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Abstract

The Mumford-Shah functional is a general and quite popular variational model for
image segmentation. In particular, it provides the possibility to represent regions by
smooth approximations. In this paper, we derive a statistical interpretation of the full
(piecewise smooth) Mumford-Shah functional by relating it to recent works on local
region statistics. Moreover, we show that this statistical interpretation comes along
with several implications. Firstly, one can derive extended versions of the Mumford-
Shah functional including more general distribution models. Secondly, it leads to
faster implementations. Finally, thanks to the analytical expression of the smooth
approximation via Gaussian convolution, the coordinate descent can be replaced by a
true gradient descent.

1. Introduction

Image segmentation has been one of the most studied problems in image analysis
research. Having been handled in a rather heuristic manner for a long time, three
seminal works initiated a more systematic approach to the problem: the Bayesian
formulation of (Geman and Geman, 1984), and the two variational formulations in
(Kass et al., 1988) and (Mumford and Shah, 1989). All these works replaced the
formerly purely algorithmic description of a segmentation technique by the formulation
as an optimization problem. This systematic description based on sound mathematical
concepts has considerably improved the understanding of image segmentation and
supported the development of many new models and algorithms.
Especially in case of the Mumford-Shah functional there has initially been a large
gap between its sound theoretical formulation and efficient ways to find minimizers
in practice. Although (Mumford and Shah, 1989) comprises almost 100 pages, there
is not a single suggestion on how to implement the underlying segmentation frame-
work. This large gap between theory and practice has been bridged by the works of
(Ambrosio and Tortorelli, 1990), (Morel and Solimini, 1994), as well as the use of
level set representations of contours by (Caselles et al., 1993), (Chan and Vese, 2001),
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and (Paragios and Deriche, 2002). Most of the works building upon the Mumford-Shah
functional are based on a simplified version, the so-called cartoon limit. In this cartoon
limit, the image is approximated by a piecewise constant function, contrary to the
full Mumford-Shah functional, which aims at a piecewise smooth approximation. The
cartoon limit has independently been proposed also by (Blake and Zisserman, 1987),
spatially discrete approximations can be minimized by graph cut methods (Greig et al.,
1989; Boykov et al., 2001).
Whereas the three above-mentioned approaches to image segmentation are all based on
energy minimization, their motivation is quite different. (Zhu and Yuille, 1996) outlined
many relations between these functionals and algorithmic implementations such as
region merging or region growing. In particular, they established a link between the
statistical maximum a-posteriori approach by Geman and Geman and the cartoon limit
of the Mumford-Shah functional. Based on the statistical motivation of the maximum
a-posteriori approach, Zhu and Yuille suggested a generalization of the cartoon model,
where the constant approximation of image regions is replaced by arbitrary intensity
distributions. This formulation was used particularly in level set based segmentation
approaches where full Gaussian distributions (Rousson and Deriche, 2002), Laplace
distributions (Heiler and Schnörr, 2005), and nonparametric kernel densities (Kim
et al., 2005; Cremers and Rousson, 2007) have been suggested. For a recent review
of statistical approaches to integrate color, texture, motion and shape, we refer to
(Cremers et al., 2007).
Zhu and Yuille established relations between statistical methods and the cartoon
limit of the Mumford-Shah functional, yet in their work, they ignored the part of
the functional that allows also for piecewise smooth approximations. In the present
paper, we complete their work by showing that the Mumford-Shah functional can be
interpreted as a first-order approximation of a specific maximum a-posteriori model,
where pixel intensities are not, as usual, identically distributed but where the distri-
bution varies with the position in the image. Such local region statistics have recently
been introduced in the scope of medical image segmentation (Taron et al., 2004) and
silhouette based 3D tracking (Brox et al., 2005). The statistical interpretation we
derive is considerably different from the one in (Tsai et al., 2001). Whereas (Tsai
et al., 2001) focus on the joint segmentation and denoising task, we consider here pure
segmentation, where the smooth approximation is a latent variable. In contrast to the
interpretation in (Tsai et al., 2001), the new one has several practical implications
in the scope of segmentation. Firstly, it allows to generalize the Mumford-Shah func-
tional. Such generalizations can be derived from various local statistical models by
using the equivalence in the opposite direction. In particular, we propose a functional
that approximates the input intensity by a piecewise smooth Gaussian distribution
including mean and variance. Secondly, one gets access to numerical implementations
that are much more efficient than the usual way of solving a large linear system for each
region. Our comparison of five implementations reveals significant speedups. Finally,
the analytical expression for the smooth approximation given the region contours in
the statistical model allows for a gradient descent in the contour as opposed to a
coordinate descent in the contour and the regional intensity approximation. Since
such an analytical expression is lacking for the Mumford-Shah functional, a gradient
descent cannot be derived without the relationship to local region statistics.
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We previously presented our statistical interpretation of the Mumford-Shah functional
at a conference (Brox and Cremers, 2007b). In the present paper we extend this work
by focusing on the practical implications of this interpretation.
The remainder of this paper is organized as follows. In Section 2 and Section 3 we
briefly review the Mumford-Shah functional and the statistical approach to image seg-
mentation via maximum a-posteriori estimation of contours, respectively. In Section 4,
we then show an equivalence between these two approaches. From this we obtain a
new statistical interpretation of the Mumford-Shah functional that allows extending
the functional and to employ more efficient implementations. These extensions are
described in Section 5. Moreover, we derive the Euler-Lagrange equations of local
region statistics and compare the gradient descent to the usual coordinate descent.
Supplementary online material (Brox and Cremers, 2007a) further contains a brief
demonstration of local region statistics in the scope of contour tracking. The paper
concludes with a summary in Section 6.

2. The Mumford-Shah Functional

The idea of Mumford and Shah was to combine image denoising and segmentation
by a functional that simultaneously seeks a piecewise smooth approximation u : (Ω ⊂
R2) → R of the image I : (Ω ⊂ R2) → R and a minimal edge set K that separates
the non-smooth parts from each other. This can be expressed as minimization of the
functional

E(u, K) =
∫

Ω
(u− I)2dx + λ

∫
Ω−K

|∇u|2dx + ν |K|, (1)

where λ ≥ 0 and ν ≥ 0 are constant weighting parameters. Since our focus lies on
image segmentation, we will only consider edge sets which are sets of rectifiable closed
curves (Morel and Solimini, 1994). In this case, the edge set partitions the image into
an a priori unspecified number of disjoint regions Ωi, with Ω =

⋃
i Ωi, each being

approximated by a smooth function ui : Ωi → R.
An interesting special case arises for λ → ∞, where u is required to be piecewise
constant. This case, already discussed in (Mumford and Shah, 1989), is known as the
cartoon limit and can be written in short form

E(u, K) =
∑

i

∫
Ωi

(ui − I)2dx + ν0 |K|, (2)

where Ωi denotes the piecewise constant regions separated by K and ν0 is the rescaled
version of the parameter ν in (1). In this limiting case, ui is no longer a function
but collapses to a single value. Due to the quadratic penalizer, given Ωi, ui becomes
the mean of I within Ωi. A related approach was independently developed by (Blake
and Zisserman, 1987). In the spatially discrete case, (2) is related to the Potts model
(Potts, 1952).
The model in (2) can be simplified further by assuming an a priori fixed number of
regions N . In particular, the case N = 2 and its level set formulation by Chan and
Vese (Chan and Vese, 2001) has become very popular. A discrete version of the binary
case has been introduced by Lenz and Ising for modeling ferromagnetism already in
the 1920s (Lenz, 1920; Ising, 1925).
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3. Maximum A-Posteriori Model and Local Region Statistics

An alternative approach to image segmentation can be derived using Bayes’ rule

p(K|I) =
p(I|K)p(K)

p(I)
. (3)

Here one seeks for a partitioning by the edge set K that maximizes the a-posteriori
probability given the image I. The first factor in the numerator is in general approx-
imated by an intensity distribution in the regions i = 1, ..., N separated by K. The
second factor is the a-priori probability of a certain partitioning K. Usually, the total
length of the edge set K is assumed to be small,

p(K) = exp(−νB|K|), (4)

but other more sophisticated shape priors can be integrated here, as well (Cremers
et al., 2002). Assuming independence of intensities at different locations x, one can
write a continuous product with dx being the infinitesimal bin size. With the parti-
tioning of Ω by the edge set K into disjoint regions Ω =

⋃
i Ωi, Ωi ∩ Ωj = ∅,∀i 6= j,

the product can be separated into products over the regions:

p(I|K) =
∏
x∈Ω

p(I(x)|K,x)dx =
∏

i

∏
x∈Ωi

p(I(x)|x,x ∈ Ωi)dx. (5)

For convenience we define the conditional probability density to encounter an intensity
s at position x given that x ∈ Ωi as

pi(s,x) := p(s|x,x ∈ Ωi). (6)

Note that we have here a family of probability densities pi(s,x) for all x ∈ Ω, i.e.,

pi(s,x) : R → R+
0 , pi(s,x) ≥ 0,

∫
R

pi(s,x)ds = 1 ∀s ∈ R,∀x ∈ Ω (7)

In general, it is preferable to express the maximization of (3) by the minimization of
its negative logarithm. With the above assumptions, this leads to a generalized version
of the cartoon limit (Zhu and Yuille, 1996):

E(K) =
∑

i

∫
Ωi

− log pi(I(x),x)dx + νB |K|. (8)

A typical model for the probability densities pi is a homogenous Gaussian distribution
in each region Ωi:

pi(s,x) ≡ pi(s) =
1√
2πσi

exp
(
−(s− µi)2

2σ2
i

)
, (9)

where µi and σi denote the mean and standard deviation of I in region Ωi. Alterna-
tively, a Laplace distribution (Heiler and Schnörr, 2005) and a nonparametric density
(Kim et al., 2005) have been suggested. All these models apply the same probability
density to all points in a region. Hence, we will call them spatially homogeneous region
models.

In contrast, local region models drop the assumption of identically distributed pixel
intensities within a region1 Taking the spatial position into account, there is in general

1 This should not be confused with dropping the independence assumption stated above.
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a different probability density at each point x in the region, i.e., µi, σi ∈ R turn into
functions µi, σi : Ωi → R. Estimation of these functions can be achieved using a window
function, e.g. a Gaussian Gρ with standard deviation ρ, that restricts the estimation
to points within this window (Brox, 2005):

µi(x) =

∫
Ωi

Gρ(x− ζ)I(ζ) dζ∫
Ωi

Gρ(x− ζ) dζ
σi(x) =

∫
Ωi

Gρ(x− ζ)(I(ζ)− µi(x))2 dζ∫
Ωi

Gρ(x− ζ) dζ
. (10)

Obviously, the local region model converges to the corresponding homogeneous model
for ρ →∞.

Rather than applying a parametric model for pi(s,x) , one can also set up a local
nonparametric model via a kernel density estimator (Brox, 2005). Estimating the den-
sities with the Parzen method (Parzen, 1962) from samples in the local neighborhood
Gρ, yields

pi(s,x) =

∫
Ωi

Gρ(x− ζ)Kh(s− I(ζ)) dζ∫
Ωi

Gρ(x− ζ) dζ
, (11)

where Kh is a suitable kernel function of width h. Often Kh is chosen to be the
Gaussian kernel with standard deviation h. Such a local, nonparametric region model
yields a very general descriptor of regions.

4. Statistical Interpretation of the Mumford-Shah Functional

The maximum a-posteriori model from the last section is quite flexible in the choice of
the probability density function. It further yields a nice statistical interpretation of the
model assumptions and allows for the sound integration of a-priori information. The
reader may have noticed similarities between the models in Section 2 and Section 3.
Indeed there has been proven an equivalence between the cartoon model and the
MAP estimate. Having a fixed standard deviation σ =

√
0.5 for all regions and setting

νB = ν0, the MAP energy from (8) becomes exactly the cartoon model in (2) (Zhu
and Yuille, 1996).
With this equivalence in mind, is there a choice of the probability density function
that relates the Bayesian model to the full, piecewise smooth Mumford-Shah functional
stated in (1)? A straightforward statistical interpretation has been given in (Tsai et al.,
2001), where the Bayesian model is extended to p(K, u|I) ∝ p(I|K, u)p(u|K)p(K). In
this interpretation, both the edge set K and the smooth approximation u are sought
and the additional term in the full Mumford-Shah functional can be regarded as a
conditional prior on u. While this interpretation is fully satisfactory for the joint
segmentation and denoising problem, the prior p(u|K) is of little use, if the pure
segmentation problem (3) is considered, where u is only an auxiliary variable. In the
following, we give a different statistical interpretation than in (Tsai et al., 2001) that
neglects the denoising issue and focuses on segmentation. In Section 5 it will turn out
that this interpretation has many practical implications that in their majority cannot
be derived from the interpretation in (Tsai et al., 2001).
The new interpretation is based on the fact that (1) explicitly allows the approximation
u to vary within a region. Clearly, homogeneous region statistics cannot model this
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aspect, but local region statistics do. Hence, having in mind that the equivalence of the
Bayesian model and the cartoon model was established for a homogeneous Gaussian
region model with fixed standard deviation, we take a closer look at the local Gaussian
model, again with fixed standard deviation. The decisive observation is that the local
mean in (10) is a convolution of the image I with the Gaussian function Gρ including
a normalizing denominator for the case that the window hits the boundary of Ωi. This
normalization only ensures preservation of the average gray value of µi in the domain
Ωi.
In order to relate this model to the Mumford-Shah functional, we will formulate the
filtering operation in a regularization framework. (Yuille and Grzywacz, 1988) as well
as (Nielsen et al., 1997) showed that the outcomes of some linear filters are exact
minimizers of certain energy functionals with an infinite sum of penalizer terms of
arbitrarily high order. More precisely, it was shown in (Nielsen et al., 1997) that
filtering an image I with the filter

ĥ(ω) =
1

1 +
∑∞

k=1 αkω2k
(12)

given in the frequency domain, yields the minimizer of the following energy functional:

E(u) =
∫

R

(
(u− I)2 +

∞∑
k=1

αk

(
dku

dxk

)2
)

dx. (13)

In particular, this includes for αk = λk

k! , the Gaussian filter

ĥ(ω, λ) =
1

1 +
∑∞

k=1
λk

k! ω
2k

= exp(−λω2). (14)

This filter corresponds to the Gaussian Gρ with standard deviation ρ =
√

2λ in the
spatial domain. (Nielsen et al., 1994) further showed that for Cartesian invariants,
such as the Gaussian, this correspondence can be generalized to higher dimensions.
Therefore, the convolution result in (10) is the exact minimizer of

E(µi) =
∫

Ωi

(µi − I)2 +
∞∑

k=1

λk

k!

∑
j1+j2=k

(
dkµi

dxj1dyj2

)2
 dx (15)

with natural boundary conditions.

Based on these findings, we can generalize the piecewise constant case. We plug the
local Gaussian probability density with fixed standard deviation σ =

√
0.5 into the

Bayesian model in (8):

EB(K) =
∑

i

∫
Ωi

1
2

log(2πσ2) +
(I(x)− µi(x))2

2σ2
dx + νB |K|

=
∑

i

∫
Ωi

(I(x)− µi(x))2dx + νB |K|+ const.
(16)
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The means µi have been defined in (10) as the results of local convolutions. As we
have just found, this convolution result is the minimizer of (15). Hence, we can write
the Bayesian energy as:

EB(µ,K) =
∑

i

∫
Ωi

(µi − I)2 +
∞∑

k=1

λk

k!

∑
j1+j2=k

(
dkµi

dxj1dyj2

)2
 dx + νB |K|. (17)

Neglecting all penalizer terms of order k > 1 yields

EMS(µ,K) =
∑

i

∫
Ωi

(
(µi − I)2 + λ|∇µi|2

)
dx + νB |K|+ const. (18)

which states exactly the Mumford-Shah functional in (1). Consequently, minimizing
the full piecewise smooth Mumford-Shah functional is equivalent to a first-order ap-
proximation of a Bayesian a-posteriori maximization based on local region statistics. In
particular, it is the approximation of the Bayesian setting with a Gaussian distribution,
fixed standard deviation σ =

√
0.5, and a Gaussian windowing function where ρ =

√
2λ

and νB = ν.

The main effect of neglecting the higher order terms is that the minimizers µi of the
functional in (18) are less smooth than those of the functional in (17). Figure 1 depicts
a comparison in case of the whole image domain being a single region. Obviously, the
visual difference is almost negligible, and it can be further reduced by choosing λ in the
first-order approximation slightly larger than in the regularizer containing the infinite
sum of penalizers.

Figure 1. Comparison of regularization with and without higher order penalizers. Left: Original
image. Center: Smoothing result with the regularizer in (17) (Gaussian smoothing) for λ = 20.
Right: Smoothing results with the regularizer in (18) for λ = 20.

5. Consequences of the Statistical Interpretation

5.1. The Mumford-Shah Functional Including Variance

The statistical interpretation of the Mumford-Shah functional places us in a position to
modify the original functional in a way that it can deal with more general distributions.
For instance, one may cast doubt on the inherent assumption of having a fixed variance
in the whole image. In the statistical formulation, taking the variance into account is
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very easy, as shown in Section 3. Hence, we can take the statistical model and express
the convolutions by regularization formulations in order to obtain a corresponding
extended Mumford-Shah functional.

With the full Gaussian model, the probability densities

pi(s,x) =
1√

2πσi(x)
exp

(
(s− µi(x))2

2σi(x)2

)
. (19)

depend on two functions µi(x) and σi(x) given by (10). For ρ →∞ they are the mean
and standard deviation of I in Ωi, i.e., the minimizers of∫

Ωi

(
(µi − I)2

2σ2
i

+
1
2

log(2πσ2
i ) + λ

(
|∇µi|2 + |∇σi|2

))
dx (20)

for λ → ∞. This yields a generalized cartoon model. For ρ � ∞ we make use of
the relation between Gaussian convolution and regularization stated in the previous
section and obtain µi(x) and σi(x) as the minimizers of

E(µi, σi) =
∫

Ωi

(
(µi − I)2

2σ2
i

+
1
2

log(2πσ2
i )
)

dx

+
∫

Ωi

∞∑
k=1

λk

k!

∑
j1+j2=k

(
dkµi

dxj1dyj2

)2

dx +
∫

Ωi

∞∑
k=1

λk

k!

∑
j1+j2=k

(
dkσi

dxj1dyj2

)2

dx
(21)

Based on the observation in Section 4, a qualitatively similar approach is obtained by
neglecting the penalizer terms with k > 1, which yields an extended version of the
Mumford-Shah functional:

E(µ, σ,K) =
∫

Ω

(
(µ− I)2

2σ2
+

1
2

log(2πσ2)
)

dx

+λ

∫
Ω−K

(
|∇µ|2 + |∇σ|2

)
dx + ν |K|.

(22)

One immediate advantage of this functional versus the original from (Mumford and
Shah, 1989) is the possibility to distinguish regions being equal in their mean value but
differing in their variance. Such an example is shown in Figure 2. Since the difference in
the variance helps driving the contour, local minimization of the extended functional
succeeds in splitting the image correctly. The original Mumford-Shah functional miss-
ing this support, on the other hand, results in a partially unpleasant solution. Also note
the good reconstruction of the original image from the estimated mean and variance
function shown in Figure 2(d). This illustrates the larger descriptive power of the
extended functional. Results have been obtained with a level set implementation and
a restriction of the model to two regions.

Including the variance becomes even more interesting in the vector-valued case

E(µ, σ,K) =
M∑

k=1

∫
Ω

(
(µk − Ik)2

2σ2
k

+
1
2

log(2πσ2
k)
)

dx

+λ
M∑

k=1

∫
Ω−K

(
|∇µk|2 + |∇σk|2

)
dx + ν |K|,

(23)
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Figure 2. Top row, from left to right: (a) Original image of size 200 × 200 pixels with the
initial contour. (b) Contour obtained with the extended Mumford-Shah functional in (22) modeling
the variance (λ = 72, ν = 2). (c) Approximated mean µ. (d) Image generated by sampling from
the approximated mean and variance. Bottom row, from left to right: For comparison, results
of the traditional Mumford-Shah functional (no variance included). (e) Contour for ν = 2900. (f)
Approximated mean for ν = 2900. (g) Contour for ν = 3100. (h) Approximated mean for ν = 3100.
There is no choice of ν that perfectly captures the region.

Figure 3. Two texture segmentation examples. From left to right: (a) Original images of size
256× 151 and 241× 161 pixels, respectively, with the initial contour. (b) Result with the traditional
Mumford-Shah functional (no variance included) (c) Result with the functional in (23) modeling the
variance. (d) Result with the nonparametric model in (24), a bin width of 4 and a Parzen kernel
width of 1. The implicit weighting in the functional (23) yields favorable segmentations. Although the
nonparametric model includes an (even more sophisticated) weighting, local minima yield visually less
pleasant segmentations.

where I : Ω → RM , µ : Ω → RM , and σ : Ω → RM . In this case, the separate
variance functions estimated for each channel act as implicit weights. Consequently,
the influence of each channel only depends on its discriminative properties and not on
the magnitude of the channel values. This allows for the sound integration of different
input channels with different contrast and noise levels.
Figure 3 demonstrates this property by comparing the outcome of texture segmenta-
tion for the functional in (23) and the same functional with the standard deviation set
fixed. Four texture feature channels according to (Brox and Weickert, 2006) have been
supplemented to the gray value and color channels, respectively. In order to attenuate
the severe influence of local minima in the piecewise smooth Mumford-Shah functional,
a coarse-to-fine strategy was applied. In particular, starting from the cartoon limit, the
parameter λ was slowly decreased until it reached the final value of λ = 72. Figure 3
shows that including the variance, thereby including implicit channel weights, yields
favorable segmentations.
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Figure 4. Same experiment as in Figure 2 but with the nonparametric model from (24). The bin width
for the Parzen estimator was 4 and the kernel was a Gaussian with standard deviation 1. λ = 72 and
ν = 4. The approximation of the input image obtained by sampling from the estimated densities is
quite good. The contour, however, does not perfectly separate the two regions due to local minima in
the contour evolution.

5.2. A Nonparametric Mumford-Shah Functional

The Mumford-Shah functional can be further generalized by introducing nonparamet-
ric density models. Let p be family of probability density functions as defined in (7).
These general densities can be described by a kernel density estimator leading to a
nonparametric model similar to the one in (11). The following functional involving the
kernel Kh prefers segmentations such that p is spatially smooth in each region:

E(K) =
∑

i

(∫
Ωi

− log p(I(x),x)dx +
∫

R

∫
Ωi

(p(s,x)−Kh(s− I(x)))2 + λ|∇p(s,x)|2 dxds

)
+ ν |K|.

(24)
Although it is on the first glance not clear whether the property

∫
p(s,x)ds = 1,∀x

holds for the densities involved here, one can prove this by regarding gradient descent
for enforcing the smoothness. Let p0(s,x) = Kh(s − I(x)). For all times t in the
gradient descent and for all λ, p remains a family of densities because: ∂t

∫
p(s,x)ds =∫

∂tp(s,x)ds =
∫

∆p(s,x) − (p(s,x) − p0(s,x))/λds = ∆
∫

p(s,x)ds −
∫

(p(s,x) −
p0(s,x))/λds = 0.
Applying a kernel density estimator certainly leads to an extremely general segmen-
tation model. In combination with local optimization schemes this usually yields
the drawback of having more local optima in the objective function than simpler
models. Figure 4 shows the result of the same experiment as in Figure 2 but with
the nonparametric model. It indicates the problems that may arise from a too gen-
eral model. Nonetheless, a local nonparametric model can be interesting in case of
other optimization techniques or in case of λ being rather large combined with close
initializations.

5.3. Efficient Implementation

Given the striking similarity between the first-order regularization and Gaussian convo-
lution (see Figure 1) and the theorem by Nielsen et al., we can consider to exchange the
implementation of regularization and Gaussian convolution. As we show in this section,
this can lead to significant speedups. We compared the following implementations for
computing the smooth approximation µi of each region Ωi.
Regularization. The typical implementation is to minimize

E(µi(x)) =
∫

Ωi

(
(µi(x)− I(x))2 dx + λ

∫
Ω
|∇µi(x)|2

)
dx (25)
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by solving the corresponding Euler-Lagrange equation

1x∈Ωi · (µi(x)− I(x))− λ∆µi(x) = 0, (26)

where ∆ denotes the Laplace operator and 1x∈Ωi = 1 if x ∈ Ωi and 0 otherwise.
Discretization of (26) yields a linear system. We solved this linear system once by
gradient descent (2000 iterations) and once by a unidirectional multigrid scheme em-
ploying 25 iterations of successive over-relaxation (SOR) at each grid level. A slightly
faster implementation could be achieved with a full multigrid solver.
Gaussian convolution. According to (Nielsen et al., 1997), the above regularization
is a first-order approximation of Gaussian convolution. Hence, the minimizer in (25)
can be well approximated by the normalized convolution

µi(x) =

∫
Ωi

Gρ(x− ζ)I(ζ) dζ∫
Ωi

Gρ(x− ζ) dζ
. (27)

The naive implementation includes two convolutions with a sampled Gaussian: one
convolution of the image and one of the region indicator function in the denominator.
For efficiency reasons, the Gaussian was truncated outside the 2ρ-interval.
Recursive filtering. A much more efficient approximation of the above convolution
operation is by recursive filtering (Deriche, 1990), particularly if ρ is large. The idea
of such filters is to recursively propagate information from one part of the image
to another in a single forward-backward sweep. Whereas the Gaussian convolution
described above has a time complexity of O(kN), where N is the number of pixels
and k = 4ρ the width of the sampled Gaussian, recursive filtering has a complexity of
O(N), which is independent of ρ. This is particularly useful in case of the Mumford-
Shah functional, where typical values of ρ are in the area of ρ = 12 or larger. Recursive
filtering in this context has been suggested in (Piovano et al., 2007). We implemented
the second order recursive filter from (Deriche, 1990).
Iterated convolution with a box filter. Another fast alternative to Gaussian
convolution, which has also a time complexity of O(N), is by iterating a box filter,
i.e., convolution with the filter mask

h(s) =

{
1
2ρ if |s| < ρ

0 else
. (28)

Infinite convolution of this function with itself yields a Gaussian. However, three
iterations are already sufficient to be close to a Gaussian. We applied the filter four
times, two times in each direction. Convolution with h(s) can be implemented very
efficiently, since 1

2ρ

∑b+1
i=a+1 I(i) = 1

2ρ

(∑b
i=a I(i) + I(b + 1)− I(a)

)
.

Figure 5 depicts the smooth approximations computed for the two regions of the
synthetic example in Figure 2. Clearly, the four implementations yield very similar
results, especially inside the respective region. Far outside each region, the computed
values start to differ. In particular, as the Gaussian filter and the box filter both have
a compact support, values are unspecified for points that are farther than 2ρ from
the region. This is irrelevant for local contour evolutions, but global minimization
techniques, such as graph cuts (Greig et al., 1989; Boykov et al., 2001) or comparable
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Figure 5. Smooth region approximations for the image in Figure 2 obtained with different imple-
mentations. Top left: Minimization of the regularization functional. Top right: Convolution with
a Gaussian truncated at 2ρ. Bottom left: Recursive filter. Bottom right: Four iterations of a box
filter. Since the truncated Gaussian and the box filter have only compact support, areas that are far
outside the region are not specified.

Table I. Computation times for computing the smooth approximation and
the variance of one region in a 200× 200 image with λ = 72, or ρ = 12, on
a 2GHz Pentium M processor.

Implementation Computation Time Speedup

Regularization (gradient descent) 2384.04 ms 1

Gaussian convolution 104.74 ms 24

Regularization (cascadic SOR) 68.59 ms 35

Recursive filter 7.40 ms 322

Box filter 7.10 ms 336

continuous algorithms (Chan et al., 2006) need values to be specified in the whole
image domain.
Table I compares computation times. A naive Gaussian convolution is already 24
times faster than regularization implemented with a simple gradient descent. While
a fast implementation with cascadic SOR is faster than naive Gaussian convolution,
recursive filtering as well as the iterated box filter provide speedups of more than
two orders of magnitude. This clearly demonstrates the advantage of computing the
smooth approximations by a convolution expression rather than the regularization
framework.

5.4. Exact shape gradient

The statistical framework allows for the computation of the gradient with respect of
the contour. This becomes possible, since the dependency of the smooth region ap-
proximations on the contours are available in an analytic form by means of convolution
expressions, in contrast to the Mumford-Shah functional, where these approximations
can only be computed numerically. This leads to an exact gradient descent, whereas the
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usual implementation is only a coordinate descent. Precise shape gradients including
secondary terms are not unusual, though they are rarely implemented. In (Piovano
et al., 2007) the secondary terms for a local Gaussian distribution with fixed variance
have been derived and brought in a form that allows for an efficient implementation.
The exact shape gradient with respect to the level set function Φ : Ω → R can be
computed by means of the Gâteaux derivative. In particular

dE(Φ(x) + εh(x))
dε

∣∣∣∣
ε=0

= 0 (29)

must hold for any test function h(x). We focus here on the contribution of a single
region with a local Gaussian distribution and neglect the length constraint, which is
known to yield a curvature dependent term. More details can be found in (Brox and
Cremers, 2007a). With the following abbreviations

F1(x) := (K ∗H(Φ))(x) =
∫

Ω
K(x− y)H(Φ(y))dy

F2(x) := (K ∗ (H(Φ)I)(x) =
∫

Ω
K(x− y)H(Φ(y))I(y)dy → µ(x) =

F2(x)
F1(x)

F3(x) := (K ∗ (H(Φ)I2)(x) =
∫

Ω
K(x− y)H(Φ(y))I2(y)dy → σ2(x) =

F3(x)
F1(x)

− µ2(x)

F4(x) :=
(

K̄ ∗ H(Φ)((I − µ)2 − σ2)
σ4F1

)
(x) =

∫
Ω

K(y − x)H(Φ(y))((I(y)− µ(y))2 − σ2(y))
σ4(y)F1(y)

dy

F5(x) :=

(
K̄ ∗

H(Φ)
(
2Iσ2 − 2µ(I − µ)2

)
σ4F1

)
(x)

=
∫

Ω

K(y − x)H(Φ(y))
(
2I(y)σ2(y)− 2µ(y)(I(y)− µ(y))2

)
σ4(y)F1(y)

dy

F6(x) :=

K̄ ∗
H(Φ)

(
σ2
(

F3
F1
− 2Iµ

)
− (I − µ)2

(
σ2 − µ2

))
σ4F1

 (x)

=
∫

Ω

K(y − x)H(Φ(y))
(
σ2(y)

(
F3(y)
F1(y) − 2I(y)µ(y)

)
− (I(y)− µ(y))2

(
σ2(y)− µ2(y)

))
σ4(y)F1(y)

dy,

where K̄ denotes the mirrored kernel K, one obtains

H ′(Φ(x))
(

(I(x)− µ(x))2

2σ2(x)
+ log σ(x)− 1

2
(
I2(x)F4(x) + I(x)F5(x) + F6(x)

))
= 0. (30)

This equation can be implemented rather efficiently using the filtering techniques
mentioned in Section 5.3. The first two terms are the usual part considered when
applying coordinate descent. The remaining terms take into account the dependency
of the distribution on Φ. In the same style one can derive the gradient for the local
nonparametric region model:

−H ′(Φ(x))

log p(I(x),x) +
∫

Ω

K(y − x)H(Φ(y))
(
Kh(I(y)− I(x))− p(I(y),y)

)
p(I(y),y)

∫
Ω K(y − z)H(Φ(z))dz

dy

 = 0. (31)

More details on the derivation of the shape gradient and experimental comparisons
can be found in the supporting online material (Brox and Cremers, 2007a).
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6. Conclusions

In this paper, we have derived a statistical interpretation of the well-known Mumford-
Shah functional, in particular the full version that allows for smooth region approx-
imations. We have shown that the Mumford-Shah functional can be regarded as a
first-order approximation of a maximum a-posteriori model where each region is mod-
eled by the mean estimated in a local Gaussian neighborhood. This interpretation
allows to define extended versions of the Mumford-Shah functional, for instance, by
considering the variance in the estimation process. Moreover, the relation between
the regularization involved in the Mumford-Shah functional and Gaussian convolution
provides more efficient implementations. By using box filters or recursive filters the
initially slow estimation of the smooth approximation in each region can be accelerated
up to two orders of magnitude. Additionally, the statistical model, thanks to its ana-
lytic region description, allows to replace the coordinate descent by a gradient descent.
Segmentation models based on local regions statistics provide a nice intermediate stage
between conventional region based segmentation and edge based approaches: the first
class of methods is driven by global differences in the intensity distribution, the second
one by very local differences in the intensity (the image gradient). With local region
statistics, one is not obliged to choose one of these extremes, but can freely select the
scale of homogeneity expected in an application.

References

Ambrosio, L. and V. Tortorelli: 1990, ‘Approximation of functionals depending on jumps by elliptic
functionals via Γ-convergence’. Communications on Pure and Applied Mathematics XLIII, 999–
1036.

Blake, A. and A. Zisserman: 1987, Visual Reconstruction. Cambridge, MA: MIT Press.
Boykov, Y., O. Veksler, and R. Zabih: 2001, ‘Fast approximate energy minimization via graph cuts’.

IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239.
Brox, T.: 2005, ‘From Pixels to Regions: Partial Differential Equations in Image Analysis’. Ph.D.

thesis, Faculty of Mathematics and Computer Science, Saarland University, Germany.
Brox, T. and D. Cremers: 2007a, ‘On local region models and the statistical interpretation of

the piecewise smooth Mumford-Shah functional. Supplementary online material’. Available at
http://www-cvpr.iai.uni-bonn.de/pub/pub/brox ijcv08 sup.pdf.

Brox, T. and D. Cremers: 2007b, ‘On the Statistical Interpretation of the Piecewise Smooth Mumford-
Shah Functional’. In: F. Sgallari, A. Murli, and N. Paragios (eds.): Scale Space and Variational
Methods in Computer Vision, Vol. 4485 of LNCS. pp. 203–213, Springer.

Brox, T., B. Rosenhahn, and J. Weickert: 2005, ‘Three-Dimensional Shape Knowledge for Joint Image
Segmentation and Pose Estimation’. In: W. Kropatsch, R. Sablatnig, and A. Hanbury (eds.):
Pattern Recognition, Vol. 3663 of LNCS. Springer, pp. 109–116.

Brox, T. and J. Weickert: 2006, ‘A TV flow based local scale estimate and its application to texture
discrimination’. Journal of Visual Communication and Image Representation 17(5), 1053–1073.
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