the concrete rotation R, we can directly insert Rq into (7.72) and find
the position of the accumulator as

t = x−
∥∥q∥∥ · ∇X∥∥∇X

∥∥(x) . (7.76)

All other accumulators need not to be touched, which reduces the computational costs to only a few
multiplications and one accumulator increment per voxel.

7.11 Computational Costs

At the end of this chapter we give a summary of the computational costs for the proposed techniques
compared to the direct implementation described in section 4.2. There are several parameters that
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7.11 Computational Costs

significantly influence the final computation time. None of these parameters varies in multiple orders
of magnitude, such that the real computational costs are significantly influenced by all of them. Due to
this all relevant factors and some pre-factors are listed in table 7.3, such that a column-wise comparison
of the values is possible. For the parameter variation in the two-point-kernels the cheaper of both
proposed methods is given (see section 7.4.2 for a detailed comparison).

Table 7.3: Computational costs.

kernel transl. rotation direct impl. fast implementation
per feature variation of per feature initialization

2-point 3D planar O(N3
x ·N2

σ ·Nq) q O(N3
x ) 2·O(Nx ·FFT(N2

x ))

fa O(N3
x ) 3·O(Nx ·FFT(N2

x ))

fb O(N3
x + Nx ·FFT(N2

x )) 1·O(Nx ·FFT(N2
x ))

2-point 3D 3D O(N3
x ·N3

σ ·N2
q ) q O(N3

x ) 2·O(FFT(N3
x ))

fa O(N3
x ) 3·O(FFT(N3

x ))

fb O(N3
x + FFT(N3

x )) 1·O(FFT(N3
x ))

3-point 3D planar O(N3
x ·N2

σ ·Nq) f1 O(N3
x ) (2Nb + 2)·O(Nx ·FFT(N2

x ))

∆ϕ Nb ·O(N3
x ) (2Nb + 2)·O(Nx ·FFT(N2

x ))

other Nb ·O(N3
x + 2Nx ·FFT(N2

x )) 2·O(Nx ·FFT(N2
x ))

3-point 3D 3D O(N3
x ·N3

σ ·N3
q ) f1 O(N3

x ) (2Nb + 2)·O(FFT(N3
x ))

∆ϕ N2
b ·O(N3

x ) (2Nb + 2)·O(FFT(N3
x ))

other N2
b ·O(N3

x + 2·FFT(N3
x )) 2·O(FFT(N3

x ))

sparse vect. 3D 3D O(N3
x ·N2

q ) – O(N3
x ) –

NF number of features, that share certain kernel parameters (typically 1-50)
Nx extent of data set in one direction (typically 100 - 500)
Nσ smoothing radius (typically 2 - 50)
Nq radius of kernel function (typically 1 - 100)
Nb number of bands for approximation (typically 1-5)
other any of the parameters f2, f3,q2,q3

In this presentation we see that the costs for the direct implementation are always linear in the
number of pixels (or voxels) N3

x as stated by Schulz-Mirbach (1995b), but they are also up to cubic in
the kernel radius Nq and up to cubic in the smoothing radius Nσ, which results usually in an enormous
pre-factor.

In contrast to this the costs for the proposed methods are independent of the kernel radius Nq and the
smoothing radius Nσ, and are in many cases linear in the number of voxels with a very low pre-factor.
On the other hand, they introduce some fix costs for the initialization, and for certain variations of the
kernel parameters a certain number of 2D- or 3D- FFT’s is needed per feature.

By looking at the typical ranges for the parameters (listed below the table), we see that in nearly
all cases the proposed methods will outperform the direct implementation. Only for very small kernel
radii and very small smoothing the direct implementation might be faster.
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8 Detection and Segmentation

8.1 2D Segmentation using Morphological Techniques

For air samples with simple conditions (clear background, not too many particles in the image, no
agglomerations of pollen, no occlusions, etc.) the segmentation can be done with traditional morpho-
logical techniques. In such cases we can assume that the majority of the image pixels belong to the
background. Furthermore we have to know in advance the diameter of the smallest pollen and the
largest pollen that shall be segmented. Under these conditions the method described in the following
will return satisfactory results. It can be applied either to the fluorescence image (searching particles
that are brighter than the background) or in transmitted light images by searching particles that are
darker than the background. Depending on the age and the current bleaching state of the pollen in the
sample the first or the latter is more advantageous.

The illustrating images for each step show an air sample that was taken with the traditional Burkard
spore trap, manually prepared and recorded with a 10x objective with a 12bit camera at 1280x1024
pixels. The resulting size of each image-pixel is 0.67µm× 0.67µm

Step 1: Estimation of the background in-
tensity: The background intensity at each
pixel is estimated by a running median
filter using a disc as structural element
with twice the diameter of the largest
expected particle. If the particle den-
sity is not too high, this diameter guar-
antees that the filter response is based on
at least 3 times more background pixels
than foreground pixels.

Scale 100:1
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8.1 2D Segmentation using Morphological Techniques

Step 2: Shading correction: The esti-
mated background is subtracted. After
this operation the mean background has
everywhere the gray value 0 and dark
particles have negative gray values

Scale 100:1

0 50 100 200 300 400 500µm

Step 3: Automated determination of the
best threshold: The histogram of a typ-
ical air sample image is always domi-
nated by one peak belonging to the back-
ground pixels (which is centered here
around zero due to the prior shading cor-
rection). Its width depends on the back-
ground noise of the image. A robust es-
timation for the threshold to separate low
contrast particles from the background
noise was heuristically found to be the
maximum of the second derivative of the
histogram curve on the left side of the
main peak.
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Step 4: Binarization of the shading cor-
rected image with the determined thresh-
old
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8 Detection and Segmentation

Step 5: Morphological fill-holes op-
eration to completely mark pollen
with transparent inner structures (e. g.
Taxus(D.12))

Step 6: Morphological Erosion and Di-
lation operation using a disc as structural
element with the diameter of the small-
est required particle. The erosion oper-
ation removes small dust and the rests
of background noise, the subsequent di-
lation enlarges the masks back to their
original size with the advantageous side
effect, that the final masks have smooth
borders.

Step 7: Connected component labeling
to find the individual particles. The par-
ticle masks are displayed as red outlines.
the blue crosses mark the center of each
mask. To avoid cropped particles and
to use the same reference area for small
and big particles, only those particles are
taken into account whose center is lo-
cated within the green marked evaluation
area. The size of the border area is deter-
mined by the radius of the largest parti-
cle.

Scale 100:1
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8.2 Detection with Voxel-Wise Invariants (MiSP Detector)

8.1.1 Preprocessing of Data Sets with Particles in Different Planes

The 2D method described in the previous section worked reliably on manually prepared samples that
are recorded with a 10x objective. Due to the cover slip most particles on these samples are located in
a well defined plane. The depth of sharpness of the 10x objective is high enough such that it is nearly
always possible to find one focal position where all pollen are well-focused.

In contrast to this the automatic preparation used in the pollenmonitor leaves the pollen grains in
slightly different layers. Furthermore the used 20x objective has a much higher numerical aperture,
such that the depth of sharpness is limited to a few micrometers. As a result it is quite unlikely to find
all pollen well focused within one plane of the recorded stack (see figure 8.1a). To use the 2D method
from the last section also in this environment, a preprocessing was developed in cooperation with Qing
Wang, that searches a curved 2D plane in the 3D stack, which tries to cut all particles in their sharpest
layer (see figure 8.1b).

Scale 150:1

0 50 100 150 200 300µm

a) central layer b) cut along curved plane

Figure 8.1: a) Central layer of a fluorescence image stack of a sample that was prepared and recorded
analogously to the techniques used in the pollenmonitor. b) Cut along a curved plane, that
was defined to best match the sharpest regions in the 3D stack

8.2 Detection with Voxel-Wise Invariants (MiSP Detector)

Due to the unsatisfactory results of the threshold-based morphological segmentation techniques, espe-
cially on highly cluttered samples or for agglomerated particles, a more robust alternative was required.

By ignoring some non-allergenic pollen taxa that have no spherical shape (like Pinus(D.10) and
Picea(D.9)), we can robustly detect the remaining pollen taxa with the voxel-wise invariants using the
sparse vectorial kernel function introduced in section 6.8.

To meet the timing requirements of the pollenmonitor in real-time operation (One air sample should
be processed within one hour) we operate on down-scaled data and compute the invariants for all radii
at once. The output is a 4D accumulator (radius, x, y, z) that contains a “probability” for each possible
sphere within the given data set. The implementation is depicted in pseudo code in algorithm 8.1

The search for the most probable non-overlapping spheres was done in a first implementation just
by a linear search for the global maximum in the accumulator, masking out the region around it (that
belongs to overlapping spheres) and repeat this procedure until the global maximum is below a certain
threshold (see algorithm 8.2).
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8 Detection and Segmentation

Algorithm 8.1 MiSP detector sphere probs. = Detector(X)
Input: 3D array X
Output: probabilities for all spheres

1: Down-scale X for faster processing
2: Initialize 4D accu to zero // dimensions are radius, x, y, z
3: for all positions in X do
4: compute gradient for current position
5: if gradient magnitude > thresh then
6: for all radii do
7: center1 := current position + radius · gradient direction
8: center2 := current position− radius · gradient direction
9: accu( radius, center1) += gradient magnitude

10: accu( radius, center2) += gradient magnitude
11: end for
12: end if
13: end for
14: for all radii do
15: smooth accu(radius) in x,y,z direction by factor · radius
16: end for

Algorithm 8.2 Find Spheres 1 list of spheres = FindSpheres( accu4D )
Input: 4D accu (radius, x, y, z) with probabilities for each sphere
Output: list of most probable non-overlapping spheres

1: repeat
2: Find global maximum in 4D accu
3: append radius and center to output sphere list
4: for all positions in accu that belong to overlapping spheres do
5: accu(position) := 0
6: end for
7: until value of maximum < thresh

Due to the very large extents of the data sets (and correspondingly the even larger extents of the
accumulator) this technique is quite slow. For the low number of spheres that are searched in the
present application, a significant speedup can be reached by a two pass-algorithm, that first extracts a
list of all candidates for a sphere by a local maximum criterion and the threshold criterion and then
extracts the non-overlapping spheres from this list (see algorithm 8.3).

For the application of the MiSP detector on the transmitted light image stacks from the pollenmonitor
data set, the only change is to set the z-component of the gradient to zero. This limits the voting for the
sphere center to the same plane. This procedure is necessary, because the borders in z-direction of the
pollen grain are hidden by the structures, that originate from the diffraction of the light (see figure 8.2)
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8.2 Detection with Voxel-Wise Invariants (MiSP Detector)

Algorithm 8.3 Find Spheres 2 list of spheres = FindSpheres( accu4D )
Input: 4D accu (radius, x, y, z) with probabilities for each sphere
Output: list of most probable non-overlapping spheres

// Find all possible spheres as local maxima
1: Initialize local maxima list
2: for all positions in accu do
3: if accu(position) > thresh AND accu(position) is local maximum then
4: append value, radius and center to local maxima list
5: end if
6: end for
// Select most probable non-overlapping spheres
7: Sort local maxima list by value of maximum (highest to the begin)
8: for all entries in local maxima list do
9: if sphere with current radius and center does not overlap with any sphere in output sphere list

then
10: append radius and center to output sphere list
11: end if
12: end for

Figure 8.2: Orthogonal slices of a transmitted light stack from a Betula(A.4) pollen grain. Only the
gradients in x- and y- direction are used to find the object center. In z-direction the gradients
are dominated by the diffraction patterns.
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8 Detection and Segmentation

8.3 2D Boundary Extraction with Snakes

After the object centers and the radius of the corresponding sphere are determined, the precise border
in the sharpest layer is searched. This part of the segmentation was mainly developed by Qing Wang,
so only a short outline is presented here:

As parts of the object border are often missing or not clear, we use snakes to find a smooth and
complete border. To avoid the common problem of snakes being attracted to undesired edges (if plain
gradient magnitude is used as force field), we take the steps depicted in fig 8.3.

a) sharpest layer b) found edges c) weighted edges d) final snake

1. Applying modified Canny edge
detection.
As pollen grains have a nearly round
shape, the edges that are approxi-
mately perpendicular to the radial di-
rection are more relevant. We replace
the gradient with its radial component
in the original Canny edge detection
algorithm.

2. Model-based weighting of the
edges.
The curvatures and relative locations
of the edges are analyzed and each
edge is given a different weight.
Some edges are even eliminated. As a
result, a much clearer weighted edge
image is obtained.

3. Employing snakes to find the fi-
nal border.
The initial contour is chosen to be
the circle found in the detection step.
The external force field is the so-
called “gradient vector flow” (Xu
and Prince, 1998) computed from the
weighted edge image.

Figure 8.3: Segmentation of transmitted light microscopic images

8.4 3D Segmentation with Graph-Cuts

To find the 3D surface of the pollen grains in the confocal data set, we use the graph cut algorithm
described in (Boykov and Kolmogorov, 2004). This technique needs two types of information as
input:

• For each voxel p in the volume: A penalty Dp(Lp), if this voxel is assigned to object (Lp = 1)
or background (Lp = 0). This corresponds to the probability that this voxel belongs to the object
or not.

• For each pair of neighboring voxels (p,q): A penalty K(p,q) if they are assigned to the same
label or to different labels. This corresponds to the probability that the object border lies between
these two voxels.

For a given labeling L all these penalties in the volume are summed up to an “Energy”

E(L) =
∑
p∈P

Dp(Lp) +
∑

(p,q) ∈ P×P

K(p,q) · δ(Lp 6= Lq) . (8.1)

The task of object segmentation can now be formulated as the search for the labeling, that minimizes
this energy. While there are several heuristic approaches, like simulated annealing that may converge
to a local minimum, the formulation of this problem as a min-cut of the corresponding graph allows
to find the global optimum. For this, the voxels build the nodes in the graph. The object/background
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8.4 3D Segmentation with Graph-Cuts

penalties Dp are described by a weighted edge from each voxel to the “source”-node and a weighted
edge to the “sink”-node of the graph. The voxel-to-voxel penalties are described directly with weighted
edges between these voxels (see figure 8.4a). The graph-cut algorithm now searches for the cheapest

Source−node (object)

Sink−node (background)

a) Initial graph for the graph-cut segmentation.
The pixels of the image build the nodes. Each
edge has a certain weight, corresponding to the
probability that the pixel belongs to the object
(red edges), to the background (green edges), or
to the same class as its neighboring pixel (black
edges).

Source−node (object)

Sink−node (background)

b) Graph after graph-cut segmentation. The
graph-cut algorithm has found the “cheapest”
possibility to cut this graph into two parts. The
pixels, connected to the source will be labeled as
object and the pixels connected to the sink will be
labeled as background.

Figure 8.4: Segmentation using the graph-cut algorithm

cut of this graph between the source-node and the sink node (see figure 8.4b). The pixels connected to
the source will be labeled as object, and the pixels connected to the sink will be labeled as background.
In contrast to the snake-based segmentation, this technique can also deal with disjoint objects, and
arbitrary dimension of the data set (i. e., images and volumes).

Boykov and Kolmogorov (2004) used the graph-cut in an interactive environment, where the user
has to label regions within the object and outside the object. From the histograms of these labeled
regions the voxel-wise object/background penalties are computed.

For the application on the confocal data set a non-interactive segmentation is required: The proba-
bilities for each gray value v to belong to background pbg(v) or to foreground pfg(v) were modelled
with halved Gaussian distributions. The mean and standard deviation of the background distribution is
defined as µbg and σbg, and for the foreground distribution as µfg and σfg. The values below µbg and
above µfg were set to 1, resulting in

pbg(v) =


1 if v < µbg

exp
(
− (v−µbg)

2

2σ2
bg

)
if v ≥ µbg

pfg(v) =

 exp
(
− (v−µfg)

2

2σ2
fg

)
if v ≤ µfg

1 if v > µfg .
(8.2)
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8 Detection and Segmentation

The probabilities that two neighboring voxels belong to the same class are also modeled with a
Gaussian as

p(v1, v2) =
1
d

exp

(
−(v1 − v2)2

2σ2
v

)
, (8.3)

where v1, v2 are the gray values of the two voxels and d is their spatial distance.
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9 Specialized Invariants for Microscopical Spherical
Particles (MiSP)

In out first approaches we used the HI framework only to make the features invariant to rotation and
translation of the structures, and left the remaining variations to the classifier.

In real applications it is usually possible to identify several additional variations that do not change
the meaning of the structures. For the recognition of objects in microscopical recordings, we can
use the theoretical considerations about the microscopic imaging in chapter 2, e. g. aging effects of the
fluorescence lamp, or variations of the light intensity due to absorption of out-of-focus dust changes the
fluorescence intensities. So the variation of the mean fluorescence intensity does not give any valuable
information about the pollen species, and it would be advantageous, if the invariants are insensitive to
such variations.

In the same way we should take effects of variations within the preparation and the collection (e. g.
the possible destruction of the natural fluorophores in the pollen grains due to sunlight or oxidation
processes, or different absorption due to variations of the embedding media, etc.) into account, when
we want to recognize pollen grains.

The most important prior knowledge that we use for pollen recognition, is their approximately spher-
ical shape and their well-defined outer border. This is an important advantage, e. g., compared to
recognition of “border-less” structures in biomedical tissue samples. Furthermore fresh pollen grains
are quite stiff, such that they keep their spherical shape even under mechanical stress. This knowledge
is used for the robust detection of pollen grains in cluttered samples and for the extraction of the pre-
cise outer contour in the sharpest of the transmitted light microscopic recordings, or of the surface in
confocal recordings (see chapter 8).

In contrast to the general Euclidean invariants that sense only the global statistics of the structures,
we can now use this outer shape to restrict the invariants to certain regions relative to this border.

This idea gave the greatest performance boost during our research on pollen recognition (especially
in the avoidance of false positives) and can be considered as the most important step towards a reliable
system for real-world samples.

9.1 The Transformation Group for MiSP Invariants

One of the most important challenges in biological object recognition is that we never find two identical
objects. So even if we have a large reference data base with hundreds of example objects for each class,
the most similar object to the test object will never be just a rotated and translated version of it.

In such environments an elastic registration of the test object with the most similar reference object
seems to be the best way for a meaningful comparison. The similarity measure could then be based on
the pixel-wise similarities of the test object with the deformed reference object and the “magnitude” of
the deformation that was needed to match the two objects (see figure 9.1). The computational costs of
the typical elastic registration approaches, the problems of local optima and the problems, when trying
to register two objects of different classes make such an approach impossible for pollen recognition in
a routine environment.

So our goal is to extract features from the objects such that the distance between two objects in the
feature space best matches the above described similarity measure, i. e. the distance should be small,
if object 2 is just a deformed version of object 1, and it should be large, if no deformation exists, that
transforms object 1 into object 2.
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9 Specialized Invariants for Microscopical Spherical Particles (MiSP)

reference object

test object

translation

centers
match

rotation

orientations
match

...

...
global

deformation

outlines
match

local
deformation

inner structures
match

gray value
transformation

gray values
match

Figure 9.1: Hyptothetical elastic registration of two pollen grains for a meaningful comparison. In-
stead of trying to find all needed transformation parameters, we construct features that are
invariant or at least robust to all depicted transformations.

These requirements can be fulfilled by defining a transformation group that describes such defor-
mations and inserting it into the HI framework. By the use of synthetic channels and the probability-
weighted Haar-integration introduced in section 6.1 we can construct such features.

9.1.1 Invariance to Translation by Normalization

Invariance to translations is achieved by moving the center of mass of the segmentation mask to the
origin. The final features are quite insensitive to errors in this normalization step, because they are
computed “far” away from this center and only the direction to the center (not the distance) is used.

9.1.2 Invariance to Rotation.

Invariance to rotation around the object center with

x′ = Rx , (9.1)

where R is a rotation matrix, is achieved by integration over the rotation group. In the confocal data
set the recording properties in xy- and z-direction are similar enough, such that we can model a 3D
rotation of a real-world object by a 3D rotation of the recorded volumetric data set (see figure 9.2b).

The transmitted light microscopic image stacks show very different characteristics in xy- and z-
direction, (see figure 9.2c). A rotation around the x- or y-axis of the real-world object results in so
different gray value distributions, that it is more reasonable to model only the rotation around the z-
axis for the construction of the invariants and “learn” the effects of the other rotations by providing
enough training objects at different orientations.
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9.1 The Transformation Group for MiSP Invariants

a) volume rendering of
confocal data set

b) horizontal and vertical
cuts of confocal data set

c) horizontal and vertical cuts
of transmitted light data set

Figure 9.2: 3D recordings of a Betula(A.4) pollen. In transmitted light microscopy the recording proper-
ties in z-direction (the direction of the optical axis) are significantly different from those in
the xy-direction, because the effects of diffraction, refraction and absorption depend on the
direction of the transmitted light. Furthermore there is a significant loss of information in
z-direction due to the low-pass property of the optical transfer function

9.1.3 Selection of an Appropriate Model for the Deformations

The integration of deformation models into the feature extraction was one of the most important steps
during our research on automated pollen recognition. However, there is no straightforward way for
this implementation, because (compared to rotation or translation) no unique physically motivated
definition of possible deformations exist. Of course, for the observation of one individual object under
different deformations, one might find physically motivated models (e. g. by preserving the volume,
defining different elasticities for the different structures, etc.), but when it comes to the comparison
between two different individuals, none of these conditions applies any more.

The first goal of a deformation model in the feature extraction is therefore not to define a model, that
is valid for the deformation of one individual, but to define a model that allows to deform the different
objects in such a way, that corresponding structures are sensed by the same features.

For the pollen recognition, we want to use the outer surface of the object to define the initial corre-
spondences between two individual objects. This outer surface is well defined for all pollen grains, and
it has already been extracted in the segmentation step. Because we deal here with spherical, star-shaped
particles, and because we have already defined a rotation around the center as a possible transformation,
it is reasonable to define a first global deformation model, that

• is perpendicular to the action of the rotation operator,

• is able to match any star-shaped surface to any other, and

• has a low number of free parameters.

We find that a radial displacement of each surface-point fulfills this condition. E. g., if the radial
positions of the surface of object 1 are parameterized in spherical coordinates by r = s1(ϕ, ϑ) and the
surface of object 2 by s2(ϕ, ϑ), then the deformation model can be parameterized as γ(ϕ, ϑ) such that

s2(ϕ, ϑ) = s1(ϕ, ϑ) + γ(ϕ, ϑ) . (9.2)

The next question that arises is how this deformation should act on the remaining (non-surface-)
points of the object. If we want to avoid an introduction of further parameters, we find two alternatives.
The first alternative is to approximate this deformation by a radial translation, such that for each point
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9 Specialized Invariants for Microscopical Spherical Particles (MiSP)

(ϕ1, ϑ1, r1) in the first object the, corresponding point (ϕ2, ϑ2, r2) in the second object is defined by

ϕ2 = ϕ1

ϑ2 = ϑ1

r2 = r1 + γ(ϕ1, ϑ1) .

(9.3)

The second alternative is to approximate this deformation by a radial scaling, such that

ϕ2 = ϕ1

ϑ2 = ϑ1

r2 = r1 · γs(ϕ1, ϑ1) ,

(9.4)

where γs(ϕ, ϑ) is determined in analogy to γ(ϕ, ϑ) such that it deforms the surface of object 1 to the
surface of object 2 by a scaling,

s2(ϕ, ϑ) = s1(ϕ, ϑ) · γs(ϕ, ϑ) . (9.5)

It depends on the particular application, which of these two approaches provides the better modeling
for the corresponding structures of two individuals depends on the application. For pollen recognition,
it seems that the correspondences are better found by a radial translation, because the size of the
corresponding structures seem to be largely independent of the overall size of the pollen (see figure
9.3).

a) Poaceae(A.6) pollen b) Betula(A.4) pollen

Figure 9.3: Small and big pollen grains of Poaceae(A.6) (the most important allergenic taxa) and Be-
tula(A.4). The corresponding structures (the thickness of the exine (the outer border), the
size of porates, and the granularity of the inner texture) have nearly the same size, indepen-
dent of the overall size of the pollen

After such a radial deformation, the corresponding structures besides the segmentation border are
only roughly localized. A reasonable assumption is that the uncertainty of the position of such a
structure increases with its distance from the reliably corresponding points on the border. This will be
described by an additional arbitrary deformation model, which allows any deformation. For the final
Haar integration, we will have to specify probabilities for the occurrence of a certain realization of this
deformation field.

9.1.4 Integration of the Deformation Models into the Transformation Group

As motivated in the previous section, the deformation model consists of two parts. The global defor-
mations are modeled by a shift in radial direction er, which depends only on the angular coordinates
(see figure 9.4a).
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9.2 The Kernel Functions for MiSP Invariants

a) Global deformation model (radial) b) Local deformation model (arbitrary)

Figure 9.4: Possible realizations of the deformation models

For arbitrary rotations, described in spherical coordinates x = (xr, xϕ, xϑ), this model is

x′ = x + γγγ(x) with γγγ(x) = γ(xϕ, xϑ) · er(xϕ, xϑ) . (9.6)

For rotations around the z-axis described in cylindrical coordinates x = (xr, xϕ, xz) we get

x′ = x + γγγ(x) with γγγ(x) = γ(xϕ) · er(xϕ) . (9.7)

Please note, that this deformation is well defined only for r > −γγγ(ϕ), which is no problem in the
present application, because the features are computed “far” away from the center. To keep the Haar
integrals over this deformations finite, we later will introduce a synthetic channel, that defines the
integration limits according to the segmentation borders.

The smaller local deformations are described by an arbitrary displacement field D(x) (see figure
9.4b)

x′ = x + D(x) . (9.8)

For the later partial Haar-integration (Haasdonk et al., 2004) over all possible realizations of this dis-
placement field, it is sufficient to know only the probability of the occurrence of a certain relative
displacement r within this field as

p
(
D(x + d)−D(x) = r

)
= pd

(
r; ‖d‖

)
∀x,d ∈ R3 (9.9)

where we select pd

(
r; ‖d‖

)
to be a rotationally symmetric Gaussian distribution with a standard devi-

ation σ = ‖d‖ · σd,

pd

(
r; ‖d‖

)
=

1(∥∥d∥∥σd

√
2π
)3 · exp

 −‖r‖2

2
(∥∥d∥∥σd

)2

 . (9.10)

While we achieve full invariance to radial deformations by full Haar-integration, we only can reach
robustness to local deformations by the probability-weighted Haar-integration. But this non-invariance
in the second case is exactly the desired behavior. In combination with appropriate kernel functions
this results in a continuous mapping of objects (with weak or strong local deformations) into the feature
space.

9.2 The Kernel Functions for MiSP Invariants

9.2.1 Robustness to Arbitrary Gray Value Transformations.

A simple but very powerful method to become robust to arbitrary gray value transformations is to
operate not on the raw gray values but on the gradient direction and on the gradient magnitude instead.
This has been widely known since the great success of the SIFT features (Lowe, 2004) at the latest.
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9 Specialized Invariants for Microscopical Spherical Particles (MiSP)

This splitting of the information into gradient magnitude and gradient direction was already success-
fully used within the HI framework for the construction of robust invariants in (Schulz, 2005), (Schulz
et al., 2006) and (Reisert and Burkhardt, 2006).

For a deeper understanding, we will carry out a detailed analysis of its invariance properties of this
approach here.

As described in chapter 2 there are multiple sources that cause certain transformations of the raw
gray values. The simplest model assumes a constant factor α and an offset β, that transforms each gray
value v to

vr = α · v + β . (9.11)

A typical source for an offset is scattered light, that reaches the CCD sensor. A factor α may be intro-
duced by absorption effects, aging of the used light sources, misadjustment of the camera parameters,
the AD converter, etc.

Beside these simple affine gray-value transformations, we find several sources for nonlinear gray-
value changes, e. g. effects of bleaching, or just the intra-class variations of the various structures
within a pollen grain. This can be modeled by an arbitrary nonlinear gray value transformation f` (`
stands for lookup table)

vr = f`(v) . (9.12)

To become robust to such gray value transformations, we extract the gradient magnitude Gm and the
gradient direction Gd at each position of the data set:

Gm(X) :=
∥∥∇X

∥∥ (9.13)

Gd(X) :=
∇X∥∥∇X

∥∥ . (9.14)

Both of these quantities are invariant to gray value offsets β, because they are based on derivatives.
The gradient direction is invariant to a scaling of the gray values α

Gd(α ·X) =
∇(α ·X)∥∥∇(α ·X)

∥∥ =
α ·∇X

α ·
∥∥∇X

∥∥ =
∇X∥∥∇X

∥∥ = Gd(X) (9.15)

while the gradient magnitude operator commutes with the scaling of gray values,

Gm(α ·X) = α ·Gm(X) . (9.16)

This property will be used later in the post-processing step to make the features invariant to gray value
scaling.

The most important property of this transformation is that the gradient direction is invariant to an ar-
bitrary nonlinear gray value transformation f` as long as this mapping is strictly monotonic increasing,

ḟ`(v) > 0 ∀ v ∈ R (9.17)

The proof is quite intuitive: the gradient direction is always perpendicular to the iso-lines (in 2D) or
iso-surfaces (in 3D) in the given data set. As the gray value mapping is independent of the position
in the data set, all points with gray value v that build the iso-surface in the original data set will be
mapped to the new gray value f`(v), and build the identical iso-surface in the transformed data set.

The mathematical proof is also straightforward. By defining a new coordinate system with the e1-
axis in the direction of the gradient, e2 and e3 perpendicular to it,

e1 =
∇X(x)∥∥∇X

∥∥ (x)

e2 ⊥ e1

e3 ⊥ e2 ∧ e3 ⊥ e1

(9.18)
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9.2 The Kernel Functions for MiSP Invariants

the partial derivatives at position x in this new coordinate system disappear in direction e2 and e3,

∂X

∂e1
(x) =

∥∥∇X
∥∥ (x)

∂X

∂e2
(x) = 0

∂X

∂e3
(x) = 0 .

(9.19)

Using the chain rule, we see that in the image with transformed gray values the dervivatives in direction
e2 and e3 also disappear,

∂f`(X)
∂e1

(x) = ḟ`

(
X(x)

)
· ∂X

∂e1
(x) = ḟ`

(
X(x)

)
·
∥∥∇X

∥∥ (x)

∂f`(X)
∂e2

(x) = ḟ`

(
X(x)

)
· ∂X

∂e2
(x) = 0

∂f`(X)
∂e3

(x) = ḟ`

(
X(x)

)
· ∂X

∂e3
(x) = 0 ,

(9.20)

and we can see immediately, why the mapping must be strictly monotonic increasing.

9.2.2 Synthetic Channels with Segmentation Results.

To feed the segmentation information into the HI framework we simply render the surface (confocal
data set) or the contour of the sharpest layer (transmitted light data set) as delta-peaks into a new
channel S and extend the kernel-function with two additional points that sense the gray value in this
channel (see fig 9.5)

3D

2D

Figure 9.5: Example for the synthetic channels containing the segmentation information. Note that in
the present application these channels are not computed voxel-by-voxel, but are described
by an appropriate parameterization.
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The only condition for this technique is that the computation of the synthetic channel and the action
of the transformation group can be exchanged without the result being changed (see section 6.5)

9.2.3 Resulting Kernel Functions.

To achieve the requested properties we construct 4-point kernels. 2 points a1 and a2 of the kernel sense
the segmentation channel and the other 2 points b1 = a1 + q1 and b2 = a2 + q2 sense the gradient
∇X of the gray values,

k1[p](S, X) = S(a1) ·
∥∥∇X

∥∥ (b1) · δ

(
c1 −

a1

‖a1‖
· ∇X∥∥∇X

∥∥(b1

))

· S(a2) ·
∥∥∇X

∥∥ (b2) · δ

(
c2 −

a2

‖a2‖
· ∇X∥∥∇X

∥∥(b2

))
,

(9.21)

while the delta-functions restrict the kernel to “see” only gradients with the given “directions” c1 and c2,
respectively. Not all combinations of a1, a2, q1, q2, c1 and c2 make sense, because the Haar integration
returns identical features for all kernels which are equivalent under the given transformation group.
Furthermore for certain combinations, only trivial features will be returned. To ensure, that only non-
trivial and non-identical features are created, we will introduce a low-dimensional parameterization p
later. Examples of this kernel function are depicted in figure 9.6.
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b) parameterized kernel
for rotations around z-axis

Figure 9.6: 4-point kernel function to extract the “structural” MiSP invariants. According to the trans-
formation group, the kernels are rotated, radially deformed and locally deformed. Only at
such transformations, where both kernel points a1 and a2 hit a segmentation surface (or
another signal) in the synthetic channel, the gradients of the dataset are “sensed” at b1 and
b2 and contribute to the current Haar integral

The sensing of the gradients with a certain direction is illustrated in figure 9.7.
As mentioned above, the resulting “structural” features are fully invariant to the global radial defor-

mations. To extract the shape information, we select the parameterized kernel

k2[a1,a2](S) =
∥∥γγγ(a1)

∥∥S(a1) ·
∥∥γγγ(a2)

∥∥S(a2) , (9.22)

that operates on the synthetic channel (see figure 9.8 for an example). When we use the simple scheme
of creating the synthetic channels described above, the resulting features extract the same information
as the magnitudes of the Fourier coefficients of the contour in the 2D case and the magnitudes of the
spherical harmonic coefficients of the surface in the 3D case.
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c1

c2

Figure 9.7: Illustration of the “sensing” of the gradients by the kernel points. Only at those positions,
where the projection of the normalised gradients match the given c1 and c2, the gradient
magnitudes contribute to the current Haar integral
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Figure 9.8: 2-point kernel function to extract the “shape” MiSP invariants from the synthetic channel.
The transformation group contains only rotation and radial deformation.

9.3 Resulting Haar Integral

With the group of radial deformations Gγγγ , the group of arbitrary deformations GD and the group of
rotations GR the final Haar integral becomes:

T =
∫

GR

∫
Gγγγ

∫
GD

f
(
gRgγγγgDS, gRgγγγgDX

)
p(D) dgD dgγγγ dgR . (9.23)

where p(D) is the probability of the occurrence of the local displacement field D. The transformation
of the data set is described by (gX)(x) =: X(x′), where

x′(R,γγγ,D) = Rx︸︷︷︸
rotation

+ γγγ(Rx)︸ ︷︷ ︸
global deformation

+D
(
Rx + γγγ(Rx)

)
︸ ︷︷ ︸
local deformation

. (9.24)

To ensure a strong coupling of a′1 and b′1 (and a′2,b
′
2 accordingly) we only use kernels, where these

two points will be treated equally by the global transformation, i. e., the kernel must fulfill the condition
γγγ(Rai) = γγγ(Rbi),∀R (illustrated by thick connections in fig 9.9).

The transformed kernel points are

a′i(R,γγγ,D) = Rai + γγγ(Rai) + D
(
Rai + γγγ(Rai)

)
b′i(R,γγγ,D) = Rbi + γγγ(Rai) + D

(
Rbi + γγγ(Rai)

)
.

(9.25)
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γγγ(Ra1
)

γγγ(Ra2)

γγγ(Rb1
)

γγγ(Rb2)

γγγ(Ra1)

γγγ(Ra2)

γγγ(Rb1)

γγγ(Rb2)

Figure 9.9: The kernel points b1 and b2 must be selected such that they are treated equally by the global
deformation as a1 and a2: For the spherical deformation model they must be co-linear;
for the cylindrical deformation model they must have an identical xϕ (when expressed in
cylinder coordinates). This property is illustrated here by a stiff coupling of the two points

Now inserting the kernel into the Haar integral gives:

T =
∫

GR

∫
Gγγγ

∫
GD

S
(
a′1(R,γγγ,D)

)
·
∥∥∇x′X

∥∥(b′1(R,γγγ,D)
)
· δ

(
c1 −

a1

‖a1‖
· ∇x′X∥∥∇x′X

∥∥(b′1(R,γγγ,D)
))

· S
(
a′2(R,γγγ,D)

)
·
∥∥∇x′X

∥∥(b′2(R,γγγ,D)
)
· δ

(
c2 −

a2

‖a2‖
· ∇x′X∥∥∇x′X

∥∥(b′2(R,γγγ,D)
))

· p(D)

· dD
(
Ra1 + γγγ(Ra1)

)
· dD

(
Rb1 + γγγ(Ra1)

)
· dD

(
Ra2 + γγγ(Ra2)

)
· dD

(
Rb2 + γγγ(Ra2)

)
· dγγγ(Ra1) · dγγγ(Ra2)
· dR ,

(9.26)

where ∇x′ denotes the del operator in the transformed coordinate system. The uncommon notation
like dγγγ(Ra1) is necessary, because each displacement field is described here by an infinite number
of parameters (one displacement for each location in the 3D space). During the integration the outer
integral continuously “selects” the integration parameter for the inner integral.

This is the most general form of the integral allowing any type of synthetic channel, that is created
according to (6.5).

9.4 Fast Simultaneous Computation of the Invariants

For the synthetic channels in the MiSP invariants that are created from a single surface or contour, we
can significantly simplify the integral if we can assume a star-shaped object (which is granted for all
considered pollen types). For a star-shaped object we will find only one nonzero response of S for
each Rai during the integration over all global deformations γγγ(Rai). By parameterizing this surface
as s(Rai) such that

S
(
a′i(R,γγγ,D)

)
= δ

(
a′i(R,γγγ,D)− s

(
Rai

))
= δ

(
Rai + γγγ(Rai) + D

(
Rai + γγγ(Rai)

)
− s

(
Rai

))
.

(9.27)
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So for a nonzero response of the synthetic channel, γγγ(Rai) must be

γγγ(Rai) = s
(
Rai

)
−Rai −D

(
Rai + γγγ(Rai)

)
. (9.28)

For this specific γγγ(Rai) the transformed kernel points b′i are located at:

b′i = Rbi + s(Rai)−Rai −D
(
Rai + γγγ(Rai)

)
+ D

(
Rbi + γγγ(Rai)

)
. (9.29)

Now the positions only depend on relative displacements of the local deformation field. With the
additional precondition that the probability for the occurrence of a certain relative displacement r
only depends on the distance of the two considered points (9.9) we can fully eliminate the de-
pendency of the global transformation γγγ(Rai) and replace the four integrals over the local dis-
placement field p(D) · dD

(
Ra1 + γγγ(Ra1)

)
· dD

(
Rb1 + γγγ(Ra1)

)
· dD

(
Ra2 + γγγ(Ra2)

)
·

dD
(
Rb2 +γγγ(Ra2)

)
by the integration over all relative deformations weighted with their probability

pd

(
r1; ‖d1‖

)
pd

(
r2; ‖d2‖

)
dr1dr2. The resulting b′i is

b′i(R, s, ri) = s(Rai) + Rbi −Rai + ri

= s(Rai) + R · (bi − ai) + ri ,
(9.30)

with the probability

pd

(
ri;
∥∥Rbi + γγγ(Rai)−Rai − γγγ(Rai)

∥∥) = pd

(
ri;
∥∥Rbi −Rai

∥∥)
= pd

(
ri;
∥∥bi − ai

∥∥) .
(9.31)

By using the definition of qi := bi − ai we finally get

b′i(R, ri) = s(Rai) + Rqi + ri , (9.32)

with the probability
pd

(
ri;
∥∥qi

∥∥) . (9.33)

Now the full Haar integral can be written as

T =
∫

GR

∫
R3

∥∥∇x′X
∥∥(b′1(R, r1)

)
· δ

(
c1 −

a1

‖a1‖
· ∇x′X∥∥∇x′X

∥∥(b′1(R, r1)
))

pd

(
r1;
∥∥q1

∥∥) dr1

·
∫
R3

∥∥∇x′X
∥∥(b′2(R, r2)

)
· δ

(
c2 −

a2

‖a2‖
· ∇x′X∥∥∇x′X

∥∥(b′2(R, r2)
))

pd

(
r2;
∥∥q2

∥∥) dr2dR .

(9.34)

Due to the restriction that a1 and b1 (and therefore also q1) are colinear in the case of 3D rotations, the
first term in the integral returns a scalar value that is only dependend on the resulting direction Ra1 and
not on the rotation parameters themselves. For a selected parameter set, it can therefore be replaced by
a precomputed scalar function on a sphere with radius

∥∥q1

∥∥
X1

(
Rq1

)
:=
∫
R3

∥∥∇x′X
∥∥(b′1(R, r1)

)
·δ

(
c1 −

a1

‖a1‖
· ∇x′X∥∥∇x′X

∥∥(b′1(R, r1)
))

pd

(
r1;
∥∥q1

∥∥) dr1

∀R ∈ GR , (9.35)
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and correspondingly for the second term we can find a

X2

(
Rq2

)
:=
∫
R3

∥∥∇x′X
∥∥(b′2(R, r2)

)
·δ

(
c2 −

a2

‖a2‖
· ∇x′X∥∥∇x′X

∥∥(b′2(R, r2)
))

pd

(
r2;
∥∥q2

∥∥) dr2

∀R ∈ GR . (9.36)

With this the Haar integral becomes

T =
∫

GR

X1

(
Rq1

)
·X2

(
Rq2

)
dR . (9.37)

Now we can use the framework introduced in section 7.7 for the fast but still fully rotation invariant
approximation of the solution with a spherical harmonics expansion.

For rotations only around the z-axis the colinarity restriction is not needed and the resulting X1 are
scalar functions defined on a circle. There the fast approximation of the solution can be achieved by a
Fourier series expansion (see section 7.6).

9.5 Interpretation

For a more intuitive understanding of the MiSP invariants this section provides an interpretation of the
individual terms within the final formulas (9.35), (9.36) and (9.37):∥∥∇x′X

∥∥ is the gradient magnitude of the volumetric data set. The fact that it is computed in the
transformed coordinate system influences the magnitude only marginally for the deformations that are
considered in this application, and is neglected here. This allows to compute the gradient magnitude
in the original coordinate system. An example for the gradient magnitude of a volumetric data set of a
Betula(A.4) pollen grain is shown in figure 9.10b.
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Figure 9.10: Orthogonal slices of a confocally recorded volume of a Betula(A.4) pollen grain. For high
robustness to nonlinear gray scale transformations, the MiSP invariants do not operate on
the plain gray values, but on the gradient direction and gradient magnitude instead.

The term ∇x′X

‖∇x′X‖
is the (vectorial) gradient in the transformed coordinate system normalized to unit

length. Here the fact that the gradient is computed in the transformed coordinate system is important:
In combination with the dot product with a1

‖a1‖ it returns always the radial component of the normalized

132



9.5 Interpretation

gradient. Here again we neglect the influences of the deformation on the gradient direction such that
we can display it in the original dataset. In figure 9.10c it is overlaid as hue on the gradient magnitude
image. The reason for using the gradient direction and gradient magnitude instead of operating on
the plain gray values is their robustness to arbitrary gray value transformations (discussed in detail in
section 9.2.1).

The two resulting scalar datasets (the gradient magnitude and radial component of the gradient di-
rection) are scanned by the transformed kernel points b′1 and b′2 during the integration over all possible
rotations of the kernel function. The scanned region of each kernel point is s(Rai) + Rqi + ri (see
(9.32)), where s(Rai) is a point on the segmentation surface and Rqi a vector with a fixed length that
points from that surface point to the center. For all rotations the sum of these two vectors describe a
“shell” with the radial distance

∥∥q∥∥ to the segmentation border. The last term ri (originating from the

local deformation model) together the Gaussian probability pd

(
ri;
∥∥qi

∥∥) and the integration dri can
be interpreted as a convolution of this shell with a Gaussian, such that the scanned area is smoothly ex-
tended into its neighborhood. This extension is greater if the shell has a bigger distance from the outer
surface. This area is depicted as white overlay in the orthogonal slices in the top row of figure 9.11b
and 9.11c). This “smoothing” has a clear interpretation: By interpreting the segmentation surface as a
set of fix points that are reproducibly found for each pollen grain, and by taking the local deformations
into account, it is obvious, that the relative position of a certain structure to these fix points varies more
if it is farther away. Correspondingly the scan area must be enlarged to increase the probability that it
scans the corresponding structures in two different pollen grains.

Before this smoothing (which is a result of the integration over the local deformation model) takes
effect, The δ-function in (9.35) selects only those points of the structure, whose radial component of
the gradient direction matches the given c1. All the other points do not contribute to the integral. As a
result, the dense 3D data is projected into a sparse representation in the 4D space (see figure 9.12).

This is a very important part of the MiSP invariants. This technique increases the specificity of
the resulting features and at the same time increases the robustness to randomly oriented gradients
originating from noise.

Without this technique, the integration over the local deformation model would result in a simple
low-pass filtering, which just removes all fine structures. This would of course also result in a high
similarity of structure and its deformed version, but it would not be possible to distinguish this structure
from a background-only image (see figure 9.13)

In contrast to this the technique that is used by the MiSP invariants first distributes the voxels ac-
cording to their gradient direction into several images, where the reproducibly oriented points of the
structure will end up in the same image, while the randomly oriented points of the background will be
equally distributed over all images, resulting in a background that is significantly reduced. After this
operation, the integration over the local deformation model will not “smooth away” the fine structures,
resulting in the desired similarity properties (see figure 9.14)
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Figure 9.11: Interpretation of the MiSP invariants: Each kernel point bi scans the radial component
of the gradient direction (displayed as hue) and the gradient magnitude (displayed as in-
tensity) on a “shell” with distance

∥∥qi

∥∥ (and a “smoothing” proportional to
∥∥qi

∥∥) to the
segmentation surface. The segmentation surface and the resulting scan areas for different∥∥qi

∥∥ are displayed as white overlays in the orthogonal slices in the top row and as surface
renderings in the middle row. In the bottom row the scanned areas are shown as function
of the longitude and the colatitude. In this representation the three porates of the Betula(A.4)

pollen grain become clearly visible
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Figure 9.12: Interpretation of MiSP invariants part 2: Projection of the original dense 3D space (repre-
sented by the volume renderings) to the sparse 4D space that is spanned by the parameters.
The table shows for each parameter combination of

∥∥qi

∥∥ (distance to segmentation sur-
face) and c (radial component of the normalized gradient) the sensed signal as function of
the longitude ϑ and the colatitude ϕ
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Figure 9.13: Depiction of the effects of an integration over a local deformation model without using
the gradient direction. A structure on a random background and its deformed version
show no similarity in a direct (voxel-by-voxel) comparison and a high similarity after the
integration over a deformation model (which results here in a simple smoothing). At the
same time this transformation increases the similarity to a background-only image.

Figure 9.14: Depiction of the effects of an integration over a local deformation model that makes use
of the gradient direction. Due to the projection of the original structures into a higher
dimensional space, the integration over the local deformations does not smooth away the
differences between the structure and background.
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9.6 Pseudo Code

9.6 Pseudo Code

A pseudo code for the computation of the MiSP invariants for 3D rotations is shown in algorithm 9.1

Algorithm 9.1 MiSP invariants for 3D rotations invariants= MiSP( X , mask )
Input: volumetric data set X , volumetric mask where object voxels are set to 1
Output: invariants

// compute 4D profile
1: initialize 4D profile to zero // dimensions are the distance to border (“shell”), radial compo-

nent of gradient direction (“gradDir”), ϕ and ϑ
2: initialize 4D weight array with same dimensions as profile
3: compute center of mask as object center
4: D := array (3D) containing radial distance to mask border
5: G := radial component of gradient direction from X
6: M := gradient magnitude from X
7: for all (ϕ, ϑ) do
8: for all positions x on a beam from object center in (ϕ, ϑ) direction do
9: profile(D(x), G(x), ϕ, ϑ) += M(x) // Array access uses tri-linear interpolation

10: weight(D(x), G(x), ϕ, ϑ) += 1
11: end for
12: end for
13: profile := profile / weight
// Integration over local deformations

14: for all shells in profile do
15: σ := σd · shell distance to border
16: smoothProfile(shell) =

∑
d Gaussσ(d) · profile(shell + d)

17: end for
// perform the sperical harmonics transfomations

18: W := array (4D) // dimensions are shell, gradDir, SH degree `, SH order m
19: for all shells in smoothProfile do
20: for all gradDir in smoothProfile do
21: W( shell, gradDir) := SH-Transform( smoothProfile( shell, gradDir))
22: end for
23: end for
// compute the invariants

24: for all kernel parameter sets (q1, q2, c1, c2, ϕcirc) do
25: T =

∑N
l=0 P `

0(cos ϕcirc) ·
∑l

m=0<
(
W (q1, c1, `, m) ·W ∗(q2, c2, `, m)

)
26: append T to list of invariants
27: end for

In the first part (lines 1 – 17) the dense 3D data is mapped into the sparse 4D space (depicted in
figure 9.12). The computation of the radial distance to the border in line 4 can be approximated by the
fast distance transform from Felzenszwalb and Huttenlocher (2004).

In the second part (lines 18 – 23) the spherical harmonics transformation for each shell and gradient
direction is done. Here we can use the fast spherical harmonics transformation from Healy et al. (2003).

In the last part (lines 24 – 27) the invariants are computed from the spherical harmonics based on
equation (7.67).
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10 Experimental Results

10.1 Relevant Statistical Measures

One important aspect in a reasonable evaluation and comparison of the results are the used statistical
measures. For the experiments with pure pollen samples, containing approximately the same number
of samples per class, this is relatively easy. The recognition rate,

reconition rate =
correct classifications

total number of samples
, (10.1)

ranging from 0% to 100% is a meaningful value for the comparison of different experiments or ap-
proaches.

In applications with extremely different numbers of samples per class and of different importance of
these classes, the overall recognition rate might not carry any valuable information. E. g., in the case
of pollen recognition on real air samples, we have an enormous amount of dust particles. Even though
the segmentation already rejects all non-spherical particles, we still have a proportion of about 9:1 for
dust particles per pollen. So a classifier that just assigns every particle to the dust class already returns
a remarkable recognition rate of 90%.

For pollen recognition we need measures, that are independent of the total number of particles, and
that are not biased by the high recognition rates on dust particles. For that we select precision and
recall with the definition that is used in information retrieval. By abbreviating number of true positives
(hits) with ntp, the number of false positives (false alarms) with nfp, and the number of false negatives
(misses) with nfn, we can write

precision =
ntp

ntp + ntn
recall =

ntp

ntp + nfp
. (10.2)

Or a little more intuitive for the example of Alnus(A.2) pollen this results in

precision =

∥∥{correctly classified Alnus}
∥∥∥∥{classified as Alnus}

∥∥ recall =

∥∥{correctly classified Alnus}
∥∥∥∥{true Alnus}

∥∥ . (10.3)

This is illustrated in figure 10.1.

10.1.1 Estimation of the Pollen Concentration in the Air

The most important measure that we want to compute from the resulting pollen counts is the pollen
concentration in the air. So the goal is to optimize the recognition such that the computed pollen
concentration has the lowest possible error.

For this we have to analyze the different error sources within the whole process:

Errors in the Sampling Process

The first and very important error that arises when measuring a particle concentration in air is the error
that results from the random sampling. If we assume a spatially and temporarily constant concentration
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Figure 10.1: For pollen recognition in air samples the overall recognition rate is not a meaningful mea-
sure, because a correct classification of a particle from the largest class (dust particles) has
no relevance for the application. Instead we compute precision and recall for each pollen
taxa.
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for the considered pollen taxon of ctaxon (given in m−3) we can model the number of pollen k, that are
found in a randomly sampled volume v (given in m3) by using the Poisson distribution. The mean
number of pollen in this volume is

ntaxon = v · ctaxon (10.4)

By defining the corresponding random variable as Ntaxon, and the Poisson distribution as Poi(λ) with

Pr
(

Poi(λ) = k
)

=
e−λλk

k!
, (10.5)

we can write

Ntaxon ∼ Poi(ntaxon)
E{Ntaxon} = ntaxon

Var{Ntaxon} = ntaxon .

(10.6)

The same statistics apply for the other pollen and particles. Their concentration is denoted by cother,
and nother is defined accordingly,

Nother ∼ Poi(nother)
E{Nother} = nother

Var{Nother} = nother .

(10.7)

For an easier development of the statistics it is sufficient (without changing the result) to take only
other spherical particles into account, and ignore the remaining.

Errors in the Detection.

The first step of the segmentation is the detection of spherical particles in the volumetric data set. The
threshold for the sphere detector was set so low, that no pollen was lost in a certain amount of typical
air samples. Therefore we neglect errors in this step and assume, that all pollen grains on the sample
are cropped and forwarded to the recognition. As we limited the considered “other particles” also to
spherical particles, the same applies here as above, and we can neglect the errors.

Errors in the Recognition.

So, the finally occurring errors are the errors in the recognition. If we assume a constant quality of the
pollen, the probability to correctly recognize a certain pollen grain is the recall pr for this pollen taxon,
that was computed from the test data set.

In this case the number of true positives ntp can be modeled by the binomial distribution, from the
true number of pollen on the sample k as

p(ntp; k; pr) =
(

k

ntp

)
p

ntp
r (1− pr)k−ntp , (10.8)

where the mean of this distribution is kpr and the variance kpr(1 − pr). For the combined proba-
bilities including sampling and recognition, we do not need to compute the successive application of
these two distributions, but can (for the identical result) combine the recognition rate directly with the
concentration, such that the result is again a Poisson distribution around prntaxon

Ntp ∼ Poi
(
prntaxon

)
(10.9)
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with the respective mean and variance

E{Ntp} = prntaxon

Var{Ntp} = prntaxon
(10.10)

The second source of errors in the recognition is the occurrence of false positives. Due to the different
sources of the particles which are falsely classified to the considered pollen taxa, the models might be
very different. For a first order approximation we neglect these different sources for false positives
and assume, that the probabilities pfp to become a false positive are equal for all the other spherical
particles. This results in a kind of “background noise” that is present on every sample and depends on
the total number of other (spherical) particles nother in the considered volume of air. In analogy to the
derived formulae for the pollen the number of false positives nfp is Poisson distributed around pfpnother,

Nfp ∼ Poi
(
pfpnother

)
(10.11)

Total Error

Due to the fact that the number of particles classified as pollen nest is the sum of the true positive and
the false positive pollen

nest = ntp + nfp . (10.12)

As Ntp and Nfp are statistically independent, we can use the summation property of the Poisson distri-
bution: If X1 ∼ Poi(λ1) and X2 ∼ Poi(λ2) are independent, then X1 +X2 ∼ Poi(λ1 +λ2). Therefore
the random variable Nest is

Nest ∼ Poi
(
prntaxon + pfpnother

)
, (10.13)

and by using the air volume v and the concentrations,

Nest ∼ Poi
(
prvctaxon + pfpvcother

)
, (10.14)

accordingly the mean and the variance are

E{Nest} = v · (prctaxon + pfpcother)
Var{Nest} = v · (prctaxon + pfpcother) .

(10.15)

Finally, to estimate the concentration cest, we have to correct nest for the systematic errors with the
known recall and false-positive-rate as

cest =
1

vpr
nest − pfpcother . (10.16)

Accordingly the variance of the estimated concentration will be

Var{Cest} =
1

v2p2
r
v · (prctaxon + pfpcother)

=
1
v
·

(
1
pr

ctaxon +
pfp

p2
r

cother

)
,

(10.17)

and the standard deviation

σCest =
1√
v
·

√
1
pr

ctaxon +
pfp

p2
r

cother . (10.18)
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From this we can compute the relative error as

σrel =
σCest

ctaxon

=
1√

v · ctaxon
·

√
1
pr

ctaxon +
pfp

p2
r

cother

(10.19)

and by some rearranging we can find a form that separates this formula into the sampling error and a
factor depending on the recognition system,

σrel =
1

√
vctaxon︸ ︷︷ ︸

sampling error

·

√
1
pr

+
pfp

p2
r

· cother

ctaxon︸ ︷︷ ︸
factor due to recognition errors

. (10.20)

10.1.2 Discussion

By taking a closer look at the resulting error we can see the following:

• The sampling volume v appears only in the sampling error, so independent of all other errors, we
can always become better by increasing this sampling volume or correspondingly the evaluation
area on the sample. A doubling of the sampling volume will decrease the sampling error by a
factor of

√
2.

• The “factor due to recognition errors” is 1 for a perfect recognition system with recall pr = 1
and false-positive-rate pfp = 0, and increases with decreasing recall or increasing fp-rate.

• The second term in the “factor due to recognition errors” is always present – a constant back-
ground noise – and can be reduced, if we manage to decrease the false-positive rate pfp or by
increasing the recall pr, e. g. in a setup with 90% recall and 1% false-positive-rate, an increase
of the recall from 90% to 100% allows an increase of the false-positve-rate from 1% to 1.23%
for the identical contribution of this second component

• By computing the ratio of concentrations of the other particles to the considered pollen taxon
cother
ctaxon

from the pollenmonitor data set, we find a mean factor of about 66 for Urtica(D.15) (the most
frequent pollen taxa in our dataset), a factor of 120 for Poaceae(A.6) (the most important pollen
taxa), up to to 3000 for Artemisia(A.1) (the pollen taxa with the highest allergenic impact at low
concentrations). From this we can see, that a slight increase of the false-positive-rate will have a
dramatic impact on the error.

10.1.3 A Better Measure for the False-Positives

As mentioned above, the false-positive-rate pfp is no meaningful measure to compare different pollen
recognition systems, because it can only be given relative to the number of segmented particles, and
this number heavily changes depending on the selected algorithms and thresholds.

By a closer look to the dependencies of the final error on this false-positive-rate, we find, that it
always appears in a product with the concentration of other particles cother. By defining a “false-
positive-concentration”

cfp := pfp · cother , (10.21)

we can introduce a measure, which does not depend on the segmentation parameters anymore, and
which has a clear physical meaning. It is the mean number of false positives, that we will find in
one m3 of air. We can compare this measure (as a kind of background-noise) directly to the pollen-
concentrations that we want to measure to correctly predict the allergenic impact of a certain situation.
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10.2 Results on the Confocal Data Set

10.2.1 Euclidean Invariants on the Confocal Data Set

Our first experiments on automated pollen recognition were done on the “confocal data set” which
was briefly introduced in section 3.1. As mentioned there, the recording quality of the Larix(D.8) and
Pinus(D.10) pollen was too low, such that they were not included in the experiments. Additionally three
raw-data files were corrupted (containing 3 Alnus viridis(A.3), 1 Carpinus(B.1) and 1 Corylus(A.5))1 and
therefore have been left out from the further processing. The remaining raw data volumes were cropped
into single volumes using a cubic region around each grain that was found with a given threshold. The
resulting 385 volumetric data sets of pollen grains from 26 taxa were smoothly scaled down by a factor
of 2 to reduce the computational costs and were padded with zeros to a size of 128× 128× 128 voxels
to ensure that the features are not influenced by the size of the dataset.

To become invariant to linear gray value transformations, the individual data sets were normalized
to unit variance. After that 14 invariants were computed for each data set by evaluating the two-point-
kernel functions,

f1(X) = X(0, 0, 0) ·X(0, 0, 2)

f2(X) =
√

X(0, 0, 0) ·
√

X(0, 0, 2) ,
(10.22)

at 7 different scalings of the object (1:1, 1:2, 1:4, 1:8, 1:16, 1:32 and 1:64). The computations were
done by the fast algorithms introduced in section 7.4, using the freely available FFT implementation
FFTW (Frigo and Johnson, 2005).

For the classification a set of 26 two-class Support Vector Machines (“SVM”) were used, each of
them trained to separate one class from the rest. The kernel function for the SVM (not to be confused
with the kernel functions in the Haar integral) was chosen to be the radial basis function (“RBF”),

k(a,b) = e−γ‖a−b‖2

. (10.23)

There are two free parameters in the SVM training, the regularization parameter c, which defines the
“cost” for training samples on the wrong side of the hyper-plane, and the kernel-parameter γ, which
describes the “distance measure” in the feature space. A big γ results in a “fine-structured” border
between the classes, while a smaller γ results in a “coarse”, more generalized border.

Due to the limited size of the data set, a leave-one-out validation was applied to measure the recog-
nition rate. To reduce the risk of over-fitting only a very low number of different SVM-parameter sets
were tested. The best found results are reported in table 10.1. The overall recognition rate is 91.9%,
which was at the time when we publishesd these results (Ronneberger et al., 2002b,a) better than the
published state of the art, so far.

With the development of our highly optimized SVM implementation libsvmtl that allows to run the
complete leave-one-out validation on this data set within 1 second (on an Opteron 885 at 2.6GHz) we
could significantly improve these results: We applied a prior scaling of each feature to unit standard
deviation within the whole dataset

T ′
i (Xj) =

Ti(Xj)√
1
N

∑N
k=1

(
Ti(Xk)

)2 ∀i ∈ {1, . . . ,M} and j ∈ {1, . . . , N} , (10.24)

where M = 14 is the dimension of the feature vector and N = 385 is the number of samples in the full
dataset. For these scaled features one can easily find SVM-training-parameter combinations for cost c
and kernel-parameter γ which return a leave-one-out recognition rate of 95.6% (see table 10.2). Please
note that this kind of experiments always have a certain risk of over-fitting.

1With a later written converter it was able to recover the raw data of the first two corrupted files, such that in the newer
experiments 389 pollen grains are used.
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Table 10.1: Confusion table for the “confocal data set” with general gray-scale invariants and non-
optimized SVM
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Artemisia 15 15 13 · · · · · · · · · · · · · · · · 1 · · · 1 · · · · 86.7

92.1

Alnus 15 15 · 15 · · · · · · · · · · · · · · · · · · · · · · · · 100
Alnus viridis 12 12 · · 12 · · · · · · · · · · · · · · · · · · · · · · · 100

Betula 15 15 · · · 14 · · · · · · 1 · · · · · · · · · · · · · · · 93.3
Corylus 14 14 · 1 · · 13 · · · · · · · · · · · · · · · · · · · · · 92.9

Poaceae 15 15 · · · · · 15 · · · · · · · · · · · · · · · · · · · · 100
Secale 15 15 · · · · · · 11 · · · · · 3 · · · · · · · · · · 1 · · 73.3

Carpinus 14 14 · · · · · · · 14 · · · · · · · · · · · · · · · · · · 100

87.8
Quercus 15 15 · · · · · · · · 11 · 1 · · · · 1 2 · · · · · · · · · 73.3
Fraxinus 15 15 · · · · · · · · · 12 1 · · · · · · 2 · · · · · · · · 80
Plantago 15 15 · · · · · · · · · 2 13 · · · · · · · · · · · · · · · 86.7

Rumex 15 15 · · · · · · · · · · · 15 · · · · · · · · · · · · · · 100

Fagus 15 15 · · · · · · · · · · · · 15 · · · · · · · · · · · · · 100
97.8Populus 15 15 · · · · · · · · · · · · · 14 · · 1 · · · · · · · · · 93.3

Salix 15 15 · · · · · · · · · · · · · · 15 · · · · · · · · · · · 100

Acer 15 15 · · · · · · · · · · · · · · · 14 · · · · · · · 1 · · 93.3

92.1

Chenopodium 15 15 · · · · · · · · 1 · 1 · · 1 · · 12 · · · · · · · · · 80
Compositae 15 15 · · · · · · · · · · · · · · · · · 15 · · · · · · · · 100

Cruciferae 15 15 · · · · · · · · · · · · · 1 · 1 · · 13 · · · · · · · 86.7
Aesculus 15 15 · · · · · · · · · · · · · · · · · · · 15 · · · · · · 100

Juglans 15 15 · · · · · 1 · 1 · · · · · · · · · · · · 13 · · · · · 86.7
Platanus 15 15 · · · · · · · · · · · · · · · · · · · · · 15 · · · · 100

Taxus 15 15 · · · · · · · · · · · · · · · · · · · · · · 15 · · · 100
Tilia 15 15 · · · · · 1 · · · · · · · · · · · · · · · · · 14 · · 93.3

Ulmus 15 15 · · · · · · · · · · · · · 1 · · · · · · · 2 · · 12 · 80
Urtica 15 15 · · · · · · · · · · · · · · · · · · · · · 1 · · · 14 93.3

precision (%) 100 93.8 100 100 100 88.2 100 93.3 91.7 85.7 76.5 100 83.3 82.4 100 87.5 80 83.3 100 100 100 78.9 100 87.5 100 100
prec. per group (%) 96.9 89 88 91.6

Data type: 3D confocal recordings from manually prepared samples
Training + Test data set: full data set (leave-one-out validation)

Features: 14 gray scale invariants (fully Euclidean motion)
Classifier: SVM (RBF kernel, One-vs-Rest)

Overall Recognition Rate: 91.9% (354/385)
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10.2 Results on the Confocal Data Set

Table 10.2: Confusion table for the “confocal data set” with general gray-scale invariants with feature
scaling and extensive grid search for the SVM training parameters
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Artemisia 15 15 14 · · · · · · · · · · · · · · · · · · · · · · · 1 · 93.3

95

Alnus 15 15 · 15 · · · · · · · · · · · · · · · · · · · · · · · · 100
Alnus viridis 12 12 · · 11 · · · · · · · · · · · · · · · · · · · · · 1 · 91.7

Betula 15 15 · · · 14 · · · 1 · · · · · · · · · · · · · · · · · · 93.3
Corylus 14 14 · · · · 14 · · · · · · · · · · · · · · · · · · · · · 100

Poaceae 15 15 · · · · · 15 · · · · · · · · · · · · · · · · · · · · 100
Secale 15 15 · · · · · · 13 · · · · · 1 · · · · · · · · · · 1 · · 86.7

Carpinus 14 14 · · · · · · · 14 · · · · · · · · · · · · · · · · · · 100

91.9
Quercus 15 15 · · · · · · · · 12 · 1 · · · · 1 1 · · · · · · · · · 80
Fraxinus 15 15 · · · · · · · · · 14 · · · · · · · 1 · · · · · · · · 93.3
Plantago 15 15 · · · 1 · · · · · 1 13 · · · · · · · · · · · · · · · 86.7

Rumex 15 15 · · · · · · · · · · · 15 · · · · · · · · · · · · · · 100

Fagus 15 15 · · · · · · · · · · · · 15 · · · · · · · · · · · · · 100
95.6Populus 15 15 · · · · · · · · 1 · · · · 13 · · 1 · · · · · · · · · 86.7

Salix 15 15 · · · · · · · · · · · · · · 15 · · · · · · · · · · · 100

Acer 15 15 · · · · · · · · · · · · · · · 15 · · · · · · · · · · 100

97.6

Chenopodium 15 15 · · · · · · · 1 · · · · · · · · 14 · · · · · · · · · 93.3
Compositae 15 15 · · · · · · · · · · · · · · · · · 15 · · · · · · · · 100

Cruciferae 15 15 · · · · · · · · · · · · · · · · · · 15 · · · · · · · 100
Aesculus 15 15 · · · · · · · · · · · · · · · · · · · 15 · · · · · · 100

Juglans 15 15 · · · · · · · · · · · · · · · · · · · · 15 · · · · · 100
Platanus 15 15 · · 1 · · · · · · · · · · · · · · · · · · 14 · · · · 93.3

Taxus 15 15 · · · · · · · · · · · · · · · · · · · · · · 15 · · · 100
Tilia 15 15 · · · · · · · · · · · · · · · · · · · · · · · 15 · · 100

Ulmus 15 15 · · · · · · · · · 1 · · · · · · · · · · · 1 · · 13 · 86.7
Urtica 15 15 · · · · · · · · · · · · · · · · · · · · · · · · · 15 100

precision (%) 100 100 91.7 93.3 100 100 100 87.5 92.3 87.5 92.9 100 93.8 100 100 93.8 87.5 93.8 100 100 100 93.3 100 93.8 86.7 100
prec. per group (%) 98 91.9 97.7 95.3

Data type: 3D confocal recordings from manually prepared samples
Training + Test data set: full data set (leave-one-out validation)

Features: 14 gray scale invariants (fully Euclidean motion) (scaled to unit standard deviation)
Classifier: SVM (RBF kernel, One-vs-Rest) (extensive grid search for γ and c)

Overall Recognition Rate: 95.6% (368/385)
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10.2.2 Graph-Cut Segmentation on the Confocal Data Set

By taking a first look at the confocal pollen data, it seemed to be easy to segment the bright pollen
from the dark background just by the application of an appropriate threshold and some additional
morphological steps. These techniques gave satisfactory results for the boundaries in x-y-direction, but
failed at the borders in z-direction (especially the lower border), which are significantly blurred by the
recording process.

In order to extract a robust surface, the graph-cut based algorithm described in section 8.4 was used.
The probabilities for each gray value v to belong to background pbg(v) or to foreground pfg(v) were

modelled with Gaussian distributions. The parameters were computed relative to the mean gray value
v̄ as

µbg = 1 µfg = v̄ (10.25)

σbg =
1√

−2 ln 1
2

· 0.5 · v̄ σfg =
1√

−2 ln 1
2

· v̄ . (10.26)

See figure 10.2 for an example.
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Figure 10.2: Example for the modelled foreground- and background probabilities for a mean gray value
of 100

The pre-factor 1q
−2 ln 1

2

was selected such that the parameter could be provided in a more intuitively

scale relative to the gauss width at half maximum.
The probabilities that two neighboring voxels belong to the same class are also modeled with a

Gaussian, where σv was heuristically determined to be

σv =
4√

−2 ln 1
2

. (10.27)

The relative weight between the voxel-to-voxel edges and the voxel-to-terminal edges was set to 4:1.
With this edge weights, the graph was built using the 125-neighborhood for each voxel. To obtain

a single smooth mask for all pollen taxa and to reduce the typical graph-cut artifacts (borders in the
direction of the voxel-to-voxel edges are preferred), some pre- and post-processing steps have been
applied. The pre-processing steps are

1. smoothing and gamma correction (with γ = 2) of the raw data to reduce noise and emphasize
the important, but dark structures at the border

2. down-sampling of the array by a factor of 4 in each dimension for faster processing and a larger
neighborhood for the graph-cut.
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10.2 Results on the Confocal Data Set

3. plane-wise gray-fill-holes algorithm to fill inner holes in the pollen grains (especially needed for
Taxus(D.12) pollen)

The post-processing steps are:

1. up-scaling of the generated mask by a factor of 4

2. repeated smoothing and binarization of the resulting mask, which removes small bumps while
keeping the coarse shape untouched.

3. connected component labeling to crop the data sets with multiple pollen into individual data sets.

With the selected parameters and the pre- and post-processing, all 389 pollen grains were segmented
satisfactorily. Two typical results are shown in figure 10.3 and figure 10.4. Only for some pollen grains
with an extremely blurred lower border, the results were suboptimal (see figure 10.5), but in these cases
it is even hard for a human to specify the correct position of the border.
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d) border of obtained
mask after graph-cut

Figure 10.3: Graph-cut based segmentation of an Acer(D.1) pollen
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Figure 10.4: Graph-cut based segmentation of a Taxus(D.12) pollen. For this pollen taxa the pre-
processing with the gray-fill-holes algorithm was essential to avoid two distinct regions.
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Figure 10.5: In rare cases the results of the graph-cut segmentation were suboptimal at the lower border
of the object (here a Corylus(A.5) pollen). But even for a human it is hard to specify the
correct position of the border in this data set.
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10.2.3 MiSP Invariants on the Confocal Data Set

After the extraction of the outer border with the graph-cut based segmentation, the MiSP invariants
(introduced in chapter 9) can be applied to this data set.

For the experiments described here we only used kernels with
∥∥q1

∥∥ =
∥∥q2

∥∥ and c1 = c2. For
the application on the confocal data set (allowing full 3D rotations) this results in 3 parameters for
the kernel: The distance q to the segmentation surface, the relative direction of the gradient c and the
desired angular resolution n (see figure 10.6)

q

q

c

c

angular 
resolution n

Figure 10.6: Parameterization of the kernel function with 3 parameters q, c, n for invariance to full 3D
rotations. The thick yellow arrows denote the local gradient direction in the data set. Only
if the radial component of the gradient direction matches c (which is given for all points
on the small circle) then the corresponding gradient magnitude contributes to the Haar
integral. The illustrated surface part symbolizes the outer surface of the segmentation
mask.

For the computation, each voxel of the dense 3D data is first projected into the sparse representation
in the 4D kernel parameter space, defined by each “arm” of the kernel function (q, c, ϕ, ϑ). The advan-
tage of this sparseness is that fine detail information from the original images “survive” the smoothing
effects of the partial Haar-integration over the local deformation model and the extraction of rotation
invariant features (see section 9.5).

For the selected kernels with
∥∥q1

∥∥ =
∥∥q2

∥∥ and c1 = c2 a further reduction of the complexity can
be achieved. In this case the spherical harmonics coefficients W2,`,m and W ′

3,`,m in equation (7.67),
are identical. The final features are only a nonlinear combination of the magnitudes of the computed
SH-coefficients. As this final recombination does not introduce additional information we can omit it,
and instead can use the magnitudes of the SH-coefficients directly.

The best quantizations for the parameters were found by visual inspection of intermediate results
and some leave-one-out experiments. Due to the very high recognition rate (only a few pollen are
misclassified) it did not make sense to base a parameter search on the final recognition rate. The
statistical relevance of one more or one less correctly classified pollen is not very high. The best found
parameters are listed in table 10.3.

By the use of these quantizations, we obtain Nq ×Nc × n = 64 × 7 × 2 = 896 “structural” MiSP
invariants. For the same reason as above, we did not compute the “shape” features. In a leave-one-out
validation with these features using a 1-nearest-neighbor classifier on the full data set we obtained a
recognition rate of 99.2% (386 of 389 pollen). The details and volume renderings of the 3 incorrectly
classified pollen are shown in table 10.4.

Due to the extraction of the structural features relative to the segmentation border a certain scale
invariance is obtained. This may be an explanation for the first two incorrectly classified pollen there.
We suppose that the addition of the “shape” features might have solved this problem, or at least would
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10.2 Results on the Confocal Data Set

Table 10.3: Selected parameters for the computation of the MiSP invariant on the confocal data set

parameter value(s) description

q 64 steps from 2µm outside to 10µm inside radial localization of the “shells” relative
to the segmentation border

c 7 steps from -1 to +1 radial component of the normalized gra-
dient

n 2 spherical harmonic bands for the approx-
imation of the kernel function

σd 0.1 relative deformations for the local defor-
mation model

lead to different (equally sized) wrong nearest neighbors.
In a leave-one-out validation with a support vector machine, using the histogram-intersection kernel

(which is equivalent to the L1 norm) we obtain a recognition rate of 99.5% (387/389): Only 2 pollen
are incorrectly classified: One Alnus(A.2) pollen was classified as Corylus(A.5) and one Betula(A.4) pollen
was classified as Alnus viridis(A.3) (see table 10.5).

The Alnus(A.2) pollen is the same as in the 1NN experiment. The Betula(A.4) pollen that was classified
to Alnus viridis(A.3) is a slight improvement, because Betula(A.4) and Alnus viridis(A.3) belong to the same
family. But nevertheless from the reduction from 3 to 2 incorrectly classified pollen, we can not draw
any reasonable conclusions for the expected performance on a separate test data set.

151



10 Experimental Results

Table 10.4: Confusion table for the “confocal data set” with MiSP invariants
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Artemisia 15 15 15 · · · · · · · · · · · · · · · · · · · · · · · · · 100

98.1

Alnus 15 15 · 14 · · 1 · · · · · · · · · · · · · · · · · · · · · 93.3
Alnus viridis 15 15 · · 15 · · · · · · · · · · · · · · · · · · · · · · · 100

Betula 15 15 · · · 14 · · · · · · 1 · · · · · · · · · · · · · · · 93.3
Corylus 14 14 · · · · 14 · · · · · · · · · · · · · · · · · · · · · 100

Poaceae 15 15 · · · · · 15 · · · · · · · · · · · · · · · · · · · · 100
Secale 15 15 · · · · · · 15 · · · · · · · · · · · · · · · · · · · 100

Carpinus 15 15 · · · · · · · 15 · · · · · · · · · · · · · · · · · · 100

98.7
Quercus 15 15 · · · · · · · · 15 · · · · · · · · · · · · · · · · · 100
Fraxinus 15 15 · · · · · · · · · 14 1 · · · · · · · · · · · · · · · 93.3
Plantago 15 15 · · · · · · · · · · 15 · · · · · · · · · · · · · · · 100

Rumex 15 15 · · · · · · · · · · · 15 · · · · · · · · · · · · · · 100

Fagus 15 15 · · · · · · · · · · · · 15 · · · · · · · · · · · · · 100
100Populus 15 15 · · · · · · · · · · · · · 15 · · · · · · · · · · · · 100

Salix 15 15 · · · · · · · · · · · · · · 15 · · · · · · · · · · · 100

Acer 15 15 · · · · · · · · · · · · · · · 15 · · · · · · · · · · 100

100

Chenopodium 15 15 · · · · · · · · · · · · · · · · 15 · · · · · · · · · 100
Compositae 15 15 · · · · · · · · · · · · · · · · · 15 · · · · · · · · 100

Cruciferae 15 15 · · · · · · · · · · · · · · · · · · 15 · · · · · · · 100
Aesculus 15 15 · · · · · · · · · · · · · · · · · · · 15 · · · · · · 100

Juglans 15 15 · · · · · · · · · · · · · · · · · · · · 15 · · · · · 100
Platanus 15 15 · · · · · · · · · · · · · · · · · · · · · 15 · · · · 100

Taxus 15 15 · · · · · · · · · · · · · · · · · · · · · · 15 · · · 100
Tilia 15 15 · · · · · · · · · · · · · · · · · · · · · · · 15 · · 100

Ulmus 15 15 · · · · · · · · · · · · · · · · · · · · · · · · 15 · 100
Urtica 15 15 · · · · · · · · · · · · · · · · · · · · · · · · · 15 100

precision (%) 100 100 100 100 93.3 100 100 100 100 100 88.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
prec. per group (%) 99 97.4 100 100

Data type: 3D confocal recordings from manually prepared samples
Training + Test data set: full data set (leave-one-out validation)

Features: 896 MiSP invariants (only “structure”, no “shape”; full 3D-rotation )
Classifier: 1 Nearest Neighbor (L1-norm)

Overall Recognition Rate: 99.2% (386/389)

The three incorrectly classified pollen grains with their nearest neighbors

Alnus(A.2) −→ Corylus(A.5) Betula(A.4) −→ Plantago(B.5) Fraxinus(B.4) −→ Plantago(B.5)
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10.2 Results on the Confocal Data Set

Table 10.5: Confusion table for the “confocal data set” with MiSP invariants and SVM classification
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Artemisia 15 15 15 · · · · · · · · · · · · · · · · · · · · · · · · · 100

98.1

Alnus 15 15 · 14 · · 1 · · · · · · · · · · · · · · · · · · · · · 93.3
Alnus viridis 15 15 · · 15 · · · · · · · · · · · · · · · · · · · · · · · 100

Betula 15 15 · · 1 14 · · · · · · · · · · · · · · · · · · · · · · 93.3
Corylus 14 14 · · · · 14 · · · · · · · · · · · · · · · · · · · · · 100

Poaceae 15 15 · · · · · 15 · · · · · · · · · · · · · · · · · · · · 100
Secale 15 15 · · · · · · 15 · · · · · · · · · · · · · · · · · · · 100

Carpinus 15 15 · · · · · · · 15 · · · · · · · · · · · · · · · · · · 100

100
Quercus 15 15 · · · · · · · · 15 · · · · · · · · · · · · · · · · · 100
Fraxinus 15 15 · · · · · · · · · 15 · · · · · · · · · · · · · · · · 100
Plantago 15 15 · · · · · · · · · · 15 · · · · · · · · · · · · · · · 100

Rumex 15 15 · · · · · · · · · · · 15 · · · · · · · · · · · · · · 100

Fagus 15 15 · · · · · · · · · · · · 15 · · · · · · · · · · · · · 100
100Populus 15 15 · · · · · · · · · · · · · 15 · · · · · · · · · · · · 100

Salix 15 15 · · · · · · · · · · · · · · 15 · · · · · · · · · · · 100

Acer 15 15 · · · · · · · · · · · · · · · 15 · · · · · · · · · · 100

100

Chenopodium 15 15 · · · · · · · · · · · · · · · · 15 · · · · · · · · · 100
Compositae 15 15 · · · · · · · · · · · · · · · · · 15 · · · · · · · · 100

Cruciferae 15 15 · · · · · · · · · · · · · · · · · · 15 · · · · · · · 100
Aesculus 15 15 · · · · · · · · · · · · · · · · · · · 15 · · · · · · 100

Juglans 15 15 · · · · · · · · · · · · · · · · · · · · 15 · · · · · 100
Platanus 15 15 · · · · · · · · · · · · · · · · · · · · · 15 · · · · 100

Taxus 15 15 · · · · · · · · · · · · · · · · · · · · · · 15 · · · 100
Tilia 15 15 · · · · · · · · · · · · · · · · · · · · · · · 15 · · 100

Ulmus 15 15 · · · · · · · · · · · · · · · · · · · · · · · · 15 · 100
Urtica 15 15 · · · · · · · · · · · · · · · · · · · · · · · · · 15 100

precision (%) 100 100 93.8 100 93.3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
prec. per group (%) 98.1 100 100 100

Data type: 3D confocal recordings from manually prepared samples
Training + Test data set: full data set (leave-one-out validation)

Features: 896 MiSP invariants (only “structure”, no “shape”; full 3D-rotation )
Classifier: SVM, histogram intersection kernel

Overall Recognition Rate: 99.5% (387/389)

The two incorrectly classified pollen grains

Alnus(A.2)

−→ Corylus(A.5)
Betula(A.4)

−→ Alnus viridis(A.3)
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10 Experimental Results

10.2.4 Comparison to the State of the Art

In this section we want to compare our results to the state of the art of pollen recognition from pure
pollen samples (see section 1.2.1). The extended table is shown in table 10.6.

Our first results using general gray-scale invariants (Ronneberger et al., 2002a) are also presented in
table 10.1 were already much better (higher recognition rates on more different classes) than the state
of the art.

With the identical 14 features we could increase the recognition rate to 95.6% just by scaling the
features to unit variance and a grid search for the best SVM parameters.

In 2004 Qing Wang further improved the results to 97.9% using these 14 features and a modified
gray level normalization (unpublished internal report, (Wang, 2004)). By increasing the number of
features to 38 (by variation of the kernel size and the smoothing) she could increase the recognition
further to 98.7%.

In 2006 Marco Reisert got significantly lower recognition rates on the same data set with a much
larger number of 7680 features, see (Reisert and Burkhardt, 2006). The recognition rates were 96.9%
using an SVM and 94.5% using a 1NN classifier.

The recognition rates obtained by Qing Wang could only be outperformed by the utilization of prior
information from a segmentation and the integration of a deformation model. The corresponding results
are presented in this thesis (tables 10.4 and 10.5) and in (Ronneberger et al., 2007).

A slightly different approach was studied together with Rafael Baumgartner on a “honey pollen data
set” (see section 10.5.2 and Baumgartner (2005)). The use of multi-channel microscopical data can
improve the recognition rates significantly.
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10.2 Results on the Confocal Data Set

Table 10.6: Comparison of our results to the results of other groups (Pure Pollen Samples)

sample
type

micros-
copy

segmen-
tation

features classifier n samples n taxa recogn.
rate

Massey University
New Zealand
(Hodgson et al., 2005) pure 2D morph. texture,

shape
neural net. 184 4 96%

(Allen et al., 2006) " " " " " 1,400 7 98%
" " " " " " 3,800 19 89%
University of Sydney
Australia
(Jones, 2000) pure 2D ? texture,

shape
binary trees 16,220 46

80

76.3%

70.7%
University of Vigo
Spain
(Rodriguez-Damian et al., 2006) pure 2D morph,

snake
texture,
shape

neural net,
SVM

100 3 89%

Delft University of Technology
Netherlands
(Chen et al., 2006) pure 3D thresh. texture,

shape,
specialized

“linear normal
classifier”

254 3 97.2%

University of Freiburg
Germany
(Ronneberger et al., 2002a)
and table 10.1

pure 3D
confo-
cal

not
needed

14 gray scale
invariants

SVM 385 26 92%

table 10.2 " " " " SVM (grid
search)

" " 95.6%

(Wang, 2004) " " " 14 gray scale
invariants
(modified)

" " " 97.9%

(Wang, 2004) " " " 38 gray scale
invariants

" " " 98.7%

(Reisert and Burkhardt, 2006) " " " 7680
directional
SH features

1NN " " 94.5%

(Reisert and Burkhardt, 2006) " " " " SVM " " 96.9%

(Ronneberger et al., 2007)
and table 10.4

" " graph-cut 896 MiSP
invariants

1NN 389 " 99.2%

table 10.5 " " " " SVM " " 99.5%

(Baumgartner, 2005)
and table 10.17

pure 3D, 4
chan-
nels

thresh. multi-
channel
features

SVM 1117 20 96.5%

pure: pure pollen samples
SVM: Support Vector Machine
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10 Experimental Results

10.3 MiSP Detector on Pollenmonitor Data Set

To detect and segment the pollen grains in the pollenmonitor samples the MiSP detector (described in
section 8.2) was applied.

Some typical results of the detection and the subsequent refinement of the border by snakes are
shown in figures 10.7, 10.8, 10.9 and 10.10.

Figure 10.7 shows a low density air sample from March, that resulted in a perfect detection, segmen-
tation and subsequent recognition.

An extreme situation is found in the sample which was taken just a few hours before (figure 10.8).
It contains water droplets and dense particle clusters that originate from melted snow flakes. Here
the particles are located in very different layers, and some pollen grains have not been detected (e. g.
a Corylus(A.5) pollen at the lower right border between the dust particles within the upper left water
droplet). The missed detection of such pollen grains (that were in all probability transported within the
snow flake) is negligible, at least in the present application which provides raw data for the prediction
of the allergenic impact. Please note that pollen which are too close to the border of an image stack are
rejected by the segmentation.

Another extreme situation is shown in figure 10.9, an overcrowded air sample from April. Here the
high amounts of pollen grains corresponds to their concentration in the air and the agglomeration has
presumably taken place directly on the sample and not in the air before. Nearly all of the objects which
are not marked are touching the border. Only very few pollen were missed by the detection. Compared
to the uncertainties (Poisson noise) from the random sampling of an air volume (see section 10.1), this
error is also negligible.

In the air sample in figure 10.10 (recorded in May) a further extreme situation is shown: Enormous
amounts of Picea(D.9) pollen cover the sample. This non-allergenic pollen taxon exhibits significant
departures from a spherical shape and is therefore not correctly detected and segmented. The fractional
parts of such pollen were consequently labeled (and recognized) as non-pollen objects.

High resolution results of the segmentation can be found in the appendices A, B, C and D. There for
each pollen grain the sharpest layer and the found segmentation border is shown.
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10.3 MiSP Detector on Pollenmonitor Data Set

Detection and Segmentation

Recognition

Figure 10.7: Perfect detection, segmentation and recognition on a low density air sample from
March 11, 6:00 a.m.
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Detection and Segmentation

Recognition

Figure 10.8: Detection, segmentation and recognition results of a highly cluttered air sample from
March 11, 2:00 a.m. This air sample contains water droplets and dense particle clusters
that originate from melted snow flakes.
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10.3 MiSP Detector on Pollenmonitor Data Set

Detection and Segmentation

Recognition

Figure 10.9: Detection, segmentation and recognition results of a high density air sample from
April 20, 8:00 p.m.
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Detection and Segmentation

Recognition

Figure 10.10: Detection, segmentation and recognition results of an air sample from May 4, 5:00 p.m
from Zürich. High amounts of Picea(D.9) pollen grains cover the sample. This type of
non-spherical pollen cannot be detected and segmented with the proposed algorithms.
The segmented fractional parts of these pollen grains are labeled as “non-pollen”
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10.4 MiSP Invariants on Pollenmonitor Data Set

10.4 MiSP Invariants on Pollenmonitor Data Set

10.4.1 Features

The feature extraction is performed by the MiSP invariants described in chapter 9. For the application
on the pollenmonitor data set (rotational invariance only around the z-axis), q from equation (9.34) is
split into a radial distance qr from the segmentation border and the z-distance qz from the central plane.

The best sampling of the parameter space of the kernel functions (corresponding to the inner class
deformations of the objects), was found by cross validation on the training data set. The selected
parameters for the “structural” MiSP invariants are listed in table 10.7. The resulting feature vector
has Nqr × Nqz × Nc × n = 31 × 11 × 16 × 16 = 87296 components. All features are proportional
to a scaling of the raw gray values with a factor α. So we can reach invariance to this type of gray
value transformations by the application of a post-processing (see section 6.5.1). We have chosen the
normalization of the feature vector to unit sum here.

Table 10.7: Selected parameters for the computation of the “structural” MiSP invariants on the pollen-
monitor data set

parameter value(s) description

Nqr 31 steps from 0µm to 9.6µm inside radial localization of the “shells” relative
to the segmentation border

Nqz 11 steps from 7.5µm above to 7.5µm below vertical localization of the “shells” rela-
tive to the sharpest layer

Nc 16 steps from -1 to +1 radial component of the normalized gra-
dient

n 16 Fourier coefficients for the approxima-
tion of the kernel function

σd 0.1 relative deformations for the local defor-
mation model

For the “shape” MiSP invariants that are computed using the kernel from eq. 9.22 on the synthetic
channel, the only free parameter is the number of Fourier coefficients n that are used for the approxi-
mation of the kernel function. Here n = 8 was found to give the best results.

For the combination of the “structural” and the “shape” features into one feature vector an additional
parameter has to be found. It depends on the relative amount of information that is contained in the
structure and in the shape of the considered objects and the original range of the features. For the
presented application a relative weighting of 0.01 for the shape features was found to return the best
results.

10.4.2 Training and Test Data Sets

The pollenmonitor data set is described in detail in section 3.2. For the experiments the 326 air samples
from Freiburg and Zürich were split into approximately equal sized sets by using the air samples with
an even index as training set and that with odd index as test set. To be able to test the transferability of
the approach, the air samples from Zürich were not used for training.

For the training set only the “clean” pollen (not agglomerated, not contaminated, well segmented,
etc.) were manually selected from the air samples with an even index from Freiburg, resulting in 1,968
pollen grains. We only use clean pollen, because the addition of contaminated pollen to the training set
has bad effects on the final precision: The feature extraction cannot distinguish between the relevant
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structures and the contamination, such that there is always a high risk that an unknown contaminated
pollen will be assigned to that pollen with a similar contamination pattern instead of that pollen with
the same taxon.

To find a representative set of “non-pollen” objects from the available 85,000 particles a 2-step
approach was used. The first training set was combined from the “clean” pollen and the non-pollen
from a few air samples. With this training set a support vector machine was trained, using the RBF-
kernel (radial basis function) and the one-vs-rest multi-class approach. The best parameters were
selected using cross-validation on this training data set.

After that the resulting SVM was used to classify all remaining particles from the air samples with
an even index. The incorrectly classified “non-pollen” objects were added to the final SVM-training
set, resulting in 1048 non-pollen objects.

Due to the different characteristics of the images recorded in Zürich (because of the different location
and the misadjustment of the optics) we present not only the full test data set (air samples with an odd
index) but also the partial results for each city. The total numbers of training and test pollen in the
different data sets are listed in table 10.8

Table 10.8: Training and Test Sets

training set selected test set test set test set
total Freiburg for SVM Freiburg Zürich Freiburg

training + Zürich

number of air samples: 326 147 146 16 162
corresponding air volume (in m3): 282.94 135.28 128.25 9.31 137.56
number of recorded stacks:
(1392× 1040× 70 voxel each)

27 280 13 043 12 365 898 13 263

transmitted light raw data
(in Tera Byte):

2.764 1.322 1.253 0.091 1.344

number of dust particles: 171 010 85 313 1 048 63 342 16 101 79 443
total number of pollen: 22 750 10 976 1 968 9 994 1 815 11 759
number of indeterm. pollen: 3 838 1 849 0 2 623 261 2 884
number of pollen taxa: 36 31 20 33 17 33

10.4.3 Optimization for High Precision or High Recall

Depending on the application a high recall or a high precision of the results is preferable. In a fully
automated environment, where the results shall be used directly without further human intervention
(e. g. for the indication of the current pollen concentration on a web site or for pollen alerts that are
sent via SMS to allergic people) we identified in section 10.1.2 that a low number of false-positives
(and therefore a high precision) is the most important factor of the system.

If the pollen recognition is used, e. g., for scientific studies where more precise concentration mea-
surements are needed, it might be advantageous to optimize the system for a high recall with a subse-
quent manual removal of the false-positives by a pollen expert. This procedure is still much faster than
a manual counting of the whole sample.

The used one-vs-rest multi-class approach for the support vector machines provides an easy way of
optimization for high recall or optimization for a high precision: During the classification process each
two-class SVM (which is trained to separate one specific pollen taxon from the rest) returns a decision
value that is positive if the test object may belong to this taxon or negative if it may belong to the rest.

There are now two main possibilities to combine these decision values to a final classification result:
The first is to always assign the object to that taxon with the highest decision value. This forces the
classifier to assign every object to one of the available classes and therefore usually results in a high
recall but with a high number of false positives. The alternative is to only assign the test object to a
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10.4 MiSP Invariants on Pollenmonitor Data Set

class if exactly one of the decision values is positive and all the others are negative. In cases with more
than one positive decision value or only negative decision values, the object is rejected and classified
as unknown. With this technique only the “sure” candidates are assigned to a specific class and the
“unsure” are rejected, which results usually in a low number of false-positives (and therefore in a high
precision) at the expense of the recall.

10.4.4 Results

For all experiments, the used training data set was the same, containing only pollen from Freiburg.
The trained SVM was applied to classify different test data sets with and without rejection. The results
were grouped for the different pollen taxa according to their allergenic relevance.

The grouped results are listed in table 10.9. Those results, that were taken into account for the
optimization of the system are set in boldface:

The most important demand in pollen forecasts is a high precision for the highly allergenic pollen
taxa. All other pollen taxa are not included in the forecasts at present.

For other applications of the MiSP invariants the most interesting fact is their performance on a large
number of different objects. Here either a high precision or a high recall might be of interest.

Table 10.9: Overall recognition results on the pollenmonitor data set. The results that were taken into
account for the optimization of the system are set in boldface.

Freiburg Zürich Freiburg+Zürich
precision / recall precision / recall precision / recall

with rejection all pollen 97.2% / 84.6% 94.3% / 83.1% 96.7% / 84.3%
(high precision) highly allergenic 98.7% / 87.5% 92.4% / 64.0% 98.5% / 86.5%

mod. allergenic 96.4% / 87.8% 95.0% / 75.9% 96.1% / 85.5%
lowly allergenic 92.8% / 85.3% 97.4% / 94.7% 96.1% / 91.9%

no rejection all pollen 92.0% / 91.4% 89.2% / 92.6% 91.5% / 91.6%x
(high recall) highly allergenic 94.6% / 93.5% 76.2% / 81.6% 93.8% / 93.0%

mod. allergenic 89.9% / 93.7% 89.7% / 89.6% 89.9% / 92.9%
lowly allergenic 79.1% / 90.4% 95.9% / 98.4% 90.5% / 96.0%

The precision and recall per pollen taxon for the full test set “Freiburg+Zürich” are provided in figure
10.11. We can clearly see the effect, that omitting the rejection increases the recall, while the precision
is reduced.

163



10 Experimental Results

pollen taxa precision [%]
(test samples) recall [%]

Artemisia (30) 96.0
80.0

Alnus (890) 98.0
84.4

Betula (1035) 98.8
90.1

Corylus (95) 96.2
78.9

Poaceae (678) 99.1
85.0

Carpinus (1131) 99.0
93.7

Quercus (732) 92.3
75.8

Fraxinus (563) 95.7
82.2

Plantago (110) 91.7
90.9

Rumex (38) 91.7
57.9

Fagus (1102) 96.3
93.3

Populus (23) 66.7
26.1

Chenopodium (41) 92.6
61.0

Aesculus (13) 100.0
7.7

Juglans (142) 94.7
50.7

Larix (29) 22.8
44.8

Platanus (907) 97.7
69.8

Taxus (78) 97.3
46.2

Urtica (1094) 98.5
90.6

Sambucus (39) 78.9
76.9

pollen taxa precision [%]
(test samples) recall [%]

Artemisia (30) 72.5
96.7

Alnus (890) 92.2
90.8

Betula (1035) 94.1
95.7

Corylus (95) 87.2
86.3

Poaceae (678) 97.5
92.5

Carpinus (1131) 94.4
96.4

Quercus (732) 86.6
89.1

Fraxinus (563) 91.8
91.7

Plantago (110) 78.9
95.5

Rumex (38) 48.3
73.7

Fagus (1102) 92.2
97.3

Populus (23) 26.7
34.8

Chenopodium (41) 64.7
80.5

Aesculus (13) 62.5
38.5

Juglans (142) 88.5
64.8

Larix (29) 17.3
48.3

Platanus (907) 95.8
87.0

Taxus (78) 92.7
65.4

Urtica (1094) 96.8
92.6

Sambucus (39) 56.9
84.6

Figure 10.11: Comparison of precision and recall for the classification with rejection (left) and without
rejection (right) on the full test set (Freiburg+Zürich). The color of the pollen names
(red,orange,yellow,blue) represents their allergenic level (high,moderate,low,none)
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10.4.5 Detailed Results

Every set of statistics can only provide a reduced view of the real performance of a system. So we made
a considerable effort to find representations of the results which provide a view to the real performance
which is as unbiased as possible.

For a better description of the overall recognition rate the full confusion tables for each experiment
are provided in the tables 10.10 and 10.11 for the test set “Freiburg”, in the tables 10.12 and 10.13 for
the test set “Zürich”, and in the tables 10.14 and 10.15 for the full test set “Freiburg+Zürich”.

In these tables the text color (red, orange, yellow, black) indicates the allergenic level of the taxa
(high, moderate, low, none). The background color (red, orange, yellow, gray) is choosen according
to the impact of a misclassification in a non-supervised operation of the pollenmonitor. Red indicates
a high impact while gray denotes a low impact. Pollen taxa, that were not in the training data set are
written in brackets. For the computation of the precision the “indeterm.” pollen are not taken into
account.

But even these tables provide only a rough impression of the true performance of the system. Due
to the very high variabilities in the air samples, concerning the particle density on the sample, the
type of other particles, the degradation and contamination of the pollen grains, etc., the correct or
incorrect classification of a certain pollen grain should be weighted with its “difficulty”. But instead
of introducing a subjective “difficulty” here, we decided to provide detailed appendices (A, B, C,
and D) with a representative subset of the correctly and incorrectly classified pollen grains for each
taxon. To obtain an objective subset of the true-positives, the rejected, the false-negatives, and the
unknown-positives2, the pollen grains in each group were sorted by the decision value of the support
vector machine, which can be interpreted as a kind of certainty for the classification. From this sorted
list every n′th pollen grain was taken (starting with the “best” down to the “worst”), where n was
computed such that the number of retrieved images fits on a double page. The decision values are
provided there below each pollen grain, and for each incorrectly classified pollen grain the true and
the classified taxon is listed. (In the electronic version of this document each pollen name is hyper-
linked to its page in the appendix). For each pollen grain only the sharpest layer from the 3D stack is
displayed together with the found segmentation border. The reduction to only the sharpest layer hides
important information in several cases, especially for the incorrectly classified pollen grains, were the
“reasons” for the incorrect classification are often located in the other layers. But this 3D information
was considered to be not so important as the display of many different individuals of this pollen taxon
on the double page.

2the unknown-positives are those pollen grains which were labeled as “indeterm.” by the pollen experts, which means that
they were not able to unequivocally classify them.
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Table 10.10: Confusion Table for Freiburg; Highest Precision
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indeterm. - 2623 (710) (1482) (3) (7) (22) (5) (36) (13) (52) (16) (49) (16) (33) (1) (4) · (1) · (43) (10) (117) (3)

no pollen 1048 63342 1486 61765 · 7 2 1 1 4 16 2 · · 12 · 1 · 1 14 7 · 15 8 97.5

Artemisia 24 30 6 · 24 · · · · · · · · · · · · · · · · · · · 80

87.5
Alnus 145 882 94 41 · 745 2 · · · · · · · · · · · · · · · · · 84.5

Betula 231 936 55 8 · 3 870 · · · · · · · · · · · · · · · · · 92.9
Corylus 44 94 13 6 · · · 75 · · · · · · · · · · · · · · · · 79.8

Poaceae 424 672 83 7 · · 1 · 572 4 2 · 2 1 · · · · · · · · · · 85.1
(Secale) - 1 1 · · · · · · · · · · · · · · · · · · · · · (0)

(Ambrosia) - 2 1 · · · · · · · · · · · · · 1 · · · · · · · (0)

Carpinus 193 1110 47 9 · · 4 · · 1047 · · · · 1 1 · · 1 · · · · · 94.3

87.8
Quercus 59 283 60 7 · 1 · · · 1 209 3 1 · 1 · · · · · · · · · 73.9
Fraxinus 160 538 76 9 · · · · · · · 447 · · · 2 · · · · 4 · · · 83.1
Plantago 63 109 8 · · 1 · · · · 1 · 99 · · · · · · · · · · · 90.8

Rumex 14 36 15 · · · · · · · · · 1 20 · · · · · · · · · · 55.6
(Ostr. Carp.) - 1 · · · · · · · · 1 · · · · · · · · · · · · · (0)

Fagus 135 311 25 4 · · · · 2 · 1 · · · 279 · · · · · · · · · 89.7
85.3

Populus 13 23 13 · · · · · · · 2 1 · · · 6 · · · · · 1 · · 26.1
(Castanea) - 11 5 6 · · · · · · · · · · · · · · · · · · · · (0)

(Salix) - 13 6 2 · · 1 · · · · 1 · · · · · · · · 3 · · · (0)

Chenopodium 17 41 13 · · · · · · · · · 3 · · · 25 · · · · · · · 61

78.1

Aesculus 2 13 9 2 · · · · · · · 1 · · · · · 1 · · · · · · 7.69
Juglans 25 104 35 3 · · · · · 1 · · · · 5 · · · 60 · · · · · 57.7

Larix 3 29 2 14 · · · · · · · · · · · · · · · 13 · · · · 44.8
Platanus 161 847 220 21 · 1 · · · · · 11 · · · · · · · · 594 · · · 70.1

Taxus 27 72 28 8 · · · · · · 1 · 1 · · · · · · · · 34 · · 47.2
Urtica 165 1094 46 55 1 · · · · · · · · 1 · · · · · · · · 991 · 90.6

Sambucus 63 39 5 4 · · · · · · · · · · · · · · · · · · · 30 76.9
(Acer) - 3 · · · · · · · · 3 · · · · · · · · · · · · · (0)

(Humulus) - 1 · · · · · 1 · · · · · · · · · · · · · · · · (0)
(Compositae) - 1 · 1 · · · · · · · · · · · · · · · · · · · · (0)

(Picea) - 5 · 2 · · · · · · · · · · · · · · · 3 · · · · (0)
(Pinus) - 1 · 1 · · · · · · · · · · · · · · · · · · · · (0)

(Tilia) - 5 4 · · · · · · · 1 · · · · · · · · · · · · · (0)
(Ulmus) - 12 11 · · · · · · · 1 · · · · · · · · · · · · · (0)

(Cyperaceae) - 2 2 1 · · · · · · · 1 · · · · · · · · · · · · (0)

precision (%) 96 98.3 98.9 97.4 99.5 99.1 87.8 95.7 92.5 90.9 93.6 66.7 92.6 100 96.8 43.3 97.7 97.1 98.5 78.9
prec. per group (%) 98.7 96.4 92.8 96.7

Training data set: Freiburg (even air sample indices)
Test data set: Freiburg (odd air sample indices)

Classification Scheme: Reject, if 0 or more than 1 positive decision values
Data type: Real air samples from pollenmonitor, 3D transmitted light, no fluorescence
Features: 87,296 MiSP invariants (“structure” and “shape”; only ϕz-rotation)

Classifier: SVM (RBF-kernel, One-vs-Rest)
Overall Precision: 97.2% (6141/6320)

Overall Recall: 84.6% (6141/7263)
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10.4 MiSP Invariants on Pollenmonitor Data Set

Table 10.11: Confusion Table for Freiburg; Highest Recall
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indeterm. - 2623 (1813) (11) (29) (50) (12) (66) (24) (100) (45) (76) (44) (53) (6) (20) (1) (3) · (88) (24) (150) (8)

no pollen 1048 63342 63053 1 38 23 2 3 32 38 4 1 10 37 9 8 · 4 21 14 · 29 15 99.5

Artemisia 24 30 1 29 · · · · · · · · · · · · · · · · · · · 96.7

93.5
Alnus 145 882 69 1 801 10 · · · · · · · · 1 · · · · · · · · 90.8

Betula 231 936 20 · 6 909 1 · · · · · · · · · · · · · · · · 97.1
Corylus 44 94 12 · · · 82 · · · · · · · · · · · · · · · · 87.2

Poaceae 424 672 23 · · 4 1 622 7 6 · 3 3 · 1 · · · · 1 1 · · 92.6
(Secale) - 1 · · · · · · · · · · · 1 · · · · · · · · · (0)

(Ambrosia) - 2 · · · · · · · · · · · · · 2 · · · · · · · (0)

Carpinus 193 1110 21 · · 5 · · 1075 3 · · · 3 1 · · 2 · · · · · 96.8

93.7
Quercus 59 283 17 · 3 1 1 · 1 244 7 2 · 2 2 1 · · · 1 1 · · 86.2
Fraxinus 160 538 20 1 4 · · 1 · 2 496 3 · · 3 · 1 · · 7 · · · 92.2
Plantago 63 109 · · 1 1 · · 1 2 · 104 · · · · · · · · · · · 95.4

Rumex 14 36 · · · · 1 2 · 1 · 4 26 · · · · · · 2 · · · 72.2
(Ostr. Carp.) - 1 · · · · · · · 1 · · · · · · · · · · · · · (0)

Fagus 135 311 7 · · · · 3 3 1 · · · 294 · · · 3 · · · · · 94.5
90.4

Populus 13 23 1 · 1 · · 1 · 3 7 · 1 · 8 · · · · · 1 · · 34.8
(Castanea) - 11 8 · · · · · · · · · · · · · 1 · · · · · 2 (0)

(Salix) - 13 3 1 · 2 · · · · 1 · · · · · · · · 4 · 2 · (0)

Chenopodium 17 41 · · · 1 · · · · · 7 · · · 33 · · · · · · · 80.5

87.1

Aesculus 2 13 2 1 2 · · · · · 1 1 · · · · 5 · · 1 · · · 38.5
Juglans 25 104 4 · · · · 1 7 1 · · · 19 · · · 72 · · · · · 69.2

Larix 3 29 15 · · · · · · · · · · · · · · · 14 · · · · 48.3
Platanus 161 847 62 4 4 2 · · · · 21 · 9 · · · 1 · · 734 1 3 6 86.7

Taxus 27 72 16 1 · 1 1 · · 2 1 1 1 · · · · · · 1 47 · · 65.3
Urtica 165 1094 76 1 · · · · · · · · 2 · · · · · · 1 · 1013 1 92.6

Sambucus 63 39 6 · · · · · · · · · · · · · · · · · · · 33 84.6
(Acer) - 3 · · · · · · · 3 · · · · · · · · · · · · · (0)

(Humulus) - 1 · · · · 1 · · · · · · · · · · · · · · · · (0)
(Compositae) - 1 1 · · · · · · · · · · · · · · · · · · · · (0)

(Picea) - 5 2 · · · · · · · · · · · · · · · 3 · · · · (0)
(Pinus) - 1 1 · · · · · · · · · · · · · · · · · · · · (0)

(Tilia) - 5 2 · · · · · · 3 · · · · · · · · · · · · · (0)
(Ulmus) - 12 · · 1 · · · · 9 · · · · 1 1 · · · · · · · (0)

(Cyperaceae) - 2 1 · · · · · · 2 1 · · · · · · · · · · · · (0)

precision (%) 72.5 93 94.8 91.1 98.3 95.5 76 92 82.5 50 82.6 30.8 73.3 62.5 88.9 36.8 95.8 92.2 96.8 57.9
prec. per group (%) 94.6 89.9 79.1 93.2

Training data set: Freiburg (even sample indices)
Test data set: Freiburg (odd sample indices)

Classification Scheme: Highest decision value always wins
Data type: Real air samples from pollenmonitor, 3D transmitted light, no fluorescence
Features: 87,296 MiSP invariants (“structure” and “shape”; only ϕz-rotation)

Classifier: SVM (RBF-kernel, One-vs-Rest)
Overall Precision: 92% (6641/7222)

Overall Recall: 91.4% (6641/7263)
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10 Experimental Results

Table 10.12: Confusion Table for Zürich; Highest Precision

Tr
ue

C
la

ss

Classified As...

nu
m

be
ro

f
tr

ai
ni

ng
sa

m
pl

es

nu
m

be
ro

f
te

st
sa

m
pl

es

re
je

ct
ed

no
po

lle
n

A
rt

em
is

ia
A

ln
us

B
et

ul
a

C
or

yl
us

Po
ac

ea
e

C
ar

pi
nu

s

Q
ue

rc
us

Fr
ax

in
us

P
la

nt
ag

o

R
um

ex

Fa
gu

s

Po
pu

lu
s

C
he

no
po

di
um

A
es

cu
lu

s
Ju

gl
an

s

La
rix

P
la

ta
nu

s

Ta
xu

s

U
rt

ic
a

S
am

bu
cu

s

re
ca

ll
(%

)

re
c.

pe
r

gr
ou

p
(%

)

indeterm. - 261 (116) (36) · (1) (1) · (4) · (63) (2) · · (15) (1) (1) · (1) · (17) · (2) (1)

no pollen 1048 16101 396 15665 · · 1 · · · 8 · · · 8 · · · · 22 1 · · · 97.3

Artemisia 24 - · · · · · · · · · · · · · · · · · · · · · · -

64
Alnus 145 8 2 · · 6 · · · · · · · · · · · · · · · · · · 75

Betula 231 99 31 2 · 1 63 1 1 · · · · · · · · · · · · · · · 63.6
Corylus 44 1 1 · · · · · · · · · · · · · · · · · · · · · 0

Poaceae 424 6 1 · · · · · 4 · · · · · 1 · · · · · · · · · 66.7

Carpinus 193 21 5 1 · · · · · 13 2 · · · · · · · · · · · · · 61.9

75.9
Quercus 59 449 88 12 · · · · · · 346 · · · 2 · · · 1 · · · · · 77.1
Fraxinus 160 25 6 · · 1 · · 1 · · 16 1 · · · · · · · · · · · 64
Plantago 63 1 · · · · · · · · · · 1 · · · · · · · · · · · 100

Rumex 14 2 · · · · · · · · · · · 2 · · · · · · · · · · 100

Fagus 135 791 37 3 · · · · · · 1 · · · 749 · · · 1 · · · · · 94.7
94.7

Populus 13 - · · · · · · · · · · · · · · · · · · · · · · -

Chenopodium 17 - · · · · · · · · · · · · · · · · · · · · · · -

51

Aesculus 2 - · · · · · · · · · · · · · · · · · · · · · · -
Juglans 25 38 14 3 · · · · · · 1 · · · 8 · · · 12 · · · · · 31.6

Larix 3 - · · · · · · · · · · · · · · · · · · · · · · -
Platanus 161 60 19 2 · · · · · · · · · · · · · · · · 39 · · · 65

Taxus 27 6 4 · · · · · · · · · · · · · · · · · · 2 · · 33.3
Urtica 165 - · · · · · · · · · · · · · · · · · · · · · · -

Sambucus 63 - · · · · · · · · · · · · · · · · · · · · · · -
(Acer) - 8 1 1 · · · · · · 4 1 · · 1 · · · · · · · · · (0)

(Humulus) - 1 1 · · · · · · · · · · · · · · · · · · · · · (0)
(Picea) - 35 6 24 · · · · · · · · · · · · · · · 5 · · · · (0)

(Cyperaceae) - 3 1 · · · · · · 1 1 · · · · · · · · · · · · · (0)

precision (%) 75 98.4 0 66.7 92.9 95.3 94.1 50 100 97.4 85.7 0 97.5 100
prec. per group (%) 92.4 95 97.4 63.9

Training data set: Freiburg (even sample indices)
Test data set: Zürich (odd sample indices)

Classification Scheme: Reject, if 0 or more than 1 positive decision values
Data type: Real air samples from pollenmonitor, 3D transmitted light, no fluorescence
Features: 87,296 MiSP invariants (“structure” and “shape”; only ϕz-rotation)

Classifier: SVM (RBF-kernel, One-vs-Rest)
Overall Precision: 94.3% (1253/1329)

Overall Recall: 83.1% (1253/1507)
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10.4 MiSP Invariants on Pollenmonitor Data Set

Table 10.13: Confusion Table for Zürich; Highest Recall

Tr
ue

C
la

ss

Classified As...

nu
m

be
ro

f
tr

ai
ni

ng
sa

m
pl

es

nu
m

be
ro

f
te

st
sa

m
pl

es

no
po

lle
n

A
rt

em
is

ia
A

ln
us

B
et

ul
a

C
or

yl
us

Po
ac

ea
e

C
ar

pi
nu

s

Q
ue

rc
us

Fr
ax

in
us

P
la

nt
ag

o

R
um

ex

Fa
gu

s

Po
pu

lu
s

C
he

no
po

di
um

A
es

cu
lu

s
Ju

gl
an

s

La
rix

P
la

ta
nu

s

Ta
xu

s

U
rt

ic
a

S
am

bu
cu

s

re
ca

ll
(%

)

re
c.

pe
r

gr
ou

p
(%

)

indeterm. - 261 (76) · (7) (4) (1) (7) (2) (86) (4) (2) (4) (28) (2) (2) · (4) · (29) · (2) (1)

no pollen 1048 16101 16008 · 1 11 · · 11 12 · · 4 11 · 5 · · 36 1 · · 1 99.4

Artemisia 24 - · · · · · · · · · · · · · · · · · · · · · -

81.6
Alnus 145 8 1 · 7 · · · · · · · · · · · · · · · · · · 87.5

Betula 231 99 7 · 5 81 2 2 · · · 1 · · · 1 · · · · · · · 81.8
Corylus 44 1 · · · 1 · · · · · · · · · · · · · · · · · 0

Poaceae 424 6 · · · · · 5 · · · · · 1 · · · · · · · · · 83.3

Carpinus 193 21 2 · · · · · 15 4 · · · · · · · · · · · · · 71.4

89.6
Quercus 59 449 23 · 1 · 2 1 · 408 1 4 · 3 4 · · 2 · · · · · 90.9
Fraxinus 160 25 1 · 1 · · 1 · · 20 1 · · · · · · · 1 · · · 80
Plantago 63 1 · · · · · · · · · 1 · · · · · · · · · · · 100

Rumex 14 2 · · · · · · · · · · 2 · · · · · · · · · · 100

Fagus 135 791 11 · · · · · · 1 · · · 778 · · · 1 · · · · · 98.4
98.4

Populus 13 - · · · · · · · · · · · · · · · · · · · · · -

Chenopodium 17 - · · · · · · · · · · · · · · · · · · · · · -

76

Aesculus 2 - · · · · · · · · · · · · · · · · · · · · · -
Juglans 25 38 3 · · · · · · 2 · · · 13 · · · 20 · · · · · 52.6

Larix 3 - · · · · · · · · · · · · · · · · · · · · · -
Platanus 161 60 5 · · · · · · · · · · · · · · · · 55 · · · 91.7

Taxus 27 6 1 · · · · · · · · · · · · · · · · 1 4 · · 66.7
Urtica 165 - · · · · · · · · · · · · · · · · · · · · · -

Sambucus 63 - · · · · · · · · · · · · · · · · · · · · · -
(Acer) - 8 1 · · · · · · 4 2 · · 1 · · · · · · · · · (0)

(Humulus) - 1 · · · · · 1 · · · · · · · · · · · · · · · (0)
(Picea) - 35 26 · · · · · 2 · · · · · · · · · 7 · · · · (0)

(Cyperaceae) - 3 1 · · · · · 1 1 · · · · · · · · · · · · · (0)

precision (%) 46.7 87.1 0 50 51.7 94.4 87 14.3 33.3 96.4 0 0 87 0 94.8 100 0
prec. per group (%) 76.2 89.7 95.9 58.5

Training data set: Freiburg (even sample indices)
Test data set: Zürich (odd sample indices)

Classification Scheme: Highest decision value always wins
Data type: Real air samples from pollenmonitor, 3D transmitted light, no fluorescence
Features: 87,296 MiSP invariants (“structure” and “shape”; only ϕz-rotation)

Classifier: SVM (RBF-kernel, One-vs-Rest)
Overall Precision: 89.2% (1396/1565)

Overall Recall: 92.6% (1396/1507)
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10 Experimental Results

Table 10.14: Confusion Table for Freiburg+Zürich; Highest Precision
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indeterm. - 2884 (826) (1518) (3) (8) (23) (5) (40) (13) (115) (18) (49) (16) (48) (2) (5) · (2) · (60) (10) (119) (4)

no pollen 1048 79443 1882 77430 · 7 3 1 1 4 24 2 · · 20 · 1 · 1 36 8 · 15 8 97.5

Artemisia 24 30 6 · 24 · · · · · · · · · · · · · · · · · · · 80

86.5
Alnus 145 890 96 41 · 751 2 · · · · · · · · · · · · · · · · · 84.4

Betula 231 1035 86 10 · 4 933 1 1 · · · · · · · · · · · · · · · 90.1
Corylus 44 95 14 6 · · · 75 · · · · · · · · · · · · · · · · 78.9

Poaceae 424 678 84 7 · · 1 · 576 4 2 · 2 1 1 · · · · · · · · · 85
(Secale) - 1 1 · · · · · · · · · · · · · · · · · · · · · (0)

(Ambrosia) - 2 1 · · · · · · · · · · · · · 1 · · · · · · · (0)

Carpinus 193 1131 52 10 · · 4 · · 1060 2 · · · 1 1 · · 1 · · · · · 93.7

85.5
Quercus 59 732 148 19 · 1 · · · 1 555 3 1 · 3 · · · 1 · · · · · 75.8
Fraxinus 160 563 82 9 · 1 · · 1 · · 463 1 · · 2 · · · · 4 · · · 82.2
Plantago 63 110 8 · · 1 · · · · 1 · 100 · · · · · · · · · · · 90.9

Rumex 14 38 15 · · · · · · · · · 1 22 · · · · · · · · · · 57.9
(Ostr. Carp.) - 1 · · · · · · · · 1 · · · · · · · · · · · · · (0)

Fagus 135 1102 62 7 · · · · 2 · 2 · · · 1028 · · · 1 · · · · · 93.3
91.9

Populus 13 23 13 · · · · · · · 2 1 · · · 6 · · · · · 1 · · 26.1
(Castanea) - 11 5 6 · · · · · · · · · · · · · · · · · · · · (0)

(Salix) - 13 6 2 · · 1 · · · · 1 · · · · · · · · 3 · · · (0)

Chenopodium 17 41 13 · · · · · · · · · 3 · · · 25 · · · · · · · 61

76.9

Aesculus 2 13 9 2 · · · · · · · 1 · · · · · 1 · · · · · · 7.69
Juglans 25 142 49 6 · · · · · 1 1 · · · 13 · · · 72 · · · · · 50.7

Larix 3 29 2 14 · · · · · · · · · · · · · · · 13 · · · · 44.8
Platanus 161 907 239 23 · 1 · · · · · 11 · · · · · · · · 633 · · · 69.8

Taxus 27 78 32 8 · · · · · · 1 · 1 · · · · · · · · 36 · · 46.2
Urtica 165 1094 46 55 1 · · · · · · · · 1 · · · · · · · · 991 · 90.6

Sambucus 63 39 5 4 · · · · · · · · · · · · · · · · · · · 30 76.9
(Acer) - 11 1 1 · · · · · · 7 1 · · 1 · · · · · · · · · (0)

(Humulus) - 2 1 · · · · 1 · · · · · · · · · · · · · · · · (0)
(Compositae) - 1 · 1 · · · · · · · · · · · · · · · · · · · · (0)

(Picea) - 40 6 26 · · · · · · · · · · · · · · · 8 · · · · (0)
(Pinus) - 1 · 1 · · · · · · · · · · · · · · · · · · · · (0)

(Tilia) - 5 4 · · · · · · · 1 · · · · · · · · · · · · · (0)
(Ulmus) - 12 11 · · · · · · · 1 · · · · · · · · · · · · · (0)

(Cyperaceae) - 5 3 1 · · · · · 1 1 1 · · · · · · · · · · · · (0)

precision (%) 96 98 98.8 96.2 99.1 99 92.3 95.7 91.7 91.7 96.3 66.7 92.6 100 94.7 22.8 97.7 97.3 98.5 78.9
prec. per group (%) 98.5 96.1 96.1 95.3

Training data set: Freiburg (even sample indices)
Test data set: Freiburg + Zürich (odd sample indices)

Classification Scheme: Reject, if 0 or more than 1 positive decision values
Data type: Real air samples from pollenmonitor, 3D transmitted light, no fluorescence
Features: 87,296 MiSP invariants (“structure” and “shape”; only ϕz-rotation)

Classifier: SVM (RBF-kernel, One-vs-Rest)
Overall Precision: 96.7% (7394/7649)

Overall Recall: 84.3% (7394/8770)
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10.4 MiSP Invariants on Pollenmonitor Data Set

Table 10.15: Confusion Table for Freiburg+Zürich; Highest Recall
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indeterm. - 2884 (1889) (11) (36) (54) (13) (73) (26) (186) (49) (78) (48) (81) (8) (22) (1) (7) · (117) (24) (152) (9)

no pollen 1048 79443 79061 1 39 34 2 3 43 50 4 1 14 48 9 13 · 4 57 15 · 29 16 99.5

Artemisia 24 30 1 29 · · · · · · · · · · · · · · · · · · · 96.7

93
Alnus 145 890 70 1 808 10 · · · · · · · · 1 · · · · · · · · 90.8

Betula 231 1035 27 · 11 990 3 2 · · · 1 · · · 1 · · · · · · · 95.7
Corylus 44 95 12 · · 1 82 · · · · · · · · · · · · · · · · 86.3

Poaceae 424 678 23 · · 4 1 627 7 6 · 3 3 1 1 · · · · 1 1 · · 92.5
(Secale) - 1 · · · · · · · · · · · 1 · · · · · · · · · (0)

(Ambrosia) - 2 · · · · · · · · · · · · · 2 · · · · · · · (0)

Carpinus 193 1131 23 · · 5 · · 1090 7 · · · 3 1 · · 2 · · · · · 96.4

92.9
Quercus 59 732 40 · 4 1 3 1 1 652 8 6 · 5 6 1 · 2 · 1 1 · · 89.1
Fraxinus 160 563 21 1 5 · · 2 · 2 516 4 · · 3 · 1 · · 8 · · · 91.7
Plantago 63 110 · · 1 1 · · 1 2 · 105 · · · · · · · · · · · 95.5

Rumex 14 38 · · · · 1 2 · 1 · 4 28 · · · · · · 2 · · · 73.7
(Ostr. Carp.) - 1 · · · · · · · 1 · · · · · · · · · · · · · (0)

Fagus 135 1102 18 · · · · 3 3 2 · · · 1072 · · · 4 · · · · · 97.3
96

Populus 13 23 1 · 1 · · 1 · 3 7 · 1 · 8 · · · · · 1 · · 34.8
(Castanea) - 11 8 · · · · · · · · · · · · · 1 · · · · · 2 (0)

(Salix) - 13 3 1 · 2 · · · · 1 · · · · · · · · 4 · 2 · (0)

Chenopodium 17 41 · · · 1 · · · · · 7 · · · 33 · · · · · · · 80.5

86.6

Aesculus 2 13 2 1 2 · · · · · 1 1 · · · · 5 · · 1 · · · 38.5
Juglans 25 142 7 · · · · 1 7 3 · · · 32 · · · 92 · · · · · 64.8

Larix 3 29 15 · · · · · · · · · · · · · · · 14 · · · · 48.3
Platanus 161 907 67 4 4 2 · · · · 21 · 9 · · · 1 · · 789 1 3 6 87

Taxus 27 78 17 1 · 1 1 · · 2 1 1 1 · · · · · · 2 51 · · 65.4
Urtica 165 1094 76 1 · · · · · · · · 2 · · · · · · 1 · 1013 1 92.6

Sambucus 63 39 6 · · · · · · · · · · · · · · · · · · · 33 84.6
(Acer) - 11 1 · · · · · · 7 2 · · 1 · · · · · · · · · (0)

(Humulus) - 2 · · · · 1 1 · · · · · · · · · · · · · · · (0)
(Compositae) - 1 1 · · · · · · · · · · · · · · · · · · · · (0)

(Picea) - 40 28 · · · · · 2 · · · · · · · · · 10 · · · · (0)
(Pinus) - 1 1 · · · · · · · · · · · · · · · · · · · · (0)

(Tilia) - 5 2 · · · · · · 3 · · · · · · · · · · · · · (0)
(Ulmus) - 12 · · 1 · · · · 9 · · · · 1 1 · · · · · · · (0)

(Cyperaceae) - 5 2 · · · · · 1 3 1 · · · · · · · · · · · · (0)

precision (%) 72.5 92.2 94.1 87.2 97.5 94.4 86.6 91.8 78.9 48.3 92.2 26.7 64.7 62.5 88.5 17.3 95.8 92.7 96.8 56.9
prec. per group (%) 93.8 89.9 90.5 91.1

Training data set: Freiburg (even sample indices)
Test data set: Freiburg + Zürich (odd sample indices)

Classification Scheme: Highest decision value always wins
Data type: Real air samples from pollenmonitor, 3D transmitted light, no fluorescence
Features: 87,296 MiSP invariants (“structure” and “shape”; only ϕz-rotation)

Classifier: SVM (RBF-kernel, One-vs-Rest)
Overall Precision: 91.5% (8037/8787)

Overall Recall: 91.6% (8037/8770)
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10.4 MiSP Invariants on Pollenmonitor Data Set

Quantification of the False Positives

Another important measure that was introduced in section 10.1.2 is the “false-positives concentration”
(false-positive events per m3 of air), which allows to directly see the influence of the false-positives
for the prediction of the allergenic impact in the pollen forecasts. Due to high seasonal variation of
the particles that cause false-positive events (in nearly all cases these are other morphologically similar
pollen taxa) a mean value of this false-positives concentration over the year does not provide any useful
information. Furthermore the available threshold values for the allergenic impact of certain pollen taxa
at a certain concentration in the air are based on daily mean values.

So for a meaningful representation the true and the predicted daily mean pollen concentrations were
computed and were compared to the corresponding false-positive concentration. This is shown in
figures 10.12 and 10.13 for Corylus(A.5), Alnus(A.2) and Betula(A.4) pollen, and in figures 10.14 and 10.15
for Poaceae(A.6) and Artemisia(A.1) pollen.

10.4.6 Comparison to the State of the Art

The comparison of our results on real-world samples to the state of the art (see section 1.2.1) is listed
in table 10.16.

The results that are reached with the presented approaches by far outperform all other published
results as well as in the number of considered pollen taxa as in the recognition rate and the precision.

Table 10.16: Comparison of our results to the results of other groups (Real-world Samples)

sample
type

micros-
copy

segmen-
tation

features classifier n
samples

n
taxa

recogn.
rate

preci-
sion

Bangor University
UK
(France et al., 2000) pollen

+debris
2D thresh. neural net. neural net. 204 3 81.7% 96.7%

INRIA, Sophia-Antipolis
France
(Boucher et al., 2002) air 3D

color
morph.
+color

shape,
color,
specialized

Mahalanobis 350 30 77% ?

Caltech and New York
University, US
(Ranzato et al., 2007) air 2D DOG +

circle fit
texture Fisher linear

discr. + GMM
3104 8 64,9% 30%

University of Freiburg
Germany
(Ronneberger et al., 2007)
and table 10.14

air 3D misp
detector +
Snakes

87,296 MiSP
invariants
(structure +
shape)

SVM (reject) 22,750 33 84.3% 96.7%

table 10.15 " " " " SVM (no rej.) " " 91.6% 91.5%

table 10.14 " " " " SVM (reject) " 5 h.a. 86.5% 98.5%

DOG: Difference of Gaussians
GMM: Gaussian mixture model

h.a.: highly allergenic pollen taxa
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Figure 10.12: Daily mean concentrations (true and predicted) for Corylus(A.5), Alnus(A.2) and Betula(A.4)

pollen compared to the according false-positive-concentrations. The background color
in the plots represents the allergic stress at the particular concentration: red=high, or-
ange=moderate, yellow=low, gray=none. These results are obtained by the classification
scheme “with rejection”
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Figure 10.13: Daily mean concentrations (true and predicted) for Corylus(A.5), Alnus(A.2) and Betula(A.4)

pollen compared to the according false-positive-concentrations. These results are ob-
tained by the classification scheme “no rejection”
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Figure 10.14: Daily mean concentrations (true and predicted) for Poaceae(A.6) and Artemisia(A.1) pollen
compared to the according false-positive-concentrations. These results are obtained by
the classification scheme “with rejection”
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Figure 10.15: Daily mean concentrations (true and predicted) for Poaceae(A.6) and Artemisia(A.1) pollen
compared to the according false-positive-concentrations. These results are obtained by
the classification scheme “no rejection”
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10.5 Summary of Further Results

Many of the theoretical results presented in this thesis have been extended and experimentally verified
in close collaboration with several students during the supervision of their master thesis.

Because many of these results significantly influenced the presented work and furthermore allow the
reader to get an idea how the presented theoretical results perform in a real application, we present a
short summary of the results of these studies here.

10.5.1 Deconvolution

The very promising results on the high-resolved confocally recorded pollen grains and the first dis-
illusioning results with the same features on data sets recorded with a conventional microscope gave
reason for several studies on an improvement of the raw data quality of such conventionally recorded
data sets.

The most obvious technique is to try a pure software-solution, the deconvolution of the recorded data
with the point spread function of the used microscope. The problem of existing approaches is that they
are optimized to produce plausible, good-looking results of the input data and use several assumptions
(continuity, discontinuity, edges, etc) for the “reconstruction” of the original signal.

In collaboration with Thorsten Schmidt a deconvolution technique was developed that is purely
based on measured data and does not invent additional information at places where the original infor-
mation is lost. An example of a deconvolved Corylus(A.5) pollen grain is shown in figure 10.16.

xy-slice xz-slice yz-slice

Figure 10.16: Deconvolution of a Corylus(A.5) pollen grain with an assumption free approach that is
based only on measured data (from (Schmidt, 2003)). The raw data was recorded us-
ing conventional fluorescence microscope equipped with a 100x oil immersion objective
with a numerical aperture of 1.3

We can see a clear improvement of the richness of details. But the lost frequency components (the so
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10.5 Summary of Further Results

called “missing cone” in the Fourier space) introduce significant artifacts at the upper and lower border
of the pollen grain. So a 3D rotation of the pollen in real-world can not be modeled by a 3D rotation
of the recorded data set. This makes this type of data not well suited for full 3D rotational invariants.
The detailed results can be found in (Schmidt, 2003).

10.5.2 Use of Additional Microscopical Techniques

In collaboration with Rafael Baumgartner it was studied whether the utilization of additional micro-
scopical techniques can provide valuable additional information. The studies were done on pollen
taxa that are typically found in honey samples. From manually prepared slides a data set with 1117
pollen grains from 20 taxa was recorded. Instead of the usual two channels (fluorescence stacks and
transmitted light image stacks with 2/3 opened aperture), six channels were recorded (see fig 10.17).

By the combination of these different channels a significant improvement of the recognition rates
could be reached (see table 10.17). The used features were multi-channel gray scale invariants with a
two-point-kernel and multi-channel features based on mutual information and entropy.

Table 10.17: Recognition results on honey pollen data using additional microscopical channels (from
(Baumgartner, 2005)). The best result was found by using four channels: transmitted light
(with 2 aperture settings: 1/1 and 1/4), dark field and fluorescence

Channels Mean Recognition Rate

transmitted light only 77.19%
dark field only 80.6%
fluorescence only 87.57%
transmitted light + fluorescence 93.83%
four channels 96.5%

The details can be found in (Baumgartner, 2005).

10.5.3 Automatic Kernel Selection with the GVCD

If the HI-framework shall be applied to a new problem, it is necessary to select appropriate kernel
functions. In many cases the possibility to integrate prior knowledge via appropriate kernels is of
advantage. But if the user has no prior information of the problem it is desirable to have a method that
selects automatically appropriate kernels based on a provided sample data set.

In collaboration with Thorsten Schmidt a feasibility study on an automated kernel selection based
on the GVCD (see section 5.2.1) was performed. The main challenge turned out to be already the
very first step, the computation of a full GVCD for a given data set. Several fast computation schemes
with different approximations were developed. The experiments were done on the confocal data set
(described in section 3.1) and a data set containing 1742 manually prepared pollen grains from 12 taxa.
The second data set contains 2D images with a transmitted light channel and a fluorescence channel
that were recorded with a conventional microscope.

The resulting recognition rates with the automatically selected kernel functions were competitive
(e. g., about 90% on the confocal data set), but did not reach the best results, that were obtained with
the manually optimized kernels.

To further increase the quality of the automatically selected kernels several possibilities were out-
lined. One of these is to perform a closer analysis of the selected approximations in the computation
of the GVCD’s. Possibly the selected approximations distorted valuable information already in this
step. Another possibility to improve the results may be to use significant larger training data sets. And
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transmitted light
(aperture fully opened)

transmitted light
(aperture 1/2 opened)

transmitted light
(aperture 1/4 opened)

transmitted light
(aperture nearly closed)

dark field

fluorescence

Figure 10.17: Typical pollen grains from honey samples recorded with differnt microscopic setups
(from (Baumgartner, 2005)). a) Roßkastanie, b) Mönchspfeffer, c) Spinnenblume,
d) Brautmyrthe
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10.5 Summary of Further Results

finally a limitation of the permitted kernel function to certain classes of functions might also help to
find kernels with better performance. The details of the performed studies are found in Schmidt (2004).

10.5.4 Voxel-wise Invariants for Segmentation and Recognition of Cell Nuclei

The voxel-wise invariants that were introduced in section 6.7 were first applied in collaboration with
Janis Fehr to the simultaneous segmentation and recognition of cell nuclei. The used data sets con-
tained confocally recorded tissue samples from the chorioallantioic membrane of chicken embryos.
In combination with a voxel-wise classification using support vector machines, the voxel-wise invari-
ants allow a simultaneous segmentation and classification. The training is performed in an intuitive
interactive environment:

After the voxel-wise extraction of feature-vectors using two- and three-point kernels, a support-
vector machine (SVM) (Vapnik, 1995) model is trained in an interactive procedure over several itera-
tions: First a small number of training samples (voxels) is manually selected for each class. Second, a
SVM model is trained based on the training feature-vectors. In the last step of one iteration, all voxels
are classified against the previously trained model. After each iteration new training samples can be
added in order to improve segmentation and classification results until the model reaches a ”stable”
state, e. g. the support-vectors do not change after adding new samples (see figure 10.18 and 10.19 for
an example).

The computation time for the segmentation of a volumetric data set with 256×256×100 (about 6.5
million voxels) was about 2 minutes on a Pentium 4 with 2.8 GHz. Further details on these studies can
be found in (Fehr, 2004), (Fehr et al., 2005) and (Ronneberger et al., 2005b).
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Figure 10.18: 3D isosurface reconstruction of 3 neighboring cells

training samples for
first iteration

xy-slice

yz-slice

raw data 1st iteration: 2nd iteration: 3rd iteration:
311 training samples 642 training samples
56 support vectors 129 support vectors

Figure 10.19: The interactive training process - Sections of data as indicated in the 3D reconstruction
(figure 10.18) and results after each training step. (from Fehr et al. (2005) and Ron-
neberger et al. (2005b))
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11 Summary, Conclusion and Outlook

11.1 Summary and Conclusions

In this thesis the development of 3D invariants for the recognition of biological structures is described.
These invariants are based on the Haar-integration-framework of Schulz-Mirbach (1995b). The in-
variance properties are reached by an integration over the desired transformation groups, e. g. rotation
and translation. Several important aspects of the application of the Haar-integration framework to 3D
volumetric data sets of biological structures are described. The most important extension is the in-
troduction of deformation models such that the resulting features are robust to elastic deformations
of the structures. Another important aspect is the reached robustness to even non-linear gray-scale
transformations, that allow certain variations of the recording parameters between the training and the
test objects. The direct computation of these invariants is computationally very expensive. Several
new techniques are introduced that allow a fast computation of the invariants by means of the FFT,
by the expansion of the integral into spherical harmonics series or by simultaneous computation of
multiple invariants based on invertible vectorial kernel functions. Furthermore voxel-wise invariants
are introduced for a simultaneous segmentation and recognition of 3D structures. Vectorial invariants
are developed for a fast and reliable detection of spherical objects in cluttered environments.

A very challenging application for these invariants is the recognition of pollen grains in air samples.
Due to the high number of different pollen taxa and the different types of structures that must be
recognized, the pollen can be taken as a good representative for several biological structures that are
studied in the biomedical research.

In the given application we use microscopically recorded images to recognize a real-world object.
For the correct interpretation of the gray values it is important to understand the different effects within
a microscope. In chapter 2 the main four steps, illumination, interaction of the object with the light,
transformation of the emitted light, and the recording of the light are explained.

In pollen recognition (as in many other applications) we should differentiate between those results
that can be reached within a clean and well-controlled laboratory environment and those results of a
real-world routine application. In this thesis two representative data sets for these scenarios are used
(see chapter 3): The first one (denoted as “confocal data set” here) is a typical laboratory data set: The
pollen were collected directly from the corresponding plants. They were carefully prepared on one
slide per taxon and manually recorded as a full 3D volumetric data set with confocal laser scanning mi-
croscopy. Due to the high costs of such a system and the time-consuming operation, only a small data
set containing 389 pollen grains of 26 different taxa (15 grains per taxon) was recorded. The prepara-
tion and recording applied here guarantees a 100% correct labeling of the pollen grains and contains
the lowest possible degree of distortion due to optical effects. On the other hand the used samples do
not represent all variations within each taxon, such as different genera, species or subspecies, different
growth conditions of the plants, etc. Furthermore this data set does not contain deformed, contaminated
or agglomerated pollen grains or pollen grains at different levels of degradation and it does not contain
the vast amount of other particles that are found in real air samples.

The second data set (denoted as “pollenmonitor data set”) is a typical real-world data set. It was
automatically collected, prepared and recorded by the first prototype of the pollenmonitor during the
pollen season 2006 in Freiburg and Zürich. It contains about 22,750 pollen grains from 33 taxa together
with about 170,000 other spherical airborne particles.

In a first feasibility study invariants based on general-purpose 2-point-kernel functions were applied
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to the confocal data set. A fast and exact computation of these invariants was reached by the reformu-
lation of the problem, such that it can be computed by means of the fast Fourier transform (see section
7.4). Already with a very low number of only 14 invariants, a recognition rate of 91.9% was reached
on this data set. This result could be further improved to 95.6% by a normalization of the same 14
features and an extensive grid search for the best parameters of the applied support vector machines.

Compared to the results of other groups on such typical laboratory data sets (see section 10.2.4) we
already outperformed all other approaches. The only other results to which we cannot provide a fair
comparison here are the results of Jones (2000). The used data set in this study was much larger than
ours (16,220 pollen grains from 80 taxa) such that we cannot conclude whether the lower recognition
rate of 70.7% was caused by a higher difficulty on this data set or a lower performance of the selected
approaches.

11.1.1 Conclusions and Intermediate Results that led to the Final MiSP
Invariants

The conclusions and intermediate results that led to the final form of the MiSP1 invariants (see chapter
9) are better described chronologically.

Encouraged by the promising results on the confocal data set, we applied the general-purpose 2-
point-kernel functions to several other data sets with increasing similarity to the final real-world data
set. E. g., we obtained satisfactory results on real air samples from January, February and March
containing the typical three pollen taxa (Alnus(A.2), Corylus(A.5) and Taxus(D.12)) that are found in this
season and the typical seasonal dust particles. One month later, when the first Betula(A.4) pollen appeared
and an increasing number of other particles of biological origin, the system was not able to distinguish
between Betula(A.4) and Alnus(A.2) and the number of false positives increased dramatically.

The most obvious difference of these data compared to the confocal data set was the much lower raw
data quality. To retrieve similar data with a conventional fluorescence microscope, deconvolution (see
section 10.5.1) and structured light techniques (see section 2.3.3) were tested. Even though they could
visibly improve the raw data quality, the reached quality was not high enough to model a real-world
3D rotation of the object by a 3D rotation of the recorded volumetric data set. Only on a honey pollen
data set recorded from pure pollen samples, the structured light techniques could slightly improve the
results (see section 10.5.2).

Another assumption for the reason of the poor results on the real-world data was that the richness of
the selected 2-point-kernel functions is not high enough. An analysis of the amount of information that
can be sensed with 2-point kernels (in section 5.2.1) yielded interesting new insights. This analysis was
done by splitting the computation of the invariant into the extraction of the gray value co-occurrence
distribution (GVCD) and the postponed application of the kernel function. This allows an intuitive
understanding of the type of information that is obtained by different kernel functions. Furthermore the
presentation of the raw data by means of the GVCD can be used for a rough estimation of the expectable
robustness of certain kernel functions on a certain data set. Theoretically it should be possible to find
the optimally suited kernel functions for a given problem by the analysis of the GVCD’s of the training
samples. A first feasibility study on the realization of such an approach returned competitive results (see
section 10.5.3), but the automatically selected kernels were not able to outperform the best manually
selected kernels.

While further experiments with modified and extended kernel functions did not significantly im-
prove the results, a significant improvement could be reached by an adaption of the transformation
group. The usage of the center of the object (that could be easily extracted of the mask computed in the
prior segmentation step) allows to replace the afore required translation invariance with a normalization
step. Furthermore we draw the conclusions from the deconvolution and structured light experiments.

1MiSP = Microscopical Spherical Particles
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A simulation of a 3D rotation of the real-world object by a rotation of a data set recorded with conven-
tional microscopy was not possible with sufficient quality. The loss of information in z-direction is too
high, and the characteristics in z-direction compared to those of the xy-direction are too different (see
section 9.1.2). As a consequence we replaced the 3D rotation by a planar rotation around the z-axis
and enlarged the training data set, such that enough pollen grains at different orientations relative to
the optical axis are available.

The left over transformation group was the group of planar rotations. The resulting restriction of the
sensing area of each invariant to a circular region within the object significantly raised the specificity
of the extracted features. The recognition rates went up and a lot of dust particles were now correctly
classified as non-pollen.

But with these improved invariants still many pollen taxa could not be reliably differentiated. An
analysis of the importance of the individual invariants for the final classification gave the crucial hint
for a further improvement. A feature selection by the SIMBA method (Gilad-Bachrach et al., 2004)
showed that the most discriminative features (e. g. for Corylus(A.5) pollen) were extracted far away
from the sharpest layer. In this layer only three blurred bright spots were visible. These spots are
produced by the light refracted at the three porates of the pollen grain. So it was not surprising that it
is possible to reasonably differentiate between pollen and non-pollen with these invariants, but that the
fine differences between morphologically similar pollen taxa can not be resolved.

A closer analysis of the features extracted from the sharpest layer was performed. This layer contains
a large fraction of the discriminative information. But due to the circular sensing regions of the features
and the significant inner-class variations of the pollen shapes, corresponding structures of two pollen
grains were in most cases located in different regions. Obviously, for the recognition of biological
objects not only a rotation invariance but also an invariance (or at least a robustness) to deformations
must be reached: A radial global deformation (see section 9.1.3) was added to the transformation group
and the Haar integral was implicitly limited to finite results by a new approach that uses synthetic
channels computed from the segmentation mask (section 6.3.4 and section 9.2.2). With this approach
the sensing area of each invariant is restricted to “shells” with a certain distance to the outer border (see
section 9.5).

This integration of a deformation model into the HI framework was the most important step towards
a reliable recognition of the pollen grains. With this technique the results became significantly better.
The number of false positives decreased and the system was able to differentiate between pollen taxa
that were not differentiable before.

The only remaining severe drawback was the strong dependency of the features on the selected
recording parameters. A slight change in the optical setup before the measurement period in Zürich
caused a nearly complete failure of the recognition on the newly recorded pollen grains. It was possible
to reach satisfactorily results by a retraining of the system with some of the newly recorded pollen
grains. An alternative would have been of course a calibration of the optics to some well defined
standard parameters.

But for a reliable operation of such a system we would like to have features that are not so sensitive
to these intensity and contrast variations in the images. Especially in situations where such variations
are caused by contamination within the sample, the variations can not be compensated by a calibration
of the optical system.

This problem was solved by replacing the raw gray values in the kernel function by an appropriate
combination of gradient magnitude and gradient direction (see section 9.2.1). This extension provided
the desired robustness to gray value transformations (see final results on Zürich data set in section
10.4.5). Furthermore it allowed to integrate another deformation model, the “local deformations”,
described in section 9.1.4. Without this prior projection of the gray values (according to their gradient
direction) into a higher dimensional space the probability-weighted integration over the group of local
deformations would just cause a low-pass-filtering of the image (see section 9.5).
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11.1.2 Segmentation

In the first feasibility study on the confocal data set no segmentation was needed. By the use of confocal
microscopy on pure pollen samples, the pollen grains are already well separated in a data set with black
background. The invariants based on general-purpose 2-point kernels and Euclidean transformation do
not rely on any further preconditions than a single object on black background.

For real-world samples a segmentation seems to be absolutely necessary. For the first tests we
applied standard morphological techniques (see section 8.1). For certain air samples (clear background,
not too many particles in the image, no agglomerations of pollen, no occlusions, etc.) these techniques
provided satisfactory results. For most real-world samples they performed worse. Some of the objects
were only partially segmented while at the same time multiple other objects were segmented as one
part.

The first idea to a solution of this problem was to use voxel-wise invariants combined with a voxel-
wise classification (section 6.7). Due to the limited discrimination power of centered two-point-kernels
for voxel-wise invariants (section 6.7.1), centered three-point-kernels were used. For this type of ker-
nels the fast exact computation via a single convolution (section 7.4) could not be applied. A new class
of fast computation algorithms was developed. In these algorithms the kernel function is approximated
by an expansion into a Fourier series or a spherical harmonics series (section 7.5ff.). In contrast to
alternative approximative computations of a Haar integral (Siggelkow and Schael, 1999) the results
obtained with this technique are perfectly invariant to the given transformation group independently of
the selected truncation of the series.

With the developed voxel-wise invariants and the voxel-wise classification we obtained encouraging
results on confocally recorded cell nuclei (section 10.5.4). But even with several optimizations, the
needed processing time was about 2 minutes for a dataset with about 6.5 mega voxels. The available
processing time in the online operation of the pollenmonitor is only a few seconds for a data set with
about 100 mega voxels. So the proposed method could not be applied.

The solution of the segmentation problem is based on a new class of kernel functions with a very
fast computation algorithm (section 6.8 and 7.10). These “sparse vectorial kernel functions” operate
on the gradient image and can be used to detect spherical structures in very cluttered environments.
This technique was denoted as MiSP detector (section 8.2). The only drawback of this detector for the
application to pollen recognition is its limitation to spherical pollen taxa. In Germany and Switzer-
land all highly, moderately and lowly allergenic pollen are spherically shaped. So for the developed
pollenmonitor this limitation has no effects. In other countries or for different applications it might be
necessary to extend this detector. After the detection the precise border is obtained by a combination
of a modified Canny-Edge Detector, a model-based weighting of the obtained edges, a gradient vector
flow and finally a snake approach (see section 8.3). This combination of modified standard algorithms
is able to find the correct object borders even under very unfavorable conditions. A minor drawback of
this technique is the high number of parameters of these standard algorithms, that had to be properly
adapted to the data set. The obtained segmentation borders are displayed as overlay on all pollen grains
in the appendices A.1 – D.17.

11.1.3 Application of MiSP Invariants to Pollen Recognition

The final MiSP invariants were applied to the confocal data set as well as to the pollenmonitor data set.

Confocal Data Set

The recognition rate on the confocal data set was very high. In a leave-one-out validation with a simple
1 Nearest Neighbor classifier only 3 of the 389 pollen grains were misclassified (99.2% recognition
rate). With a support vector machine only 2 incorrectly classified pollen grains were obtained (99.5%
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recognition rate) (see section 10.2.3). In the second case the misclassified pollen were confused with
another genus from the same family.

This result outperforms all the results of other groups on pure pollen samples and all our earlier
results on the same data set (section 10.2.4). The data was produced in a similar way as in most other
studies (pure pollen samples, only one slide per taxon, limited number of plants per taxon). So we
can assume that the results are somehow comparable. On the other hand this procedure may lead
to positively biased results (see section 1.2.1 and 3.1.4). This criticism applies to our study on this
confocal data set as well as to the other studies.

Pollenmonitor Data Set

For pure pollen samples the total recognition rate provides a meaningful statistical measure for the
comparison of different studies. In real air samples this total recognition rate has only a limited validity.
In such data sets a very high number of non-pollen particles is present, e. g., about 170,000 spherical
dust particles compared to 22,750 pollen grains in the pollenmonitor data set. In a thought experiment
with a classifier that classifies every particle to the dust class already an impressive recognition rate of
88% can be reached. By decreasing the threshold in the segmentation step we can easily increase the
number of found dust particles by a nearly arbitrary factor. This would lead to even higher recognition
rates in this experiment.

So we must find statistical measures that are independent of the number of dust particles. Such
meaningful statistical measures to compare different pollen recognition systems were identified in sec-
tion 10.1 by an analysis of the full error of the system for typical particle concentrations in the air.
In the pollenmonitor data set the fraction of the most important allergenic pollen taxa (Poaceae(A.6)) to
other particles is 1:120, and the fraction of the rarest allergenic pollen taxa (Artemisia(A.1)) is 1:3000.
It turned out that the avoidance of false-positives is the most important task. Statistical measures that
consider the number of false-positives but are not biased by the number of segmented dust particles
are the precision and the introduced “false-positive-concentration”, which relates the number of false
positives to the sampled air volume.

A reduction of the number of false-positives is reached by using two techniques. The first is the
manual selection of high-quality pollen (not agglomerated, not contaminated, well segmented, etc.)
for training. The addition of contaminated pollen to the training data set would increase the risk that
an unknown contaminated pollen will be assigned to that pollen with a similar contamination pattern
instead of that pollen with the same taxon.

The second technique to avoid false-positives is a restrictive rejection scheme. By the use of the
one-vs-rest multi-class approach we can straightforwardly setup a rejection scheme. Only those clas-
sification results with exactly one positive decision value are accepted, the others are rejected.

With these two techniques we obtained on a test data set from Freiburg and Zürich with 33 pollen
taxa a mean precision of 96.7% (at a recall of 84.3%) for all pollen taxa. The results for the five
highly allergenic pollen taxa in this data set (that are monitored for the pollen forecasts) are even
better: 98.5% precision at a recall of 86.5%. For certain applications an optimization to a higher recall
might be required. This can be reached by a different recombination strategy of the decision values:
The object is always assigned to that class with the highest decision value, independently whether it is
positive or negative, or whether other positive decision values exist. Using this strategy an the full test
data set (Freiburg and Zürich) the obtained precision is decreased from 96.7% to 91.5%, but the recall
increases from 84.3% to 91.6%.

These results are better than all other published results on pollen recognition in real air samples (see
section 10.4.6). The study with the most similar goals is published in Ranzato et al. (2007). There on
8 pollen taxa a precision of 30% at a recall of 64.9% was reached (using a 10-fold cross validation).

For the application of the pollen recognition system in an online measurement network, the final
goal is the correct prediction of the expected allergic stress at the current pollen concentration. These
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results are shown for computed daily mean concentrations in section 10.4.5. Here we can clearly
see that with the selected rejection scheme in most cases a better prediction of the allergic stress is
possible. Especially outside the flowering period of the particular pollen taxa the number of false
alarms is significantly lower.

Even though these results are very encouraging, we cannot be sure that these results can be taken as
a good prediction for the final recognition rate of an online pollenmonitor in a routine environment. On
the one hand this data set may still not represent all possible variations of the pollen grains, because
it was recorded only within two locations in one year with the identical machine. This may have led
to positively biased results. On the other hand it contains several shortcomings, that can be avoided in
future by an improved hardware. Theses variations (like the low quality of the fluorescence recordings,
vibrations during stack recording, non-uniformity of the illumination, misadjusted optics, etc.) are
briefly discussed in section 3.2.6. These variations very likely have led to negatively biased results.
Furthermore there are still some pollen grains in the data base that were incorrectly labeled by the
pollen experts. The author is not a pollen expert but for some of the false positives (e. g. the 4th and 5th
of the false positives on the Alnus(A.2)-page) it seems to be obvious that the expert-labeling “No Pollen”
is questionable.

11.1.4 High Dimension of the Feature Vectors

Compared to the dimension of feature vectors in a typical pattern recognition application the number of
87,296 MiSP invariants on the pollenmonitor data set may appear extremely high. The most obvious
justification of this high number is that these features correspond to the entries in a 4-dimensional
feature array with the dimensions 31 × 11 × 16 × 16. The first two dimensions correspond to the
localization of the “shell” relative to the border and the sharpest layer of the object. The other two
dimensions correspond to the relative gradient direction and the angle of the kernel function. So a
more reasonable interpretation might be a decomposition of the volumetric data into 341 shells and the
subsequent extraction of 256 features of each of these shells.

We can see from the depiction of the feature array in figure 9.12 on page 135 that the nonzero-entries
in this feature array are quite sparsely distributed. So a feature selection approach applied to the training
data set is expected to identify several shells, gradient directions or kernel angles (or combinations of
them) which are not needed for the separation of the objects in the training data set. Consequently these
shells could be left out from the feature extraction, resulting in a lower dimensional feature vector.

This should be a reasonable strategy if we can ensure that all possible types of particles are incorpo-
rated in the training data set. But in the present application, the online pollen monitoring, we have no
closed well-known laboratory environment, but collect particles directly from the outdoor environment.
So every day new types of particles and new variations of the known particles may appear (and actually
did appear within 2006). Therefore the decision to leave out certain regions of the object which are not
needed for the discrimination of the training objects, may lead to avoidable false positives. E. g., an
unknown particle might have the crucial structures for its rejection exactly within the left out regions.

So we think that it is better to retain all the features and instead to optimize the classifier such that it
can deal with such high-dimensional feature vectors. In fact we have developed an optimized support
vector machine, that is able to manage such high-dimensional feature vectors. The respective library,
libsvmtl (“support vector machine template library”), is available as open source from the authors home
page http://lmb.informatik.uni-freiburg.de/people/ronneber/.

A further optimization which makes the full dimensionality of the feature vector nearly negligible
has already been applied to intermediate studies with nearest neighbor searches in this 87,000 dimen-
sional space. For this technique, the features in the feature vector are arranged according to their
variance (the features with the highest variance first). The computation of the distance between a test
object and a reference object is performed iteratively “feature-by-feature”. If a certain distance thresh-
old is exceeded, this computation is stopped and the distance is set to infinity. This threshold can be
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specified in advance or can (even better) be adapted according to the current state of the classifica-
tion process. E. g., for a 10-nearest-neighbor classifier the distance of the (up to now) 10th neighbor
specifies the threshold for the distance computations of the remaining reference objects.

This technique was applied to the pollenmonitor data set, and it has turned out that on average only
about 10% of the features need to be taken into account to compute the distances. This approach can
also be integrated into certain kernel functions (e. g. the RBF kernel) in a support vector machine.
Experiments have not yet been performed in this field, but we expect similar positive effects as in the
nearest neighbor classification.

In other words, we suggest to postpone the “feature selection” to the time, when the relevance of
a particular feature can be safely judged, i. e. when the new object to be classified has already been
recorded and is compared to the existing objects.

11.1.5 Final Conclusions

In this thesis the proposed algorithms were not only validated on small laboratory data sets, but on a
very large real-world data set. Pollen recognition in a online environment is an extremely challenging
application due to

• the large number of different pollen taxa

• the large intra-class variation within one pollen taxon

• the subtle inter-class differences

• the need for 3D techniques for a reliable differentiation

• the very high number of other particles on an air sample, that must be correctly rejected

• the recognition of structures at the same scale as the wavelength of light

• the timing constraints that must be fulfilled within an online system

• the “open” system. We can never know in advance what kind of other particles will be found on
a new sample.

Even though we used a much larger and more difficult data set than all other published approaches to
pollen recognition, the obtained precision and recall was still significantly better than the other results
on smaller and easier data sets.

This may be taken as a hint that with the development of the proposed MiSP invariants a significant
progress in the field of biological object recognition has been done.

11.2 Outlook

The challenges to be tackled next in pollen recognition become clear by a closer analysis of the rejected,
the incorrectly classified and the false-positive pollen grains listed in the appendices A.1 – D.17. It is
again emphasized that all the displayed pollen grains have automatically been selected from the whole
data set without any manual intervention.

In most cases the incorrectly classified pollen grains are partially occluded, significantly contam-
inated or corrupted. In many cases this has led to an incorrect segmentation of the object and, as a
consequence, to a rejection or an incorrect classification. In contrast to our automatic techniques a
human is able to identify such distortions in the images and to concentrate on the undistorted parts of
the object for the classification. A similar approach could be integrated into the MiSP invariants. At
the present state the computation of these invariants can be interpreted as a two stage process. In the
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first stage local features are extracted at each voxel, namely the gradient magnitude and the gradient
direction. In the second stage these local feature are combined to global features for the description
of the whole object. To meet the mentioned requirements we could extend this framework in several
ways:

One possibility is to replace the local feature extraction by a more sophisticated approach. E. g., we
could exchange the gradient with an approach that is able to emphasize certain pollen-like structure,
and to suppress contamination-like structures.

Another possibility is to extend this two stage approach to a multi stage approach. E. g., the local
features that are extracted in the first stage can be combined to some regional features in a second
step. This regional features could already describe (or even recognize) certain substructures within the
object (e. g. porates, certain textures etc.). In a final step this regional features are then recombined to
the desired global features.

A third possibility is to leave the classification as it is but to optimize it to a high recall (with a
high number of false-positives, though). An additional validation step is responsible then to reject the
incorrectly classified objects. This validation has to operate only on a small fraction of the whole data
set, and the potential pollen taxon has been determined already in the prior step. Then very expensive
techniques up to partially elastic registrations can be used.

For applications other than the recognition of allergenic pollen a detection and segmentation of non-
spherical pollen (e. g. the Pinus(D.10) and Picea(D.9)) is desirable. Moreover applications that need to
recognize completely different objects are within the reach of the developed techniques. First promis-
ing attempts of this kind (2D only) have already been made by Reisert and Burkhardt (2007). In
(Reisert, 2007) these techniques were applied to the 2D detection of fungal spores in real air samples.

From the application point of view the most important drawback of our proposed approaches is the
necessity to train the classifier on real air samples. A closer look at table 3.17 on page 65 shows that
even in the very large pollenmonitor data set several pollen taxa are so rare that a meaningful training
is not possible. So as a further challenge the pattern recognition has to become even more robust to
the recording parameters. Such a robustness should allow to train the system on manually prepared
samples. Alternatively new preparation methods could be searched by which the manually collected
pollen are prepared such that they appear as similar as possible to the pollen within the real air samples.
And of course a combination of these two approaches is possible, as well.

An further interesting question is to explain why our approaches were able to outperform all the
other hitherto developed approaches on pollen recognition. Some explanations are given already in the
previous section. But as we have not only optimized the pattern recognition but also the whole prepa-
ration and microscopic recording process (including the usage of full 3D datasets), a direct comparison
of our approaches with the other approaches on the identical data set might provide new insights. The
authors of (Ranzato et al., 2007) already kindly provided their pollen data set for such a comparative
study. Moreover, the chances are not bad that also the very large data set (16,220 pollen grains from
80 taxa) of Jones (2000) will be made available for this study.

Finally, we think that the new findings on those techniques that work in a real-world application
compared to those that perform well only on a limited small data set, will be a valuable foundation for
many further developments in the field of the recognition of biological structures in 3D volumetric data
sets.
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A Highly Allergenic Pollen Taxa

In this and the following appendices a comprehensive overview over all considered pollen taxa is given.
Additionally details on the segmenation and classification on the pollenmonitor data set are depicted.

First for each pollen taxon the central layer, a cropped volume rendering and a full volume rendering
from one representative of the confocal data set are displayed at scale 1000:1.

This headline is followed by all objects of this taxon that are contained in the confocal data set,
displayed as shaded volume rendering at scale 500:1.

Below this the results and examples of the pollen grains of the pollenmonitor data set are shown at
scale 500:1. This table contains a representative subset of the true-positives, the rejected, the false-
negatives, and the unknown-positives1. The pollen grains in each group were sorted by the decision
value of the support vector machine, which can be interpreted as a kind of certainty for the classifi-
cation. From this sorted list every n′th pollen grain was taken (starting with the “best” down to the
“worst”), where n was computed such that the number of retrieved images fits on a double page. The
decision values are provided below each pollen grain, and for each incorrectly classified pollen grain
the true and the predicted class is listed. (In the electronic version of this document each pollen name
is hyper-linked to its page in the appendix). For each pollen grain only the sharpest layer from the
3D stack is displayed together with the found segmentation border. The reduction to only the sharpest
layer hides important information in several cases, especially for the incorrectly classified pollen grains,
where the “reasons” for the incorrect classification are often located in the other layers. But this 3D
information was considered to be not so important as the display of many different individuals of this
pollen taxon on the same space.

1the unknown-positives are those pollen grains which were labeled as “indeterm.” by the pollen experts, which means that
they were not able to unequivocally classify them.
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A Highly Allergenic Pollen Taxa

A.1 Artemisia (Beifuß)

Scale 1000:1
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Confocal data set

Scale 500:1
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30 Artemisia in pollenmonitor test data set (Freiburg + Zürich) (24 in training data set)

24 correctly recognized as Artemisia (80%):

2.1 1.76 1.49 1.46 1.44 1.37 1.29 1.25

1.21 1.18 1.17 1.07 1.04 1.01 0.89 0.793

0.705 0.632 0.622 0.6 0.543 0.465 0.248 0.0784

6 rejected (20%):

1.6 1.5 -0.0653 -0.108 -0.116 -1.66

0 classified as other objects (0%):
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A.1 Artemisia (Beifuß)

Other objects that were confused with Artemisia (relative to 28 predicted Artemisia)

1 false positives (3.57%):

Urtica (D.15)
→ Artemisia

(0.0441)

3 unknown positives (10.7%):

Indeterm.
→ Artemisia

(0.315)

Indeterm.
→ Artemisia

(0.122)

Indeterm.
→ Artemisia

(0.0416)

Scale 500:1

0 10 20 30 40 50 75 100µm
193
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A.2 Alnus (Erle)

Scale 1000:1
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Confocal data set
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890 Alnus in pollenmonitor test data set (Freiburg + Zürich) (145 in training data set)

751 correctly recognized as Alnus (84.4%):

2.64 2.11 2.01 1.92 1.81 1.74 1.67 1.62 1.58

1.54 1.5 1.46 1.44 1.41 1.38 1.36 1.33 1.3

1.27 1.23 1.22 1.19 1.15 1.13 1.1 1.07 1.04

1.02 0.999 0.97 0.95 0.927 0.914 0.89 0.859 0.819

0.799 0.78 0.743 0.724 0.679 0.649 0.588 0.541 0.505

0.453 0.427 0.39 0.35 0.29 0.247 0.175 0.104 0.0155
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A.2 Alnus (Erle)

96 rejected (10.8%):

1.23 0.675 0.444 0.17 -0.00679 -0.0753 -0.0991 -0.121 -0.17

-0.215 -0.257 -0.3 -0.326 -0.491 -0.569 -0.739 -0.988 -10

43 classified as other objects (4.83%):

Alnus
→ No Pollen

(-0.036)

Alnus
→ No Pollen

(-0.0944)

Alnus
→ No Pollen

(-0.267)

Alnus
→ No Pollen

(-0.293)

Alnus
→ No Pollen

(-0.401)

Alnus
→ No Pollen

(-0.452)

Alnus
→ No Pollen

(-0.531)

Alnus
→ No Pollen

(-0.603)

Alnus
→ No Pollen

(-0.689)

Alnus
→ No Pollen

(-0.752)

Alnus
→ No Pollen

(-0.883)

Alnus
→ No Pollen

(-0.947)

Alnus
→ No Pollen

(-1.25)

Alnus
→ No Pollen

(-1.36)

Alnus
→ No Pollen

(-1.58)

Alnus
→ No Pollen

(-1.63)

Alnus
→ No Pollen

(-5.47)

Alnus
→ No Pollen

(-10)

Other objects that were confused with Alnus (relative to 774 predicted Alnus)

15 false positives (1.94%):

No Pollen
→ Alnus

(0.82)

Betula (A.4)
→ Alnus
(0.384)

Quercus (B.3)
→ Alnus
(0.339)

No Pollen
→ Alnus
(0.298)

No Pollen
→ Alnus
(0.207)

Betula (A.4)
→ Alnus
(0.176)

No Pollen
→ Alnus
(0.122)

No Pollen
→ Alnus
(0.0746)

Betula (A.4)
→ Alnus
(0.0251)

8 unknown positives (1.03%):

Indeterm.
→ Alnus

(1.05)

Indeterm.
→ Alnus
(0.631)

Indeterm.
→ Alnus
(0.438)

Indeterm.
→ Alnus
(0.403)

Indeterm.
→ Alnus
(0.282)

Indeterm.
→ Alnus
(0.194)

Indeterm.
→ Alnus
(0.145)

Indeterm.
→ Alnus
(0.0547)
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A Highly Allergenic Pollen Taxa

A.3 Alnus viridis (Alpen-/ Grün-Erle)

Scale 1000:1

0 5 10 15 20 30 40 50µm

Confocal data set

Scale 500:1

0 10 20 30 40 50 75 100µm

196
Scale 500:1

0 10 20 30 40 50 75 100µm



A.3 Alnus viridis (Alpen-/ Grün-Erle)
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A Highly Allergenic Pollen Taxa

A.4 Betula (Birke)

Scale 1000:1
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Confocal data set
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1035 Betula in pollenmonitor test data set (Freiburg + Zürich) (231 in training data set)

933 correctly recognized as Betula (90.1%):

2.52 2.14 2.05 1.98 1.92 1.85 1.8 1.75 1.72

1.68 1.65 1.63 1.6 1.56 1.54 1.51 1.49 1.46

1.43 1.4 1.36 1.35 1.33 1.3 1.27 1.24 1.21

1.18 1.16 1.13 1.1 1.07 1.04 1.02 0.971 0.942

0.906 0.856 0.836 0.806 0.782 0.746 0.698 0.665 0.619

0.573 0.518 0.461 0.397 0.342 0.274 0.199 0.108 4.99e-05
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A.4 Betula (Birke)

87 rejected (8.41%):

1.85 0.689 0.271 -0.0384 -0.058 -0.106 -0.14 -0.222 -0.26

-0.323 -0.355 -0.454 -0.517 -0.602 -0.646 -0.781 -0.997 -10

15 classified as other objects (1.45%):

Betula
→ Corylus (A.5)

(-0.243)

Betula
→ No Pollen

(-0.273)

Betula
→ No Pollen

(-0.286)

Betula
→ Alnus (A.2)

(-0.355)

Betula
→ Alnus (A.2)

(-0.356)

Betula
→ Alnus (A.2)

(-0.484)

Betula
→ No Pollen

(-0.499)

Betula
→ No Pollen

(-0.662)

Betula
→ Alnus (A.2)

(-0.822)

Betula
→ No Pollen

(-0.836)

Betula
→ No Pollen

(-0.865)

Betula
→ No Pollen

(-1.04)

Betula
→ Poaceae (A.6)

(-1.66)

Betula
→ No Pollen

(-1.72)

Betula
→ No Pollen

(-3.05)

Other objects that were confused with Betula (relative to 967 predicted Betula)

11 false positives (1.14%):

No Pollen
→ Betula

(0.534)

Carpinus (B.1)
→ Betula

(0.432)

No Pollen
→ Betula

(0.319)

No Pollen
→ Betula

(0.295)

Salix (C.4)
→ Betula

(0.281)

Carpinus (B.1)
→ Betula

(0.166)

Alnus (A.2)
→ Betula

(0.105)

Carpinus (B.1)
→ Betula
(0.0702)

Alnus (A.2)
→ Betula
(0.0345)

Poaceae (A.6)
→ Betula
(0.0314)

Carpinus (B.1)
→ Betula
(0.0208)

23 unknown positives (2.38%):

Indeterm.
→ Betula

(2.26)

Indeterm.
→ Betula

(1.11)

Indeterm.
→ Betula

(0.908)

Indeterm.
→ Betula

(0.462)

Indeterm.
→ Betula

(0.428)

Indeterm.
→ Betula

(0.303)

Indeterm.
→ Betula

(0.147)

Indeterm.
→ Betula
(0.0374)

Indeterm.
→ Betula
(0.00239)
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A.5 Corylus (Hasel)

Scale 1000:1
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Confocal data set
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95 Corylus in pollenmonitor test data set (Freiburg + Zürich) (44 in training data set)

75 correctly recognized as Corylus (78.9%):

2.24 1.92 1.81 1.69 1.65 1.58 1.54 1.51

1.44 1.35 1.33 1.31 1.25 1.25 1.23 1.18

1.18 1.15 1.15 1.11 1.11 1.05 1.03 0.979

0.918 0.909 0.87 0.804 0.765 0.717 0.713 0.645

0.597 0.581 0.527 0.52 0.478 0.471 0.467 0.463
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A.5 Corylus (Hasel)

0.434 0.371 0.354 0.314 0.31 0.209 0.107 0.0285

14 rejected (14.7%):

0.741 0.696 0.546 0.146 0.12 -0.123 -0.169 -0.237

-0.238 -0.256 -0.329 -0.551 -0.742 -0.81

6 classified as other objects (6.32%):

Corylus
→ No Pollen

(-0.0189)

Corylus
→ No Pollen

(-0.106)

Corylus
→ No Pollen

(-0.437)

Corylus
→ No Pollen

(-0.469)

Corylus
→ No Pollen

(-1.59)

Corylus
→ No Pollen

(-2.14)

Other objects that were confused with Corylus (relative to 83 predicted Corylus)

3 false positives (3.61%):

Humulus (D.2)
→ Corylus

(0.226)

No Pollen
→ Corylus

(0.15)

Betula (A.4)
→ Corylus

(0.124)

5 unknown positives (6.02%):

Indeterm.
→ Corylus

(0.938)

Indeterm.
→ Corylus

(0.415)

Indeterm.
→ Corylus

(0.332)

Indeterm.
→ Corylus

(0.275)

Indeterm.
→ Corylus

(0.01)
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A Highly Allergenic Pollen Taxa

A.6 Poaceae (Süßgräser)

Scale 1000:1

0 5 10 15 20 30 40 50µm

Confocal data set

Scale 500:1

0 10 20 30 40 50 75 100µm

678 Poaceae in pollenmonitor test data set (Freiburg + Zürich) (424 in training data set)

576 correctly recognized as Poaceae (85%):

3.7 3.31 3.1 3.01 2.89 2.84

2.7 2.68 2.63 2.6 2.53 2.5

2.48 2.46 2.44 2.4 2.36 2.31
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A.6 Poaceae (Süßgräser)

2.26 2.22 2.18 2.13 2.1 2.07

2.04 2.01 2 1.95 1.93 1.9

1.86 1.86 1.83 1.81 1.77 1.72

1.68 1.65 1.63 1.61 1.58 1.55

1.53 1.5 1.48 1.46 1.44 1.42

1.39 1.34 1.32 1.3 1.29 1.26

1.23 1.21 1.19 1.17 1.15 1.11

1.08 1.05 1.03 1.01 0.986 0.949

0.935 0.913 0.892 0.869 0.85 0.819

Scale 500:1
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A Highly Allergenic Pollen Taxa

0.796 0.745 0.685 0.655 0.606 0.574

0.548 0.529 0.48 0.452 0.392 0.376

0.333 0.281 0.221 0.174 0.0788 0.00462

84 rejected (12.4%):

1.8 -0.0173 -0.054 -0.081 -0.141 -0.2

-0.283 -0.321 -0.372 -0.519 -0.626 -0.677

-0.789 -0.88 -1 -1.22 -1.48 -2.49

18 classified as other objects (2.65%):

Poaceae
→ Carpinus (B.1)

(-0.292)

Poaceae
→ Carpinus (B.1)

(-0.501)

Poaceae
→ No Pollen

(-0.507)

Poaceae
→ Carpinus (B.1)

(-0.778)

Poaceae
→ Carpinus (B.1)

(-0.88)

Poaceae
→ Plantago (B.5)

(-0.969)
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A.6 Poaceae (Süßgräser)

Poaceae
→ Betula (A.4)

(-1.13)

Poaceae
→ Fagus (C.2)

(-1.35)

Poaceae
→ Quercus (B.3)

(-1.67)

Poaceae
→ No Pollen

(-2.11)

Poaceae
→ Plantago (B.5)

(-2.5)

Poaceae
→ No Pollen

(-10)

Other objects that were confused with Poaceae (relative to 621 predicted Poaceae)

5 false positives (0.805%):

Fagus (C.2)
→ Poaceae

(0.809)

Betula (A.4)
→ Poaceae

(0.754)

No Pollen
→ Poaceae

(0.523)

Fagus (C.2)
→ Poaceae

(0.168)

Fraxinus (B.4)
→ Poaceae
(0.00211)

40 unknown positives (6.44%):

Indeterm.
→ Poaceae

(2.79)

Indeterm.
→ Poaceae

(2.35)

Indeterm.
→ Poaceae

(2.06)

Indeterm.
→ Poaceae

(1.5)

Indeterm.
→ Poaceae

(1.33)

Indeterm.
→ Poaceae

(1.16)

Indeterm.
→ Poaceae

(1.08)

Indeterm.
→ Poaceae

(0.584)

Indeterm.
→ Poaceae

(0.455)

Indeterm.
→ Poaceae

(0.256)

Indeterm.
→ Poaceae

(0.11)

Indeterm.
→ Poaceae
(0.00941)
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A Highly Allergenic Pollen Taxa

A.7 Secale (Roggen)

Scale 1000:1

0 5 10 15 20 30 40 50µm

Confocal data set

1 Secale in pollenmonitor test data set (Freiburg + Zürich) (0 in training data set)
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A.7 Secale (Roggen)

0 correctly recognized as Secale (0%):

1 rejected (100%):

-10

0 classified as other objects (0%):

Other objects that were confused with Secale (relative to 0 predicted Secale)

0 false positives (nan%):

0 unknown positives (nan%):

Scale 500:1
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A Highly Allergenic Pollen Taxa

A.8 Ambrosia (Traubenkraut)

2 Ambrosia in pollenmonitor test data set (Freiburg + Zürich) (0 in training data set)

0 correctly recognized as Ambrosia (0%):

0 rejected (0%):

2 classified as other objects (100%):

Ambrosia
→ Chenopodium (D.3)

(-10)

Ambrosia
→ rejected

(-10)

Other objects that were confused with Ambrosia (relative to 0 predicted Ambrosia)

0 false positives (nan%):

0 unknown positives (nan%):

new
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A.8 Ambrosia (Traubenkraut)
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B Moderately Allergenic Pollen Taxa

B.1 Carpinus (Hainbuche)

Scale 1000:1

0 5 10 15 20 30 40 50µm

Confocal data set

Scale 500:1

0 10 20 30 40 50 75 100µm

1131 Carpinus in pollenmonitor test data set (Freiburg + Zürich) (193 in training data set)

1060 correctly recognized as Carpinus (93.7%):

3.35 2.06 1.88 1.76 1.66 1.57
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B.1 Carpinus (Hainbuche)

1.48 1.41 1.34 1.25 1.19 1.1

1.01 0.915 0.805 0.634 0.413 0.00832

52 rejected (4.6%):

1.86 0.409 -0.0376 -0.254 -0.841 -3.5

19 classified as other objects (1.68%):

Carpinus
→ Quercus (B.3)

(-0.131)

Carpinus
→ No Pollen

(-0.478)

Carpinus
→ Betula (A.4)

(-0.55)

Carpinus
→ Populus (C.3)

(-0.858)

Carpinus
→ No Pollen

(-1.26)

Carpinus
→ Betula (A.4)

(-2.44)

Other objects that were confused with Carpinus (relative to 1084 predicted Carpinus)

11 false positives (1.01%):

No Pollen
→ Carpinus

(1.14)

Poaceae (A.6)
→ Carpinus

(0.946)

Cyperaceae (D.16)
→ Carpinus

(0.356)

Poaceae (A.6)
→ Carpinus

(0.155)

No Pollen
→ Carpinus

(0.0468)

No Pollen
→ Carpinus

(0.00411)

13 unknown positives (1.2%):

Indeterm.
→ Carpinus

(2.03)

Indeterm.
→ Carpinus

(1.75)

Indeterm.
→ Carpinus

(0.74)

Indeterm.
→ Carpinus

(0.634)

Indeterm.
→ Carpinus

(0.159)

Indeterm.
→ Carpinus

(0.0122)
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B Moderately Allergenic Pollen Taxa

B.2 Ostrya Carpinifolia (Hopfenbuche)

1 Ostr. Carp. in pollenmonitor test data set (Freiburg + Zürich) (0 in training data set)

0 correctly recognized as Ostr. Carp. (0%):

0 rejected (0%):

1 classified as other objects (100%):

Ostr. Carp.
→ Quercus (B.3)

(-10)

Other objects that were confused with Ostr. Carp. (relative to 0 predicted Ostr. Carp.)

0 false positives (nan%):

0 unknown positives (nan%):
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B.2 Ostrya Carpinifolia (Hopfenbuche)
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B Moderately Allergenic Pollen Taxa

B.3 Quercus (Eiche)

Scale 1000:1

0 5 10 15 20 30 40 50µm

Confocal data set

Scale 500:1

0 10 20 30 40 50 75 100µm

732 Quercus in pollenmonitor test data set (Freiburg + Zürich) (59 in training data set)

555 correctly recognized as Quercus (75.8%):

2.71 1.99 1.79 1.65 1.57 1.49 1.4

1.32 1.22 1.15 1.11 1.06 1.01 0.93

0.86 0.794 0.76 0.716 0.663 0.611 0.523

0.453 0.411 0.343 0.252 0.157 0.0806 0.00368
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B.3 Quercus (Eiche)

147 rejected (20.1%):

1.53 0.593 -0.00102 -0.0771 -0.148 -0.196 -0.273

-0.324 -0.433 -0.555 -0.772 -0.913 -1.14 -2.02

30 classified as other objects (4.1%):

Quercus
→ No Pollen

(-0.101)

Quercus
→ Fraxinus (B.4)

(-0.148)

Quercus
→ Juglans (D.7)

(-0.17)

Quercus
→ Fraxinus (B.4)

(-0.205)

Quercus
→ Plantago (B.5)

(-0.267)

Quercus
→ No Pollen

(-0.343)

Quercus
→ No Pollen

(-0.387)

Quercus
→ Alnus (A.2)

(-0.553)

Quercus
→ No Pollen

(-0.62)

Quercus
→ No Pollen

(-0.741)

Quercus
→ No Pollen

(-0.76)

Quercus
→ No Pollen

(-0.921)

Quercus
→ No Pollen

(-1.28)

Quercus
→ Fagus (C.2)

(-5.16)

Other objects that were confused with Quercus (relative to 716 predicted Quercus)

46 false positives (6.42%):

No Pollen
→ Quercus

(2.05)

No Pollen
→ Quercus

(1.07)

Acer (D.1)
→ Quercus

(0.76)

Fagus (C.2)
→ Quercus

(0.516)

Carpinus (B.1)
→ Quercus

(0.338)

Plantago (B.5)
→ Quercus

(0.287)

Juglans (D.7)
→ Quercus

(0.0147)

115 unknown positives (16.1%):

Indeterm.
→ Quercus

(1.73)

Indeterm.
→ Quercus

(0.951)

Indeterm.
→ Quercus

(0.587)

Indeterm.
→ Quercus

(0.409)

Indeterm.
→ Quercus

(0.265)

Indeterm.
→ Quercus

(0.127)

Indeterm.
→ Quercus
(0.00281)
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B Moderately Allergenic Pollen Taxa

B.4 Fraxinus (Esche)

Scale 1000:1

0 5 10 15 20 30 40 50µm

Confocal data set

Scale 500:1
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563 Fraxinus in pollenmonitor test data set (Freiburg + Zürich) (160 in training data set)

463 correctly recognized as Fraxinus (82.2%):

3.78 2.9 2.56 2.39 2.31 2.21 2.11 2.03

1.98 1.93 1.86 1.82 1.76 1.73 1.68 1.65

1.61 1.55 1.51 1.48 1.45 1.41 1.37 1.33

1.28 1.25 1.21 1.18 1.13 1.06 1.02 0.954

0.911 0.858 0.802 0.755 0.706 0.672 0.596 0.549

0.511 0.434 0.398 0.351 0.235 0.186 0.103 0.0383
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B.4 Fraxinus (Esche)

82 rejected (14.6%):

1.74 0.546 -0.0192 -0.0483 -0.142 -0.197 -0.247 -0.322

-0.356 -0.41 -0.457 -0.606 -0.852 -0.996 -1.23 -2.93

18 classified as other objects (3.2%):

Fraxinus
→ Platanus (D.11)

(-0.301)

Fraxinus
→ Alnus (A.2)

(-0.325)

Fraxinus
→ No Pollen

(-0.387)

Fraxinus
→ No Pollen

(-0.411)

Fraxinus
→ Platanus (D.11)

(-0.479)

Fraxinus
→ Poaceae (A.6)

(-0.54)

Fraxinus
→ No Pollen

(-0.551)

Fraxinus
→ Populus (C.3)

(-0.636)

Fraxinus
→ No Pollen

(-0.637)

Fraxinus
→ Platanus (D.11)

(-0.646)

Fraxinus
→ No Pollen

(-0.859)

Fraxinus
→ No Pollen

(-1.05)

Fraxinus
→ No Pollen

(-1.36)

Fraxinus
→ Plantago (B.5)

(-1.52)

Fraxinus
→ Platanus (D.11)

(-3.5)

Fraxinus
→ No Pollen

(-4.44)

Other objects that were confused with Fraxinus (relative to 502 predicted Fraxinus)

21 false positives (4.18%):

Platanus (D.11)
→ Fraxinus

(1.96)

Platanus (D.11)
→ Fraxinus

(1.41)

Salix (C.4)
→ Fraxinus

(1.26)

Quercus (B.3)
→ Fraxinus

(0.806)

Acer (D.1)
→ Fraxinus

(0.743)

Quercus (B.3)
→ Fraxinus

(0.355)

Populus (C.3)
→ Fraxinus

(0.353)

Platanus (D.11)
→ Fraxinus

(0.315)

No Pollen
→ Fraxinus

(0.261)

Platanus (D.11)
→ Fraxinus

(0.202)

Platanus (D.11)
→ Fraxinus

(0.171)

Platanus (D.11)
→ Fraxinus

(0.108)

Platanus (D.11)
→ Fraxinus

(0.104)

Platanus (D.11)
→ Fraxinus

(0.103)

Platanus (D.11)
→ Fraxinus

(0.0773)

Aesculus (D.6)
→ Fraxinus

(0.0101)

18 unknown positives (3.59%):

Indeterm.
→ Fraxinus

(1.27)

Indeterm.
→ Fraxinus

(0.862)

Indeterm.
→ Fraxinus

(0.729)

Indeterm.
→ Fraxinus

(0.586)

Indeterm.
→ Fraxinus

(0.449)

Indeterm.
→ Fraxinus

(0.388)

Indeterm.
→ Fraxinus

(0.23)

Indeterm.
→ Fraxinus

(0.0777)
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B Moderately Allergenic Pollen Taxa

B.5 Plantago (Wegerich)

Scale 1000:1

0 5 10 15 20 30 40 50µm

Confocal data set

Scale 500:1
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110 Plantago in pollenmonitor test data set (Freiburg + Zürich) (63 in training data set)

100 correctly recognized as Plantago (90.9%):

2.19 1.83 1.76 1.7 1.58 1.51 1.5 1.39

1.34 1.3 1.28 1.25 1.21 1.2 1.14 1.11

1.09 1.07 1.03 0.995 0.962 0.942 0.888 0.85

0.828 0.795 0.772 0.721 0.665 0.619 0.573 0.513

0.466 0.399 0.39 0.249 0.217 0.143 0.0889 0.0238
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B.5 Plantago (Wegerich)

8 rejected (7.27%):

0.197 0.15 -0.233 -0.246 -0.31 -0.62 -0.643 -1.08

2 classified as other objects (1.82%):

Plantago
→ Quercus (B.3)

(-0.362)

Plantago
→ Alnus (A.2)

(-2.26)

Other objects that were confused with Plantago (relative to 158 predicted Plantago)

9 false positives (5.7%):

Taxus (D.12)
→ Plantago

(2.13)

Poaceae (A.6)
→ Plantago

(0.789)

Chenopodium (D.3)
→ Plantago

(0.308)

Chenopodium (D.3)
→ Plantago

(0.213)

Quercus (B.3)
→ Plantago

(0.199)

Chenopodium (D.3)
→ Plantago

(0.128)

Rumex (B.6)
→ Plantago

(0.107)

Poaceae (A.6)
→ Plantago

(0.0933)

Fraxinus (B.4)
→ Plantago

(0.00864)

49 unknown positives (31%):

Indeterm.
→ Plantago

(1.66)

Indeterm.
→ Plantago

(1.37)

Indeterm.
→ Plantago

(1.28)

Indeterm.
→ Plantago

(1.19)

Indeterm.
→ Plantago

(1.16)

Indeterm.
→ Plantago

(1.12)

Indeterm.
→ Plantago

(0.986)

Indeterm.
→ Plantago

(0.937)

Indeterm.
→ Plantago

(0.897)

Indeterm.
→ Plantago

(0.855)

Indeterm.
→ Plantago

(0.839)

Indeterm.
→ Plantago

(0.808)

Indeterm.
→ Plantago

(0.758)

Indeterm.
→ Plantago

(0.675)

Indeterm.
→ Plantago

(0.545)

Indeterm.
→ Plantago

(0.463)

Indeterm.
→ Plantago

(0.356)

Indeterm.
→ Plantago

(0.307)

Indeterm.
→ Plantago

(0.203)

Indeterm.
→ Plantago

(0.169)

Indeterm.
→ Plantago

(0.156)

Indeterm.
→ Plantago

(0.0292)

Indeterm.
→ Plantago

(0.0127)

Indeterm.
→ Plantago
(0.000355)
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B Moderately Allergenic Pollen Taxa

B.6 Rumex (Ampfer)

Scale 1000:1

0 5 10 15 20 30 40 50µm

Confocal data set

Scale 500:1
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38 Rumex in pollenmonitor test data set (Freiburg + Zürich) (14 in training data set)

22 correctly recognized as Rumex (57.9%):

1.12 0.81 0.654 0.63 0.572 0.55 0.497 0.465

0.432 0.404 0.346 0.33 0.296 0.287 0.276 0.219

0.195 0.124 0.0843 0.0709 0.063 0.00412

15 rejected (39.5%):

-0.08 -0.134 -0.193 -0.202 -0.212 -0.316 -0.435 -0.46
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B.6 Rumex (Ampfer)

-0.612 -0.724 -0.789 -0.889 -1.01 -1.41 -1.82

1 classified as other objects (2.63%):

Rumex
→ Plantago (B.5)

(-1.02)

Other objects that were confused with Rumex (relative to 40 predicted Rumex)

2 false positives (5%):

Poaceae (A.6)
→ Rumex

(0.122)

Urtica (D.15)
→ Rumex
(0.0347)

16 unknown positives (40%):

Indeterm.
→ Rumex

(0.772)

Indeterm.
→ Rumex

(0.758)

Indeterm.
→ Rumex

(0.738)

Indeterm.
→ Rumex

(0.71)

Indeterm.
→ Rumex

(0.685)

Indeterm.
→ Rumex

(0.679)

Indeterm.
→ Rumex

(0.53)

Indeterm.
→ Rumex

(0.392)

Indeterm.
→ Rumex

(0.234)

Indeterm.
→ Rumex

(0.164)

Indeterm.
→ Rumex

(0.146)

Indeterm.
→ Rumex

(0.121)

Indeterm.
→ Rumex

(0.105)

Indeterm.
→ Rumex
(0.0793)

Indeterm.
→ Rumex
(0.0755)

Indeterm.
→ Rumex
(0.0564)
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C Lowly Allergenic Pollen Taxa

C.1 Castanea (Eßkastanie)

11 Castanea in pollenmonitor test data set (Freiburg + Zürich) (0 in training data set)

0 correctly recognized as Castanea (0%):

5 rejected (45.5%):

-10 -10 -10 -10 -10

6 classified as other objects (54.5%):

Castanea
→ No Pollen

(-10)

Castanea
→ No Pollen

(-10)

Castanea
→ No Pollen

(-10)

Castanea
→ No Pollen

(-10)

Castanea
→ No Pollen

(-10)

Castanea
→ No Pollen

(-10)

Other objects that were confused with Castanea (relative to 0 predicted Castanea)

0 false positives (nan%):

0 unknown positives (nan%):
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C.1 Castanea (Eßkastanie)
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C Lowly Allergenic Pollen Taxa

C.2 Fagus (Rotbuche)

Scale 1000:1

0 5 10 15 20 30 40 50µm

Confocal data set (left out two pollen due to limited space)

Scale 500:1
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1102 Fagus in pollenmonitor test data set (Freiburg + Zürich) (135 in training data set)

1028 correctly recognized as Fagus (93.3%):

2.84 1.93 1.72 1.55 1.4

1.27 1.14 0.925 0.694 0.0119
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C.2 Fagus (Rotbuche)

62 rejected (5.63%):

1.71 1.04 0.578 0.47 0.142

-0.111 -0.255 -0.453 -0.815 -2.65

12 classified as other objects (1.09%):

Fagus
→ No Pollen

(-0.0219)

Fagus
→ No Pollen

(-0.583)

Fagus
→ Quercus (B.3)

(-0.835)

Fagus
→ No Pollen

(-1.01)

Fagus
→ Quercus (B.3)

(-3.85)

Other objects that were confused with Fagus (relative to 1115 predicted Fagus)

39 false positives (3.5%):

No Pollen
→ Fagus

(1.91)

No Pollen
→ Fagus

(1.07)

No Pollen
→ Fagus
(0.534)

Juglans (D.7)
→ Fagus
(0.284)

Juglans (D.7)
→ Fagus
(0.0187)

48 unknown positives (4.3%):

Indeterm.
→ Fagus

(2.24)

Indeterm.
→ Fagus

(0.93)

Indeterm.
→ Fagus

(0.49)

Indeterm.
→ Fagus
(0.243)

Indeterm.
→ Fagus
(0.00877)
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C Lowly Allergenic Pollen Taxa

C.3 Populus (Pappel)

Scale 1000:1
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Confocal data set

Scale 500:1
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23 Populus in pollenmonitor test data set (Freiburg + Zürich) (13 in training data set)

6 correctly recognized as Populus (26.1%):

1.1 0.908 0.195 0.145 0.134 0.0602

13 rejected (56.5%):

0.603 -0.179 -0.232 -0.699 -1.01 -1.07 -1.28

-1.47 -1.59 -2.11 -2.3 -2.35 -2.74

4 classified as other objects (17.4%):

Populus
→ Fraxinus (B.4)

(-0.0781)

Populus
→ Quercus (B.3)

(-2.02)

Populus
→ Quercus (B.3)

(-2.27)

Populus
→ Taxus (D.12)

(-2.68)
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C.3 Populus (Pappel)

Other objects that were confused with Populus (relative to 11 predicted Populus)

3 false positives (27.3%):

Carpinus (B.1)
→ Populus

(0.387)

Fraxinus (B.4)
→ Populus

(0.0532)

Fraxinus (B.4)
→ Populus

(0.0439)

2 unknown positives (18.2%):

Indeterm.
→ Populus

(0.168)

Indeterm.
→ Populus

(0.0387)
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C Lowly Allergenic Pollen Taxa

C.4 Salix (Weide)

Scale 1000:1

0 5 10 15 20 30 40 50µm

Confocal data set
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13 Salix in pollenmonitor test data set (Freiburg + Zürich) (0 in training data set)

0 correctly recognized as Salix (0%):

6 rejected (46.2%):

-10 -10 -10 -10 -10 -10

7 classified as other objects (53.8%):

Salix
→ Betula (A.4)

(-10)

Salix
→ No Pollen

(-10)

Salix
→ Platanus (D.11)

(-10)

Salix
→ Platanus (D.11)

(-10)

Salix
→ No Pollen

(-10)

Salix
→ Platanus (D.11)

(-10)

Salix
→ Fraxinus (B.4)

(-10)

Other objects that were confused with Salix (relative to 0 predicted Salix)

0 false positives (nan%):

0 unknown positives (nan%):
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C.4 Salix (Weide)
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D Non-Allergenic Pollen Taxa

D.1 Acer (Ahorn)

Scale 1000:1
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Confocal data set

Scale 500:1
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11 Acer in pollenmonitor test data set (Freiburg + Zürich) (0 in training data set)

0 correctly recognized as Acer (0%):

0 rejected (0%):

11 classified as other objects (100%):

Acer
→ Quercus (B.3)

(-10)

Acer
→ Quercus (B.3)

(-10)

Acer
→ Quercus (B.3)

(-10)

Acer
→ rejected

(-10)

Acer
→ Quercus (B.3)

(-10)

Acer
→ Fraxinus (B.4)

(-10)

Acer
→ No Pollen

(-10)
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D.1 Acer (Ahorn)

Acer
→ Quercus (B.3)

(-10)

Acer
→ Quercus (B.3)

(-10)

Acer
→ Quercus (B.3)

(-10)

Acer
→ Fagus (C.2)

(-10)

Other objects that were confused with Acer (relative to 0 predicted Acer)

0 false positives (nan%):

0 unknown positives (nan%):
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D Non-Allergenic Pollen Taxa

D.2 Humulus (Hopfen)

2 Humulus in pollenmonitor test data set (Freiburg + Zürich) (0 in training data set)

0 correctly recognized as Humulus (0%):

1 rejected (50%):

-10

1 classified as other objects (50%):

Humulus
→ Corylus (A.5)

(-10)

Other objects that were confused with Humulus (relative to 0 predicted Humulus)

0 false positives (nan%):

0 unknown positives (nan%):
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D.2 Humulus (Hopfen)
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D Non-Allergenic Pollen Taxa

D.3 Chenopodium (Gänsefuß)

Scale 1000:1
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Confocal data set
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41 Chenopodium in pollenmonitor test data set (Freiburg + Zürich) (17 in training data set)

25 correctly recognized as Chenopodium (61%):

1.66 1.47 1.25 1.21 1.21 1.18 1.13 1.12

1.05 0.898 0.873 0.867 0.862 0.798 0.764 0.627

0.576 0.56 0.427 0.342 0.25 0.167 0.165 0.101

0.0424
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D.3 Chenopodium (Gänsefuß)

13 rejected (31.7%):

0.542 0.17 0.0924 0.0335 -0.313 -0.325 -0.326 -0.384

-0.48 -0.529 -0.54 -0.659 -1.37

3 classified as other objects (7.32%):

Chenopodium
→ Plantago (B.5)

(-0.0199)

Chenopodium
→ Plantago (B.5)

(-1.03)

Chenopodium
→ Plantago (B.5)

(-1.99)

Other objects that were confused with Chenopodium (relative to 32 predicted Chenopodium)

2 false positives (6.25%):

Ambrosia (A.8)
→ Chenopodium

(0.616)

No Pollen
→ Chenopodium

(0.566)

5 unknown positives (15.6%):

Indeterm.
→ Chenopodium

(0.743)

Indeterm.
→ Chenopodium

(0.581)

Indeterm.
→ Chenopodium

(0.419)

Indeterm.
→ Chenopodium

(0.194)

Indeterm.
→ Chenopodium

(0.101)
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D Non-Allergenic Pollen Taxa

D.4 Compositae (Korbblüter)

Scale 1000:1
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Confocal data set

Scale 500:1
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1 Compositae in pollenmonitor test data set (Freiburg + Zürich) (0 in training data set)

0 correctly recognized as Compositae (0%):

0 rejected (0%):

1 classified as other objects (100%):

Compositae
→ No Pollen

(-10)

Other objects that were confused with Compositae (relative to 0 predicted Compositae)

0 false positives (nan%):

0 unknown positives (nan%):
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D.4 Compositae (Korbblüter)
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D Non-Allergenic Pollen Taxa

D.5 Cruciferae (Kreuzblütengewächse)

Scale 1000:1
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Confocal data set
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D.5 Cruciferae (Kreuzblütengewächse)
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D Non-Allergenic Pollen Taxa

D.6 Aesculus (Roßkastanie)

Scale 1000:1
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Confocal data set
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13 Aesculus in pollenmonitor test data set (Freiburg + Zürich) (2 in training data set)

1 correctly recognized as Aesculus (7.69%):

0.448

9 rejected (69.2%):

-0.0377 -0.0874 -0.409 -0.686 -0.729 -0.878 -0.983 -1.17 -1.23

3 classified as other objects (23.1%):

Aesculus
→ Fraxinus (B.4)

(-0.543)

Aesculus
→ No Pollen

(-2.27)

Aesculus
→ No Pollen

(-2.65)

Other objects that were confused with Aesculus (relative to 1 predicted Aesculus)

0 false positives (0%):

0 unknown positives (0%):
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D.6 Aesculus (Roßkastanie)
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D Non-Allergenic Pollen Taxa

D.7 Juglans (Walnuß)

Scale 1000:1
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Confocal data set
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142 Juglans in pollenmonitor test data set (Freiburg + Zürich) (25 in training data set)

72 correctly recognized as Juglans (50.7%):

2.33 1.46 1.11 1.01 0.782 0.665

0.572 0.356 0.235 0.171 0.0635 0.000616
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D.7 Juglans (Walnuß)

48 rejected (33.8%):

1.31 -0.00375 -0.294 -0.548 -2.48

22 classified as other objects (15.5%):

Juglans
→ Fagus (C.2)

(-0.0583)

Juglans
→ No Pollen

(-0.137)

Juglans
→ No Pollen

(-0.198)

Juglans
→ Fagus (C.2)

(-0.257)

Juglans
→ Fagus (C.2)

(-0.338)

Juglans
→ Carpinus (B.1)

(-0.462)

Juglans
→ Fagus (C.2)

(-0.589)

Juglans
→ Fagus (C.2)

(-0.798)

Juglans
→ Fagus (C.2)

(-0.895)

Juglans
→ Fagus (C.2)

(-1.14)

Juglans
→ No Pollen

(-1.5)

Juglans
→ Quercus (B.3)

(-2.21)

Other objects that were confused with Juglans (relative to 78 predicted Juglans)

4 false positives (5.13%):

Fagus (C.2)
→ Juglans

(0.759)

Carpinus (B.1)
→ Juglans

(0.377)

No Pollen
→ Juglans

(0.277)

Quercus (B.3)
→ Juglans

(0.237)

2 unknown positives (2.56%):

Indeterm.
→ Juglans

(0.711)

Indeterm.
→ Juglans

(0.07)
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D Non-Allergenic Pollen Taxa

D.8 Larix (Lärche)

Scale 1000:1
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Scale 500:1
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29 Larix in pollenmonitor test data set (Freiburg + Zürich) (3 in training data set)

13 correctly recognized as Larix (44.8%):

2.64 0.598 0.0122
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D.8 Larix (Lärche)

2 rejected (6.9%):

0.13 -0.0997

14 classified as other objects (48.3%):

Larix
→ No Pollen

(-0.458)

Larix
→ No Pollen

(-3.1)

Larix
→ No Pollen

(-6.21)

Other objects that were confused with Larix (relative to 57 predicted Larix)

44 false positives (77.2%):

No Pollen
→ Larix

(2.97)

No Pollen
→ Larix
(0.711)

No Pollen
→ Larix
(0.00875)

0 unknown positives (0%):
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D Non-Allergenic Pollen Taxa

D.9 Picea (Fichte)

40 Picea in pollenmonitor test data set (Freiburg + Zürich) (0 in training data set)

0 correctly recognized as Picea (0%):

2 rejected (5%):

-10 -10

38 classified as other objects (95%):

Picea
→ Larix (D.8)

(-10)

Picea
→ Larix (D.8)

(-10)

Picea
→ Larix (D.8)

(-10)

Picea
→ No Pollen

(-10)

Picea
→ No Pollen

(-10)

Picea
→ No Pollen

(-10)

Other objects that were confused with Picea (relative to 0 predicted Picea)

0 false positives (nan%):

0 unknown positives (nan%):
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D.9 Picea (Fichte)

Scale 500:1

0 10 20 30 40 50 75 100µm
247



D Non-Allergenic Pollen Taxa

D.10 Pinus (Kiefer)

Scale 1000:1
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Confocal data set
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D.10 Pinus (Kiefer)

Scale 500:1
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1 Pinus in pollenmonitor test data set (Freiburg + Zürich) (0 in training data set)

0 correctly recognized as Pinus (0%):

0 rejected (0%):

1 classified as other objects (100%):

Pinus
→ No Pollen

(-10)

Other objects that were confused with Pinus (relative to 0 predicted Pinus)

0 false positives (nan%):

0 unknown positives (nan%):
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D Non-Allergenic Pollen Taxa

D.11 Platanus (Platane)

Scale 1000:1
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907 Platanus in pollenmonitor test data set (Freiburg + Zürich) (161 in training data set)

633 correctly recognized as Platanus (69.8%):

3.56 2.36 2.17 2.02 1.94 1.85 1.77 1.74

1.68 1.62 1.58 1.53 1.49 1.46 1.41 1.38

1.32 1.27 1.25 1.22 1.18 1.14 1.09 1.06

1.02 0.984 0.96 0.926 0.886 0.85 0.819 0.777

0.749 0.711 0.66 0.63 0.591 0.533 0.503 0.458

0.429 0.391 0.325 0.262 0.226 0.149 0.0933 0.0166
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D.11 Platanus (Platane)

239 rejected (26.4%):

1.85 0.628 -0.0175 -0.085 -0.176 -0.267 -0.365 -0.432

-0.511 -0.648 -0.806 -0.972 -1.15 -1.37 -1.68 -3.36

35 classified as other objects (3.86%):

Platanus
→ Fraxinus (B.4)

(-0.0208)

Platanus
→ Fraxinus (B.4)

(-0.154)

Platanus
→ No Pollen

(-0.189)

Platanus
→ No Pollen

(-0.263)

Platanus
→ Fraxinus (B.4)

(-0.316)

Platanus
→ Fraxinus (B.4)

(-0.539)

Platanus
→ Fraxinus (B.4)

(-0.62)

Platanus
→ No Pollen

(-0.638)

Platanus
→ Fraxinus (B.4)

(-0.84)

Platanus
→ No Pollen

(-0.984)

Platanus
→ No Pollen

(-1.05)

Platanus
→ No Pollen

(-1.07)

Platanus
→ No Pollen

(-1.17)

Platanus
→ No Pollen

(-1.25)

Platanus
→ Fraxinus (B.4)

(-1.37)

Platanus
→ No Pollen

(-1.48)

Platanus
→ No Pollen

(-1.58)

Platanus
→ No Pollen

(-1.68)

Platanus
→ No Pollen

(-1.92)

Platanus
→ No Pollen

(-1.98)

Platanus
→ No Pollen

(-2.12)

Platanus
→ No Pollen

(-2.26)

Platanus
→ No Pollen

(-2.96)

Platanus
→ No Pollen

(-3.63)

Other objects that were confused with Platanus (relative to 708 predicted Platanus)

15 false positives (2.12%):

Salix (C.4)
→ Platanus

(1.31)

No Pollen
→ Platanus

(1.29)

Salix (C.4)
→ Platanus

(1.27)

Salix (C.4)
→ Platanus

(0.677)

Fraxinus (B.4)
→ Platanus

(0.491)

Fraxinus (B.4)
→ Platanus

(0.425)

No Pollen
→ Platanus

(0.348)

No Pollen
→ Platanus

(0.323)

No Pollen
→ Platanus

(0.264)

No Pollen
→ Platanus

(0.234)

No Pollen
→ Platanus

(0.192)

Fraxinus (B.4)
→ Platanus

(0.15)

Fraxinus (B.4)
→ Platanus

(0.0347)

No Pollen
→ Platanus

(0.0269)

No Pollen
→ Platanus

(0.0117)

60 unknown positives (8.47%):

Indeterm.
→ Platanus

(1.97)

Indeterm.
→ Platanus

(1.19)

Indeterm.
→ Platanus

(0.735)

Indeterm.
→ Platanus

(0.541)

Indeterm.
→ Platanus

(0.427)

Indeterm.
→ Platanus

(0.313)

Indeterm.
→ Platanus

(0.13)

Indeterm.
→ Platanus

(0.00901)
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D Non-Allergenic Pollen Taxa

D.12 Taxus (Eibe)

Scale 1000:1
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Confocal data set
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78 Taxus in pollenmonitor test data set (Freiburg + Zürich) (27 in training data set)

36 correctly recognized as Taxus (46.2%):

2.05 1.68 1.45 1.41 1.06 1.04 1.03 1

0.952 0.931 0.919 0.856 0.759 0.735 0.698 0.601

0.595 0.582 0.571 0.535 0.471 0.455 0.451 0.429

0.378 0.349 0.317 0.262 0.165 0.13 0.0873 0.0813
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D.12 Taxus (Eibe)

32 rejected (41%):

1.55 1.08 0.0758 0.00319 -0.064 -0.121 -0.145 -0.191

-0.279 -0.289 -0.315 -0.402 -0.562 -0.607 -0.677 -0.73

-0.749 -0.769 -0.779 -0.883 -0.943 -1.16 -1.41 -2.09

10 classified as other objects (12.8%):

Taxus
→ Quercus (B.3)

(-0.446)

Taxus
→ No Pollen

(-0.502)

Taxus
→ Plantago (B.5)

(-0.61)

Taxus
→ No Pollen

(-0.837)

Taxus
→ No Pollen

(-0.907)

Taxus
→ No Pollen

(-0.917)

Taxus
→ No Pollen

(-0.985)

Taxus
→ No Pollen

(-1.32)

Taxus
→ No Pollen

(-1.72)

Taxus
→ No Pollen

(-1.92)

Other objects that were confused with Taxus (relative to 47 predicted Taxus)

1 false positives (2.13%):

Populus (C.3)
→ Taxus
(0.178)

10 unknown positives (21.3%):

Indeterm.
→ Taxus

(0.97)

Indeterm.
→ Taxus
(0.903)

Indeterm.
→ Taxus
(0.833)

Indeterm.
→ Taxus
(0.824)

Indeterm.
→ Taxus
(0.764)

Indeterm.
→ Taxus
(0.461)

Indeterm.
→ Taxus
(0.292)

Indeterm.
→ Taxus
(0.0105)
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D Non-Allergenic Pollen Taxa

D.13 Tilia (Linde)

Scale 1000:1
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Confocal data set
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5 Tilia in pollenmonitor test data set (Freiburg + Zürich) (0 in training data set)

0 correctly recognized as Tilia (0%):

4 rejected (80%):

-10 -10 -10 -10

1 classified as other objects (20%):

Tilia
→ Quercus (B.3)

(-10)
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D.13 Tilia (Linde)

Other objects that were confused with Tilia (relative to 0 predicted Tilia)

0 false positives (nan%):

0 unknown positives (nan%):
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D Non-Allergenic Pollen Taxa

D.14 Ulmus (Ulme)

Scale 1000:1
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Confocal data set

Scale 500:1

0 10 20 30 40 50 75 100µm

12 Ulmus in pollenmonitor test data set (Freiburg + Zürich) (0 in training data set)

0 correctly recognized as Ulmus (0%):

11 rejected (91.7%):

-10 -10 -10 -10 -10 -10 -10 -10

-10 -10 -10

1 classified as other objects (8.33%):

Ulmus
→ Quercus (B.3)

(-10)
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D.14 Ulmus (Ulme)

Other objects that were confused with Ulmus (relative to 0 predicted Ulmus)

0 false positives (nan%):

0 unknown positives (nan%):
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D Non-Allergenic Pollen Taxa

D.15 Urtica (Brennessel)

Scale 1000:1
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Confocal data set

Scale 500:1

0 10 20 30 40 50 75 100µm

1094 Urtica in pollenmonitor test data set (Freiburg + Zürich) (165 in training data set)

991 correctly recognized as Urtica (90.6%):

2.55 2.24 2.14 2.12 2.07 2.03 1.97 1.96 1.94 1.92 1.89 1.87

1.85 1.84 1.82 1.8 1.77 1.75 1.74 1.72 1.7 1.69 1.67 1.65

1.64 1.63 1.61 1.6 1.59 1.58 1.56 1.54 1.53 1.53 1.51 1.5

1.49 1.48 1.46 1.45 1.44 1.42 1.41 1.41 1.39 1.38 1.37 1.37

1.36 1.34 1.32 1.31 1.3 1.28 1.27 1.26 1.24 1.23 1.23 1.22

1.2 1.19 1.18 1.16 1.15 1.14 1.13 1.11 1.09 1.08 1.07 1.06

1.05 1.04 1.02 1.01 0.996 0.985 0.964 0.945 0.927 0.919 0.896 0.873

0.857 0.838 0.816 0.793 0.768 0.747 0.718 0.693 0.661 0.639 0.593 0.577

0.555 0.533 0.506 0.465 0.423 0.391 0.342 0.292 0.241 0.176 0.105 0.00363
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D.15 Urtica (Brennessel)

46 rejected (4.2%):

1.9 0.726 0.452 0.437 0.397 0.332 0.299 0.296 0.285 0.278 0.237 0.235

0.224 0.212 0.18 0.167 0.0941 0.0719 0.0603 0.0448 -0.0285 -0.0303 -0.0798 -0.138

-0.155 -0.208 -0.21 -0.34 -0.363 -0.382 -0.392 -0.852 -0.964 -1.11 -1.97 -3.07

57 classified as other objects (5.21%):

Urtica
→ No Pollen

(-0.0175)

Urtica
→ Artemisia (A.1)

(-0.0642)

Urtica
→ No Pollen

(-0.108)

Urtica
→ No Pollen

(-0.171)

Urtica
→ No Pollen

(-0.273)

Urtica
→ No Pollen

(-0.458)

Urtica
→ No Pollen

(-0.499)

Urtica
→ No Pollen

(-0.642)

Urtica
→ No Pollen

(-0.703)

Urtica
→ No Pollen

(-0.826)

Urtica
→ No Pollen

(-0.897)

Urtica
→ No Pollen

(-0.931)

Urtica
→ No Pollen

(-0.997)

Urtica
→ No Pollen

(-1.51)

Urtica
→ No Pollen

(-1.57)

Urtica
→ No Pollen

(-2.03)

Urtica
→ No Pollen

(-3.06)

Urtica
→ No Pollen

(-5.16)

Other objects that were confused with Urtica (relative to 1125 predicted Urtica)

15 false positives (1.33%):

No Pollen
→ Urtica

(1.48)

No Pollen
→ Urtica

(1.31)

No Pollen
→ Urtica

(1.16)

No Pollen
→ Urtica

(0.706)

No Pollen
→ Urtica

(0.472)

No Pollen
→ Urtica

(0.463)

No Pollen
→ Urtica

(0.407)

No Pollen
→ Urtica

(0.377)

No Pollen
→ Urtica

(0.254)

No Pollen
→ Urtica

(0.228)

No Pollen
→ Urtica

(0.216)

No Pollen
→ Urtica

(0.215)

No Pollen
→ Urtica

(0.205)

No Pollen
→ Urtica

(0.116)

No Pollen
→ Urtica
(0.0848)

119 unknown positives (10.6%):

Indeterm.
→ Urtica

(2.4)

Indeterm.
→ Urtica

(2.09)

Indeterm.
→ Urtica

(1.85)

Indeterm.
→ Urtica

(1.72)

Indeterm.
→ Urtica

(1.54)

Indeterm.
→ Urtica

(1.37)

Indeterm.
→ Urtica

(1.29)

Indeterm.
→ Urtica

(1.2)

Indeterm.
→ Urtica

(1.06)

Indeterm.
→ Urtica

(0.975)

Indeterm.
→ Urtica

(0.844)

Indeterm.
→ Urtica

(0.779)

Indeterm.
→ Urtica

(0.7)

Indeterm.
→ Urtica

(0.574)

Indeterm.
→ Urtica

(0.461)

Indeterm.
→ Urtica

(0.219)

Indeterm.
→ Urtica
(0.0922)

Indeterm.
→ Urtica
(0.0131)
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D Non-Allergenic Pollen Taxa

D.16 Cyperaceae (Sauergräser)

5 Cyperaceae in pollenmonitor test data set (Freiburg + Zürich) (0 in training data set)

0 correctly recognized as Cyperaceae (0%):

3 rejected (60%):

-10 -10 -10

2 classified as other objects (40%):

Cyperaceae
→ Quercus (B.3)

(-10)

Cyperaceae
→ Carpinus (B.1)

(-10)

Other objects that were confused with Cyperaceae (relative to 0 predicted Cyperaceae)

0 false positives (nan%):

0 unknown positives (nan%):
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D.16 Cyperaceae (Sauergräser)
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D Non-Allergenic Pollen Taxa

D.17 Sambucus (Holunder)

39 Sambucus in pollenmonitor test data set (Freiburg + Zürich) (63 in training data set)

30 correctly recognized as Sambucus (76.9%):

3.32 1.83 1.82 1.7 1.55 1.51 1.47 1.47 1.42 1.38

1.36 1.27 1.21 1.18 1.09 1.07 1.04 1.02 0.985 0.951

0.941 0.939 0.826 0.639 0.599 0.581 0.58 0.557 0.469 0.357

5 rejected (12.8%):

0.43 0.414 -0.0806 -0.139 -0.236

4 classified as other objects (10.3%):

Sambucus
→ No Pollen

(-0.13)

Sambucus
→ No Pollen

(-0.959)

Sambucus
→ No Pollen

(-1.29)

Sambucus
→ No Pollen

(-1.36)

Other objects that were confused with Sambucus (relative to 42 predicted Sambucus)

8 false positives (19%):

No Pollen
→ Sambucus

(1.06)

No Pollen
→ Sambucus

(1.01)

No Pollen
→ Sambucus

(0.325)

No Pollen
→ Sambucus

(0.319)

No Pollen
→ Sambucus

(0.22)

No Pollen
→ Sambucus

(0.101)

No Pollen
→ Sambucus

(0.0611)

No Pollen
→ Sambucus

(0.0336)

4 unknown positives (9.52%):

Indeterm.
→ Sambucus

(1.06)

Indeterm.
→ Sambucus

(0.484)

Indeterm.
→ Sambucus

(0.351)

Indeterm.
→ Sambucus

(0.291)
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D.17 Sambucus (Holunder)
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E Categorization of Pollen Taxa into Different
Allergenic Levels

In Germany the allergenic impact of the several pollen taxa is described by two categories “allergenic”
and “non-allergenic”. The allergenic category contains the six taxa that are reported in the daily pollen
forecasts: Corylus(A.5), Alnus(A.2), Betula(A.4), Poaceae(A.6), Secale(A.7), Artemisia(A.1).

In Switzerland four allergy levels (high, moderate, low, none) are used. The highly-allergenic cate-
gory contains the same 6 taxa as in Germany and additionally the Fraxinus(B.4).

Within the last years a new highly allergenic pollen taxa became important. Due to the global
warming the Ambrosia(A.8) plant expands to the north and is now present in parts Switzerland and the
southern regions of Germany.

In this thesis a mixture of these two categorizations is used to obtain the best possible compatibility:
We use the swiss categories, but move the Fraxinus(B.4) to the moderately allergenic pollen taxa (see
table E.1
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categorization categorization categorization
pollen taxon in this thesis in Switzerland in Germany

Artemisia(A.1) high high allergenic
Alnus(A.2) high high allergenic
Alnus viridis(A.3) high high allergenic
Betula(A.4) high high allergenic
Corylus(A.5) high high allergenic
Poaceae(A.6) high high allergenic
Secale(A.7) high high allergenic
Ambrosia(A.8) high high allergenic
Fraxinus(B.4) moderate high non-allergenic
Carpinus(B.1) moderate moderate non-allergenic
Ostrya Carpinifolia(B.2) moderate moderate non-allergenic
Quercus(B.3) moderate moderate non-allergenic
Plantago(B.5) moderate moderate non-allergenic
Rumex(B.6) moderate moderate non-allergenic
Fagus(C.2) low low–moderate non-allergenic
Castanea(C.1) low low non-allergenic
Populus(C.3) low low non-allergenic
Salix(C.4) low low non-allergenic
Acer(D.1) none none non-allergenic
Humulus(D.2) none none non-allergenic
Chenopodium(D.3) none none non-allergenic
Compositae(D.4) none none non-allergenic
Cruciferae(D.5) none none non-allergenic
Aesculus(D.6) none none non-allergenic
Juglans(D.7) none none non-allergenic
Larix(D.8) none none non-allergenic
Picea(D.9) none none non-allergenic
Pinus(D.10) none none non-allergenic
Platanus(D.11) none none non-allergenic
Taxus(D.12) none none non-allergenic
Tilia(D.13) none none non-allergenic
Ulmus(D.14) none none non-allergenic
Urtica(D.15) none none non-allergenic
Cyperaceae(D.16) none none non-allergenic
Sambucus(D.17) none none non-allergenic

Table E.1: The allergenic levels for the different pollen taxa
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