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Abstract—Registration of point clouds is required in the
processing of large biological data sets. The tradeoff between
computation time and accuracy of the registration is the main
challenge in this task.

We present a novel method for registering point clouds in
two and three dimensional space based on Group Averaging
on the Euclidean transformation group. It is applied on a set
of neighboring points whose size directly controls computing
time and accuracy.

The method is evaluated regarding dependencies of the
computing time and the registration accuracy versus the point
density assuming their random distribution. Results are verified
in two biological applications on 2D and 3D images.

I. INTRODUCTION

Registering point clouds is a task often encountered in
computer vision. The point clouds can represent interest
points, detected markers or laser scan data. The registration
is crucial for comparing or fusing the data. Fast and precise
algorithms are necessary to perform this task. Depending
on the transformation at hand and the structure of the
data, different algorithms are used ( [1]–[3]). If the points
are distributed randomly in space, state-of-the-art methods
perform poorly. This is why in [4] a new method based
on local descriptors was described to perform the task of
registering fluorescent point markers. The drawback of this
method is the relatively high computation time and the
strong dependency on the k-neighbors. We have introduced
a local point descriptor based on Group Integration (GI) over
the Euclidean group in [5] for describing the similarity be-
tween two protein structures. This descriptor can be applied
not only for protein structures but in many tasks of computer
vision.

The idea of the descriptor is to capture at each point the
local constellation of its neighboring points by taking into
account the local density of the points. We will describe
the local density of a point by defining a ’point gradient’.
These gradients along with the distances between points
are invariant considering the Euclidean group. We will not
consider the ’point gradients’ and distances themselves, but
there distribution in a histogram following the idea of shape
histograms [6].

Our method is particularly efficient, if the density of the
points is high in some regions of the image and using the
k-nearest neighbors (for small k) is not sufficient to describe
the local neighborhood.

In this work we would like to evaluate how the density of
the points influences the performance of the GI algorithm
and in which cases the GI algorithm can be used for the
registration of point sets.

II. GROUP AVERAGING ON POINT SETS

A discrete point set P := {pn ∈ R
k|n = 1, ..., M}

is mapped to R by defining an ’intensity function’ X :
R

k → R indicating the presence of the point. We choose to
represent the point set P as the sum of overlapping Gaussian
distributions. The function X at point p ∈ P is defined as:

X(p) =
∑

i

exp−
( ‖pi−p‖

σG

)2

(1)

The gradient of X is then:

∇X(p) = − 2
σ2

G

∑
i

(pi − p) exp−
(‖pi−p‖

σG

)2

(2)

To get an intuition for the meaning of the density gradient,
we show in Fig. 1 the effects of the gradient by choosing
two different values for σG. From Fig. 1 we can see that σG

controls the influence of points far away from the point p on
the gradient ∇X(p). For instance, a small value of σG has
the effect, that only the points in the direct neighborhood of
p influence the direction of the gradient.

In the following GI is used to obtain an invariant descrip-
tion of a point cloud image X with respect to the Euclidean
group.

An element g of the Euclidean group E acts on X by
gX(p) �→ X(Rp+t), where k ∈ {2, 3}, p, t ∈ R

k and R ∈
R

k×k is an orthogonal matrix. A group integration feature is
obtained by integrating a non-linear kernel function f over
the group of Euclidean motion E (see [7]):

If (X) =
∫
E

f(gX)dg. (3)
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(a) σG = 10 (b) σG = 40

Figure 1. The influence of σG on the ’point gradient’.

In [5] the following kernel function was introduced:

fd,n,n′(X) = hn(∇X(0)) hn′(∇X(d)), (4)

where d is the width parameter and n, n′ describe nor-
malized orientation vectors. The function h is defined by:

hn(v) = |v|δ1

( |vT n|
|v|

)
, (5)

where δ1 is the Delta-Distribution giving contribution if its
argument is nearby 1 and otherwise zero. hn describes a spe-
cific configuration between two vectors v, n. The integral in
Eq. 3 thus sums over all possible Euclidean transformations
of two points with distance d having gradient vectors parallel
with n, n′. The integral is evaluated once for each parameter
set d, n, n′. This specific configuration is captured for three
dimensional vectors using three angles (α, β, γ ∈ [−1, 1])
and one distance vector Δ ∈ R

+. For 2D vectors two angles
(α, β) and the distance vector Δ ∈ R

+ are sufficient.

Algorithm 1. GI Algorithm

1: Initialize IΠ = 0 for all Π.
2: for i = 1 to M do
3: for j = 1 to M do
4: Compute:

5: α = ∇X(pi)
‖∇X(pi)‖

T pi−pj

‖pi−pj‖ ,

6: β = ∇X(pj)
‖∇X(pj)‖

T pi−pj

‖pi−pj‖ ,

7: γ = ∇X(pi)
‖∇X(pi)‖

T ∇X(pj)
‖∇X(pj)‖ , Δ = ‖pi − pj‖

8: Let Π = {α, β, γ, Δ}
9: Update IΠ → IΠ + ‖∇X(pi)‖ · ‖∇X(pj)‖.

10: end for
11: end for

The resulting algorithm (Alg. 1) computes a histogram of
distances and orientations of point pairs in the point set P
weighted by the magnitude of their gradients. The number
of histogram bins for each parameter Π is chosen according
to the application.

We describe the local neighborhood N = {pi ∈ P |0 <
‖p−pi‖ < r} of all points p ∈ P by group averaging(step
9, Alg. 1) in order to find correspondences. For instance
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Figure 2. The influence of the point set size |P | (a), the Gaussian modeling
parameter σG (b) and the size of the neighborhood r (c) on the MSE for
100 random runs.

GI is performed inside hyperspheres with constant radius r
positioned at centers p. Corresponding points p1 ∈ P1 and
p2 ∈ P2 are identified by histogram comparison.

III. BENCHMARK FOR THE GI-ALGORITHM

In the following we would like to explore the stability
of the GI features on a 2D data set. Our experimental
setup is an image space I of size 200 × 250 pixel and
a set of randomly normally distributed points of size |P |.
The point set is rotated by the angle φ = 5 around the
center of the image and translated by t = [20,−10]. The
transformation between the two point sets is computed
by first finding correspondences using the GI features and
then computing the transformation using the first K = 20
correspondences with the most similar GI feature vectors.
True correspondences are determined with the RANSAC
algorithm. The histogram bin size is #binα = 4, #binβ = 4
and #binΔ = 10. The implementation was performed in
Matlab R2009a on a Intel Core 2 Duo processor with 3GHz
and 8GB RAM.

For the computation of the GI features in the first experi-
ment, we choose σG = 10 and the neighborhood size r = 10
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|P | 40 300 600 1000 2000 4000
sec 0.03 0.57 2.66 5.24 10.65 19.10

Table I
TIME CONSUMPTION OF THE GI ALGORITHM FOR INCREASING

POINT SET SIZE |P |.

r 5 10 15 20 30 40
sec 0.45 1.82 2.72 2.80 2.88 2.90

Table II
TIME CONSUMPTION OF THE GI ALGORITHM FOR INCREASING

NEIGHBORHOOD SIZE r.

and perform the GI algorithm on 100 randomly generated
point sets of size |P |. By increasing the point set size |P |, we
are increasing the point density in I . From Fig. 2(a) we can
see that for the given parameter set, the performance is best
for |P | = 300. For |P | > 300, the mean square error (MSE)
and its standard deviation increase. The time consumption
increases almost linearly in relation to the point set size |P |
(Tab. I).

For the second experiment (Fig. 2(b) ), we will take a
set of randomly distributed points of size |P | = 500 and
consider the neighborhood r = 10 and modify the standard
deviation of the Gaussian modelling function σG. The MSE
has its minimum at σG = 10 and increases slowly for σG >
10. For σG < 10 the MSE is very large. The optimal σG

depends on the neighborhood size r. If σG is chosen too
small the registration will fail.

Finally, we will keep σG = 10 and |P | = 500 constant
and modify the size of the neighborhood r. From Fig. 2 (c),
the optimal neighborhood size for this parameter set is r =
10. The computation time increases with the neighborhood
size (Tab. II).

IV. COMPARISON TO STATE OF THE ART

In the following we conducted experiments in order to
compare our method with state of the art methods ICP (
[3]) and CPD ( [2]). For this task a data set Q of 3D model
points is generated by randomly selecting nQ

i inlier in a
given region of the space. Then the corresponding inlier in
P are obtained by disturbing the nQ

i points from Q with
white gaussian noise N(0, σ) and then rotate and translate
the whole data set Q with a random rotation and translation.
Next we add no

Q and nP
o outliers in Q and P , respectively,

by randomly selecting points in the same region as the
inlier from Q and P , respectively, from the same random
uniform distribution over the x-y-z coordinates. We enforce
a constant density of 100 points over a 64×64×64 volume.
The total number of points in Q and P are nQ = ni

Q + no
Q

and nP = ni
P + no

P . The parameter σ controls the level
of deformation between two point sets, while no

P and no
Q

control the numbers of outliers in P and Q, respectively.
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(a) Influence of outliers
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(b) Influence of noise σ

Figure 3. Comparison of the different point registration methods: On the
y-Axis the number of correct matches is displayed. The x-axis displays the
number of outliers in (a) and the level of noise (σ) in (b).

Figure 3 compares the performance of the different meth-
ods depending on (a) the percentage of outliers (without
noise) and (b) the level of noise (without outliers). All
algorithms ran on the same data sets over 30 trials for each
value of the varying parameter, and the mean performance
curves are plotted. The performance is measured by counting
how many matches agree with the ground truth.

Figure 3 (a) shows that GI features can cope with a large
number of outliers. For instance even if 200% outliers are
added to P and to Q, 80% of the correct correspondences
can be retrieved. On contrary, iterative methods fail to
retrieve 80% of the matches if the percentage of outliers
exceeds 5%. Iterative methods use the global shape of the
point cloud and have difficulties if the outliers are evenly
distributed and thus influence the global shape.

On the other hand, methods based on local descriptors
have difficulties if noise is present. When the noise level
σ > 2 the number of the retrieved matches drops rapidly.
The iterative methods however, manage to retrieve 100% of
the correct matches even if σ = 4. Thus when dealing with
very noisy data, iterative methods should be preferred.

V. APPLICATIONS

In the following, we will present some successful appli-
cations of the GI-Algorithm to 2D and 3D data. For further
applications and high resolution images please refer to [8].

A. Tracking and Identifying 2D Point Patterns

Marine biologists are interested in tracking and comparing
bluespotted ribbontail rays (Taeniura lymma) according to
there characteristic point pattern (Fig. 4). The GI-Algorithm
can be applied to either track one individual ray in a video
sequence or compare patterns of two different rays. The
movement vector is computed by determining the point
correspondences in two video frames. For the registration
of two frames (Fig.4) with c.a. 70 points the GI-Algorithm
requires 0.7 sec with average bead registration error of 1.52
px (min. 0.17 px max 2.95 px) on 52 correspondences.
The parameters are (#binα, #binβ , #binΔ) = (4, 4, 10),
σG = 10 and r = 20. Since the videos are recorded in 2D,
projective mappings can also occur. If the transform can be
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Figure 4. Registration of frame 6 to frame 12 of a ray video with the
GI-Algorithm.

(a) preregistered data (b) after registration

Figure 5. Overlay of maximum intensity projections of two SPIM-views
(angle 0◦ and angle 180◦) before (a) and after applying the GI-Algorithm
(b) on the surrounding beads.

approximated by rigid motion (as in the video at hand), the
GI-Algorithm can be applied.

B. Registration of 3D image stacks

Three-dimensional zebrafish images are recorded from
six different views using the Single Plane Illumination
Microscopy (SPIM) ( [9]). The SPIM obtains different views
by rotating the probe around the y-axis for a specified
angle (in this case 60◦). A pre-registration of the data can
be achieved by rotating all probes back by the inverse
angle (Fig. 5(a)). However, a coarse registration is needed.
Fluorescent point markers (called beads) are embedded in
a surrounding medium for the purpose of coarse regis-
tration. The coarse registration is performed with the GI-
Algorithm (Fig. 5(b)) with precision 0.91 px (min. 0.73 px
max 1.72 px) on 61 correspondences. The parameters are
(#binα, #binβ , #binγ , #binΔ) = (2, 2, 2, 10), σG = 40
and r = 60. For the registration of two SPIM images with
c.a. 100 beads the GI-Algorithm requires 2 sec. In Fig. 5(b)
the registration of two views (angle 0◦ and angle 180◦) of
a 24h old zebrafish is depicted. By first finding pair-wise
correspondences using the GI-Algorithm and then applying
groupwize registration, all views can be registered.

VI. CONCLUSION

A new method for the registration of point clouds is
presented in this work. It is based on Group Averaging
applied on a set of neighboring points. The number of points

and their flexible choice make this method more efficient and
reliable, even in cases when the standard methods fail.

The computation time and the quality of the GI-
registration directly increase with the neighborhood size r.
However, it is shown that an upper bound for r exists, when
the quality of the registration begins to decrease. Therefore
it is possible to find an optimal r e.g. by using point density
statistics.

The GI-Algorithm has two interesting properties: 1. a
stability to outliers and 2. the ability to describe the neigh-
borhood of a point in a qualitative way. These properties
will be backed up by further experiments in the future.
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