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Abstract. Bourdev and Malik (ICCV 09) introduced a new notion of
parts, poselets, constructed to be tightly clustered both in the configu-
ration space of keypoints, as well as in the appearance space of image
patches. In this paper we develop a new algorithm for detecting people
using poselets. Unlike that work which used 3D annotations of keypoints,
we use only 2D annotations which are much easier for naive human an-
notators. The main algorithmic contribution is in how we use the pattern
of poselet activations. Individual poselet activations are noisy, but con-
sidering the spatial context of each can provide vital disambiguating
information, just as object detection can be improved by considering the
detection scores of nearby objects in the scene. This can be done by
training a two-layer feed-forward network with weights set using a max
margin technique. The refined poselet activations are then clustered into
mutually consistent hypotheses where consistency is based on empiri-
cally determined spatial keypoint distributions. Finally, bounding boxes
are predicted for each person hypothesis and shape masks are aligned to
edges in the image to provide a segmentation. To the best of our knowl-
edge, the resulting system is the current best performer on the task of
people detection and segmentation with an average precision of 47.8%
and 40.5% respectively on PASCAL VOC 2009.

1 Introduction

Detecting people in images is hard because of the variation in visual appearance
caused by changes in clothing, pose, articulation and occlusion. It is widely
accepted that a representation based on parts is necessary to tackle the challenge
of detecting people in images. But how shall we define parts?

Historically, the most common choice has been to use basic anatomical struc-
tures such as torso, left upper arm, left lower arm, and in a probabilistic frame-
work such as pictorial structures [1], these become nodes in a graphical model and
the conditional independence assumption inherent in the tree structure make in-
ference tractable. Other approaches that look for good scoring parts in the right
spatial relationships may be found in [2–6].
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While these parts are quite natural in constructing kinematic models of a
moving person, they are not necessarily the most salient features for visual
recognition. A limb, modeled as a pair of parallel line segments, is quite dif-
ficult to detect reliably; there are false positives all over an image. In contrast,
a visual conjunction such as “half of a frontal face and a left shoulder” may
be a perfectly good discriminative visual pattern. This is perhaps the reason
why the best performing approaches on people detection tend not to be based
on first detecting anatomical parts. Leading this trend was work on pedestrian
detection [7, 8] using a multi-scale sliding window paradigm; other examples of
such “appearance-based” techniques include [9–11, 4]. Currently the best per-
forming system on the task of people detection is by Felzenszwalb et al. [12] who
generalized the approach to allow an intermediate layer of “parts” that can now
be shifted with respect to each other, rendering the overall model deformable.
The templates for these parts emerge as part of the overall discriminative train-
ing. The latest version, dubbed Latent SVM by the authors, has an additional
mixture model on top permitting a rudimentary treatment of aspect.

Bourdev and Malik [14] introduced a new notion of parts as poselets, where
the key idea is to define parts that are tightly clustered both in configuration
space (as might be parameterized by the locations of various joints), and in ap-
pearance space (as might be parameterized by pixel values in an image patch).
Finding such parts requires extra annotation, and [14] introduced a new dataset,
H3D, consisting of images of people annotated with 3D keypoints making use
of Taylor’s algorithm [15]. The poselets themselves are created by a search pro-
cedure. A patch is randomly chosen in the image of a randomly picked person
(the seed of the poselet), and other examples are found by searching in images of
other people for a patch where the configuration of keypoints is similar to that
in the seed (see figures 1, 6, and 7 in [14]). Given a set of examples of a pose-
let, which are, by construction, tightly clustered in configuration space, HOG
features [7] are computed for each of the associated image patches. These are
positive examples for training a linear Support Vector Machine. At test time, a
multi-scale sliding window paradigm is used to find strong activations of the dif-
ferent poselet filters. These are combined by voting using a Max Margin Hough
Transform for the torso/bounding box of a person.

In this paper, we present a better way to define and use poselets. We start
with a critique of the approach in [14]:

The use of 3D keypoint annotations: While these carry more information
than 2D annotations, they come at a cost in terms of annotation expense. The
H3D annotation environment requires some degree of skill, and about 1-2 min-
utes per image. If we only mark keypoints in 2D, the task becomes much sim-
pler and portable to unskilled labor of the type available on Amazon Mechanical
Turk. While individual annotations become less informative, the ability to col-
lect many more for a given amount of time and money is a great advantage.
Additionally this makes the poselet idea applicable to other object categories
where lifting to 3D using the Taylor algorithm is not even possible.
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The use of Hough Transform voting: While such techniques have been used
in computer vision from early days, and are natural baselines before trying more
complex approaches, they provide less flexibility than one might like. Essentially
this is a star model [16], in the graphical model sense, with part positions being
referred to a center (a torso in [14]). However there may be no common target
that all parts predict reliably. Each poselet makes good predictions only about
local structure – a feet poselet does not know if the person is sitting or standing,
and a face poselet cannot know if the person is occluded by, say, a table. Instead,
we should look at pairwise consistency of poselets. A left shoulder poselet and a
frontal face poselet may be uncertain in their prediction of the visible bounds,
but they are certain on where the shoulders are, which makes it easier to tell if
they refer to the same person.

In the following sections we propose solutions to these limitations which
significantly increase performance.

2 Overview of our Approach

The first step is to train poselets using only 2D keypoint annotations. Ignoring
3D information becomes possible by a new distance function for comparing 2D
keypoint configurations. This simplification of annotation allowed us to augment
the training set of [14] by annotation of the people category of PASCAL VOC
2009 training and validation images. The larger amount of training data leads
to better initial poselet detectors. The experiments in this paper are based on
training 500 such detectors, and we select from these, in a greedy fashion, the 100
or 200 best performing poselets that maximize coverage of the different examples
in the training set.

At test time, a multi-scale sliding window paradigm is used to find strong ac-
tivations of the different poselet filters. In the overview figure for our algorithm,
the results of this stage are shown as Fig. 1.1. We need to cluster these activa-
tions together if they correspond to the same hypothesized person in the image,
predict a score for this person hypothesis, as well as an associated figure/ground
segmentation and a bounding box.

The key insight here is that if two poselet activations are consistent, they will
make similar predictions of the keypoints of the person, because two consistent
true positive activations detect parts of the same person.

At training time, we can measure the empirical keypoint distributions (Fig. 2)
associated with true activations of various poselet types, and at test time, we
measure consistency between two poselet activations i and j using the sym-
metrized KL-divergence of their empirical keypoint distributions N k

i and N k
j :

DSKL(N k
i ,N k

j ) = DKL(N k
i ||N k

j ) +DKL(N k
j ||N k

i ) (1)
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K

∑
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1. q-scores. Different colors illustrate different
poselet detectors firing in the image. The blob
size illustrates the score of the independent
poselet classifier.

2. Q-scores (Section 4). Evidence from consistent
poselet activations leads to a reranking based on
mutual activation (Q-scores). Weaker activations
consistent with others gain importance, whereas
inconsistent ones get damped.

3. Clustering (Section 5). Activations are
merged in a greedy manner starting with the
strongest activation. Merging is based on
pairwise consistency.

4. Bounding boxes (Section 6) and segmen-
tations (Section 7). We predict the visible
bounds and the contour of the person using the
poselets within the cluster.

Fig. 1. Schematic overview with manually marked activations to illustrate the method
we propose in this paper.
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Fig. 2. Empirical keypoint distribution: locations of the shoulders (left), shoulder and
ear (middle), and shoulders and hips (right) over true positive poselet activations.

Since we represent these keypoint distributions as 2D Gaussians, DSLK has a
closed-form solution, and the summation is over all the K common keypoints in
the two annotations.

The step from Fig. 1.1 to Fig. 1.2 illustrates an additional layer in the detector
that uses the context of other poselet activations. This can be regarded as a feed-
forward network, where the first layer generates poselet activations whose scores
are independent (we call them q-scores) and the second layer combines all
these to result in context-improved rescoring Q-scores. Alternatively, the q to
Q stage can also be regarded as a star model applied to each poselet activation.
The number of poselet activations stays the same, but the score of each activation
is changed.

The activations are then clustered together to form people detections; cf.
Fig. 1.3. We use a saliency based agglomerative clustering with pairwise distances
based on consistency of the empirical keypoint distributions predicted by each
poselet. Activations that have low score and are not consistent enough to be
merged with one of the existing clusters get removed.

Fig. 1.4 illustrates the final step of predicting bounding boxes from the pose-
lets in each cluster. Alternatively, we can predict segmentations from the clus-
tered poselets.

3 Training and Selecting Poselets

We used the H3D training set (750 annotations), the PASCAL VOC 09 train-
ing set (2819 annotations for which we added keypoints), and 240 annotations
we added manually from Flickr. We doubled this set by mirroring the images
horizontally. Our training algorithm consists of the following steps:
1. Collecting patches. We select 500 random windows from the training set
(seed windows), sampling with uniform distribution over scale and position while
keeping a fixed aspect ratio of 1.5. For each seed window we extract patches
from other training examples that have similar local keypoint configuration.
Following [14], we compute a similarity transform that aligns the keypoints of
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each annotated image of a person with the keypoint configuration within the
seed window and we discard any annotations whose residual error is too high.
In the absence of 3D annotation, we propose the following distance metric:

D(P1, P2) = Dproc(P1, P2) + λDvis(P1, P2), (3)

whereDproc is the Procrustes distance between the common keypoints in the seed
and destination patch and Dvis is a visibility distance, set to the intersection over
union of the keypoints present in both patches. Dvis has the effect of ensuring
that the two configurations have a similar aspect, which is an important cue
when 3D information is not available. Note that we allow rotations as part of
the similarity transformation during alignment, which helps augment the useful
part of the training set for a poselet.
2. Classifier training. We construct HOG features [7] from the collected
patches and from random negative example patches and we train linear SVM
classifiers. One important difference from [14] is that instead of using all patches
as training examples we only use the nearest 250 training examples. Given the
size of our training set, this ensures that all the training patches are sufficiently
close to the “seed” patch. Otherwise, what may happen is that, e.g., as we collect
more examples for a profile face detector, we will eventually start including ex-
amples of frontal faces, and they will end up dominating the classifier. Following
standard practice, we bootstrap the initially trained SVMs by scanning over im-
ages that contain no people, collecting hard false positives and retraining. This
process culminates in 500 trained poselet classifiers.
3. Finding true and false positives. We do a scanning pass over our training
set and collect the top 2N activations of each poselet, where N is the number
of annotated people. We assign labels (true positive, false positive, unknown) to
each poselet activation. To assign a label we use the bounds of the patches we ex-
tracted in step 1. We partition the bounds into two classes: the top-rank patches
(the training patches) are treated as ground truth; the lower-rank patches are
treated as secondary ground truth. Any activation that has intersection over
union overlap of more than 0.35 with a ground truth is assigned a true positive
label. If the overlap with a secondary ground truth is less than 0.1 or none, it is
assigned a false positive label. All other cases remain unlabeled.
4. Collecting information on each poselet.

(a) We fit a logistic over the positive and negative activations and the associated
scores to convert SVM scores into probabilities qi.

(b) We set a threshold for the SVM score that ensures 90% of the positive
and unlabeled examples are above the threshold. This allows each poselet’s
detection rate to match the frequency of the pattern it has learned to detect.

(c) We fit a model for the keypoint predictions conditioned on each poselet by
observing the keypoint distributions of the true positive activations of each
poselet type. An example is shown in Fig. 2. We model the distributions
using a 2D Gaussian associated with each keypoint.

(d) We fit the prediction of the visible bounds of the human relative to the
poselet in a similar way using the true positive activations. We find the
mean and variance of xmin, ymin, xmax, ymax of the visible bounding box.
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5. Poselet selection. The 500 poselet detectors trained in the previous stages
are based on randomly selected seed windows, and as a consequence some of these
will be redundant and others will correspond to rare patterns. This suggests
that we could select a smaller subset that could provide nearly equivalent or
even better performance to the whole set (analogous to feature selection for
classifiers). We treat this as a “set cover” problem, and solve it using a greedy
strategy. For every positive example in the training set, we determine which
poselets “cover” it, in the sense that the poselet has an above threshold activation
which overlaps it sufficiently (step 3 above). We first pick the poselet that covers
the most examples, then incrementally add poselets that cover the most not
yet covered examples. Once there is no poselet that can cover any previously
uncovered example, we select the poselet that covers the most examples covered
by only one previous poselet, etc.

4 Exploiting Context among Poselets

When examining poselet activations, it becomes clear that they are far from
perfect. This is but to be expected; the low level signal captured by HOG fea-
tures is often ambiguous. Sometimes there is just not enough training data, but
sometimes there are also “near-metamers”; patterns that can be distinguished
by a human observer using additional context, but are almost indistinguish-
able given the HOG signal inside the image patch. For example, a back-facing
head-and-torso pattern is similar in appearance to a front-facing one, and thus
a back-facing poselet will often fire on front-facing people as well; see Fig. 3.
Another example is a left leg, which in isolation looks very similar to a right leg.

One can resolve these ambiguities by exploiting context – the signal within a
patch may be weak, but there is strong signal outside the patch or at a different
resolution. We use the pattern of neighboring poselet activations for disambigua-
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Fig. 4. The top 10 activations of a poselet trained to find back-facing people. This is
challenging because the face is barely visible at this resolution and front-facing people
are much more frequent.Top row: Sorted by q score. Bottom row: Sorted by Q
score. The correct activations have a green bounding box and the wrong ones have a
red one. The Q-scores are computed using context to disambiguate front-facing from
back facing people. In this case the absence of a frontal face activation plays a role.
Without context we make 6 mistakes (top row) whereas using context we make only
two mistakes (bottom row).

Fig. 5. ROC curves for poselet activations of three poselets computed on our test set.
Red continuous lines use q score and green dashed lines use Q score.

Fig. 3. The top 10 activations of a poselet trained to find back-facing people. Top row:
Sorted by q-score. Bottom row: Sorted by Q-score. The correct and false activations
have a green or red bounding box, respectively. The Q-scores are computed using the
context of other activations, e.g. frontal faces, to disambiguate front-facing from back-
facing people. Without context we make 6 mistakes (top) whereas using context we
make only two mistakes (bottom).
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Fig. 4. ROC curves for activations of three poselets computed on our test set. Red
continuous lines use q score and green dashed lines use Q score.

tion. For example if a frontal face poselet fires strongly, we can infer that we are
more likely to have a front-facing head-and-shoulder pattern, rather than a back-
facing one. The oval shape of a wheel sometimes triggers a face detector, but we
can suppress the detection if there is no torso underneath.

We refer to the score of a poselet activation based only on its classifier as q-
score and one that uses other nearby activations as Q-score. For each activation
i we construct a context feature vector Fi of size the number of poselet types.
The pth entry of Fi is the maximum q-score qj over all activations j of poselet
p that are consistent with activation i (or zero if none). We train a linear SVM
on the context feature vectors of activations in the training set using their true
and false positive labels. We then train a logistic to convert the SVM score into
a probability Qi. The result is what we call Q-score.

We treat two activations i and j as consistent if the symmetrized KL diver-
gence, as defined in (2), di,j < τ . We set τ as the threshold that best separates
distances among consistent activations from distances among inconsistent acti-
vations on the training set. For all pairs of labeled activations on the training set
we can determine whether they are consistent or not - namely, two activations
are consistent if they are both true positives and share the same annotation.

Fig. 3 shows examples of the top activations of our back-facing pedestrian
sorted by q-score and below them the corresponding top activations sorted by
Q-score. Fig. 4 shows typical ROC cuves with q-scores vs Q-scores for the same
poselet. Clearly, the mutual context among activations helps to obtain a better
ranking. It is worth noting that Q-scores are assigned to the same activations
as the q-scores. While the ranking is changed, the localization of the activation
stays the same.

5 Clustering Poselet Activations

Our earlier approach in [14] is build upon the Max Margin Hough Transform
from [17] in order to group poselet activations to consistent people detections.
This comes with the assumption that the object has a stable central part and the
relative position of all other parts has very small variance – an assumption that
is not satisfied for articulated objects, such as people. We propose an alternative
clustering algorithm:
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 Fig. 5. Examples of poselet activations during clustering. The activation bounding
boxes and the predictions of the hips and shoulders are shown. Left: We start with the
highest probability activation, which for this image is a left shoulder. Center: Example
of two compatible activations which will be placed in the same cluster. Right: Example
of incompatible activations which will end up in separate clusters.

1. Initialize the set of clusters that correspond to person detection hypotheses
M = {∅}.

2. Successively take the poselet activation ai with the highest score Qi:
(a) Find the closest cluster mj = argminmj∈M d(ai,mj), where the distance

d from ai to cluster mj is estimated using average linkage.
(b) If d(ai,mj) < τ then mj ← merge(mj , ai), i.e. we merge i into an

existing cluster. Otherwise, if |M | < t then M ← {M ∪ ai}, i.e. we form
a new cluster.

In the end the poselet activations are grouped into clusters each corresponding to
a person detection hypothesis. In addition some poselets with low scores that are
inconsistent with any clusters are marked as false positives and are discarded.
The parameter t is a tradeoff between speed and false positive rate. We set
t = 100, i.e. we collect at most 100 person hypotheses from each image.

This algorithm is a form of greedy clustering starting with the highest- proba-
bility poselet activations. Compared to other schemes such as spectral clustering
or agglomerative clustering, the proposed algorithm has computational advan-
tages because it processes the most salient information first. The algorithm runs
in linear time. We do not spend compute cycles measuring distances between
low scoring detections, and the algorithm can be terminated at any time with
a good list of the most-salient-so-far hypothesis M . Furthermore, by starting
with the highest probability detections we are less likely to be mislead by false
positives. Fig. 5 shows examples of merging compatible activations (center) and
forming a new cluster (right).

6 Locating and Scoring People Hypotheses

Given a cluster of poselet activations, we can predict the location of the torso,
as well as a visible bounding box. We can also compute a score S, which is a
measure of how likely the cluster corresponds to a person as opposed to being a
false positive.
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1. Torso prediction. The human torso is a more stable region to predict than
the visible bounding box. Thus, before applying non-maximum suppression, we
first predict torsos and derive visible bounds from these predictions. The torso
can be predicted from the poselet activations within a cluster. If we use context,
we also include all compatible activations that might not be in the cluster. We
predict the locations of the hips and shoulders as the average prediction of each
poselet activation, weighted by the score of the activation. These four keypoints
define the torso of the person, which we parameterize using (x,y) location, length
and angle. We use a fixed aspect ratio of 1.5.

2. Non-maximum suppression. We use agglomerative clustering to merge
clusters whose intersection-over-union of torso bounds is greater than 0.6.

3. Visible bounds prediction. For each activation in the merged clusters we
compute its prediction for the expected visible bounds xmin, ymin, xmax and
ymax and the associated variances. We then perform mean shift for each of the
four estimates independently and pick the dominant mode. Mean shift allows
us to take into account the variance of the prediction, which is important. A
frontal face poselet, for example, has a very reliable prediction for ymin, but is
very unreliable for ymax since sometimes the legs of the person may be occluded.

4. Improving the predicted bounds. The above generative bounding box
prediction is not very accurate and we enhance it using a linear regression similar
to [12]. Specifically we transform [xminyminxmaxymax] with a 4x4 regression
matrix T . To train T , we perform steps 1, 2, and 3 on the training set, we match
the bounds predictions to the ground truths using intersection over union overlap
of 0.45 and collect the true positives. We then fit T using the predicted bounds
and the associated ground truth bounds.

5. Computing the score of a poselet cluster. We follow [14] to predict
the score S of the poselet cluster, i.e., we train a linear discriminative classifier
with positivity constraints on its weights to predict the scores based on the
activations within the cluster. We can use q-scores or Q-scores here, and we will
show a comparison in Section 8. For our positive examples we use detections on
the training set whose bounds intersection over union overlap is over 0.5. For
negative examples we use detections that do not intersect the truth or whose
overlap is less than 0.1. Our feature vector has the dimensionality of the number
of poselet types. The feature value for each poselet type is the maximum of all
activations of that poselet type within the cluster.

7 Object Segmentation by Contour Alignment

While prediction of bounding boxes is a reasonable proxy for the object detection
problem, the final localization task is actually the segmentation of the detected
object. From training examples with segmentation masks available we can derive
a figure/ground predictor for each poselet. We use a simple shape model for each
poselet by just averaging the masks of all examples in the training images after
keypoint alignment.
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At test time, we can derive a shape prior for the object by integrating the
mask predictions φi : R2 → [0, 1] of all poselet activations i = 1, ..., n assigned
to one cluster. Rather than just averaging the masks, we weight them by the
activation scores Qi

pin(x, y) =

∑n
i=1Qiχi(x, y)φi(x, y)∑n

i=1 χi(x, y)
, (4)

where χi : R2 → {0, 1} denotes the indicator function for the poselet’s support
in the image. As we are interested in a binary segmentation, the soft masks are
thresholded at θm = 0.07. This value has been optimized for the PASCAL VOC
09 validation set.

The above procedure yields an a priori decision on which pixels belong to an
object given the detection of certain poselets. It so far ignores further indication
from the image. In order to get a more precise localization of object boundaries
we align them to contours in the image. We use the state-of-the-art boundary
predictor from [18] to obtain an edge map f : R2 → [0, 1] of the image. Moreover,
we extract the silhouette g : R2 → {0, 1} of the predicted binary mask. We then
estimate the deformation field (u, v) : R2 → R that minimizes

E(u, v) =

∫
R2

|f(x, y)− g(x+ u, y + v)|+ α (|∇u|2 + |∇v|2) dxdy. (5)

The parameter α = 50 determines the amount of flexibility granted to the de-
formation field. We use a coarse-to-fine numerical scheme known from optical
flow estimation to compute the minimizer of (5) [19]. Warping the initial binary
mask with the optimum deformation field (u, v) yields a mask that is aligned
with boundaries in the image.

For segmenting the whole image, we paste the aligned binary masks from all
clusters into the image domain, ignoring clusters with an overall score S ≤ 12.
Since we run the segmentation for only one category, the ordering of the single
detections has no effect.

8 Experiments

Table 1 investigates the effect of the amount of poselets showing results using
10, 40, 100, and 200 selected poselets. Clearly, more poselets first help improving
the detection performance, but the improvement saturates between 100 and 200
poselets. Table 1 also shows the positive effect of exploiting mutual context
between poselet activations. The AP with Q-scores is consistently larger.

As an important baseline comparison to our previous detection in [14], we
evaluated our new detector, using 200 poselets, on the task of detecting human
torsos on the H3D test set. The ROC curves are shown in Fig. 6. The new ROC
curve outperforms the one from [14] over the entire range. In [14] we required
256 poselets and we also scanned the horizontally flipped version of the image,
which has the effect of doubling the poselets to 512.



12 Bourdev et al.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Our method
[Bourdev & Malik ICCV09]

False positives per image

De
te

cti
on

 ra
te

Fig. 6. Performance on the human torso detection task on the H3D test set.

Num. poselets q-scores Q-scores

10 36.9% 37.8%
40 43.7% 44.3%
100 45.3% 45.6%
200 45.7% 46.9%

Table 1. AP on PASCAL VOC 2007 test set for various numbers of poselets using
q-scores or Q-scores as described in Section 4.

Detection Segmentation
100 poselets 200 poselets [12] [13] masks only alignment [20]

VOC 2007 45.6% 46.9% 36.8% 43.2%
VOC 2008 54.1% 52.6% 43.1% 41.9% 43.1% 41.3%
VOC 2009 47.8% 46.9% 43.8% 39.4% 40.5% 38.9%

Table 2. Our performance on PASCAL VOC compared to the currently best results
reported for the detection and segmentation tasks on the person category. The seg-
mentation results were produced with 200 poselets.

Finally we provide results on the person category of the recent PASCAL
VOC challenges. As reported in Table 2, we have the best results reported to
date, both in the detection and the segmentation challenge. Our results are
reported for the competitions 4 and 6 because our method requires 2D keypoint
annotations.

Table 2 also shows the impact of aligning the mask predictions to boundaries
in the image. It is relatively small in quantity, as the performance is mainly due
to the detector. The visual effect is much larger, as segmentations align well with
true object boundaries. Some example detections and segmentations are shown
in Fig. 7 and Fig. 8.
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Fig. 7. Detection examples. The person’s bounding box is shown in red. The highest
probability poselet activation is shown in a cyan bounding box and a figure/ground
outline. Below each image we show three training examples from the activated poselet.

Fig. 8. Segmentation examples. The top middle example shows a typical limitation in
case of occlusion by other objects.

9 Conclusion

It is possible to view the poselets approach in a natural sequence of increasing
complexity from (1) Dalal and Triggs’ [7] single holistic model to (2) Felzenszwalb
et al.’s [12] parametric part model on to (3) poselets. In [12], certain fixed choices
are made: one root filter, six part filters, two components. The poselet framework
can be thought of as being in the spirit of nonparametric statistics – models with
greater flexibility which, as more training data becomes available, are expected
to have superior performance. These performance improvements do not come at
an inordinate expense in terms of running time. On a 3GHz Macbook Pro our
Matlab implementation with 40 poselets runs in about 27 seconds per image,
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where a large part of the time is spent for HOG computation. We conclude by
noting that the approach described in this paper for detecting people is equally
applicable to other object categories. This is the subject of ongoing research.
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