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Abstract

In life-sciences, technical innovations in microscopy and the ever growing availability
of modern fluorescence microscopes allow for the investigation of more and more com-
plex biological processes. To facilitate the analysis of the recorded microscopic data,
the development of automated methods is indispensable, because these methods allow
for the evaluation of a sufficient amount of data without bias.
The analysis of fluorescence microscopic data comes with some specific challenges.
The recorded fluorescence signal is noisy, the signal intensity of the identical structure
potentially varies from one recording point to the other and the recording resolution is
strongly anisotropic due to technical limitations. Additionally, the optical system in-
troduces blur, which is commonly described by a convolution with the so called point
spread function.

The presented thesis primarily focuses on the segmentation of objects, mostly cells,
cell nuclei, or other cell organelles, from microscopic recordings. Another key aspect is
the deconvolution of the recordings in order to alleviate the blur introduced by the opti-
cal system. Especially when processing data from widefield microscopy, deconvolution
is often a crucial preprocessing step. The presented methods for blind deconvolution
are based on the regularization of the reconstructed point spread function. On our test
datasets, they lead to improved, sharpened images with a better signal to noise ratio. A
comparison to state-of-the-art methods confirms the aptitude of our approach.

The proposed methods for the segmentation of objects from volumetric data are
based on parametric active surfaces. An important contribution is the generation of ap-
propriate data terms for the representation of the object boundaries in noisy data with
weak fluorescence signal. Thus, we present methods for the generation of data terms
that allow for the segmentation of fluorescently labeled cell nuclei and nucleoli from
widefield microscopic recordings. Furthermore, we propose a method to automatically
generate new, very specific data terms for the segmentation of objects from volumetric
data based on very simple user input. Experiments show that our methods allow an ac-
curate segmentation of the objects under investigation, which, with conventional active
surface and level set methods, could not be achieved. Thereby, our dataterms can be
easily adapted to changing recording conditions.

Finally, we present a method that allows to learn topological knowledge that can be
used for the simultaneous classification and segmentation of objects. This approach is
based on hierarchical Markov Random Fields. By means of this method, the segmenta-
tion accuracy in a dataset of electron microscopic recordings could be greatly improved
compared to conventional Markov Random Fields.
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Zusammenfassung

Aufgrund technischer Innovationen im Bereich der Mikroskopie und der stetig wach-
senden Verbreitung moderner Fluoreszenzmikroskope geraten immer komplexere bio-
logische Abläufe und Modelle in den Fokus der Bio-Wissenschaften. Um die Analyse
der aufgenommenen mikroskopischen Daten zu ermöglichen, ist die Entwicklung au-
tomatischer Methoden unabdingbar, denn nur so kann eine zuverlässige Auswertung
hinreichend großer Datenmengen ohne systematische Fehler garantiert werden.
Dabei ist die Auswertung fluoreszenzmikroskopischer Daten mit einigen Herausfor-
derungen verbunden. Das aufgenommene Fluoreszenzsignal ist rauschbehaftet, die Si-
gnalstärke ein und derselben Struktur kann in Abhängigkeit der Position des Daten-
punktes innerhalb einer Aufnahme stark variieren und die Auflösung der aufgenomme-
nen Daten ist aufgrund technischer Beschränkungen meist stark anisotrop. Aufgrund
physikalischer Limitierungen wird durch die Optik Unschärfe in die Aufnahme einge-
führt, die in aller Regel als Faltung des Datensatzes mit einer sogenannten Punktbild-
funktion modelliert wird.

Die vorliegende Arbeit befasst sich vorrangig mit der Segmentierung von Objekten,
meist Zellen, Zellkernen oder anderen subzellulären Strukturen, in mikroskopischen
Aufnahmen. Ein weiterer zentraler Aspekt ist die Entfaltung der Aufnahmen zur Ver-
ringerung der durch die Optik eingeführten Unschärfe.
Gerade bei der Verarbeitung weitfeld-mikroskopischer Aufnahmen ist die Entfaltung
der Daten oft ein zentraler Vorverarbeitungsschritt. Die von uns vorgestellten Metho-
den zur blinden Entfaltung basieren auf der Regularisierung der rekonstruierten Punkt-
bildfunktion. Mit ihrer Hilfe konnte die Bildschärfe und damit das Signal zu Rausch
Verhältnis in unseren Testdaten stark verbessert werden. Auch der Vergleich mit State-
of-the-art Methoden bestätigt die Qualitäten unseres Ansatzes.

Die vorgestellten Methoden zur Segmentierung von Objekten aus volumetrischen
Aufnahmen basieren auf parametrischen aktiven Oberflächen. Das Erstellen geeigne-
ter Datenterme, welche die Objektgrenzen auch in rauschbehafteten Daten mit schwa-
chem Fluoreszenzsignal gut repräsentieren, ist dabei ein wesentlicher Beitrag. Zum
einen stellen wir verschiedene Datenterme vor, mit deren Hilfe fluoreszent markier-
te Zellkerne und Nukleoli aus weitfeld-mikroskopischen Aufnahmen segmentiert wer-
den können. Zum anderen präsentieren wir eine Methode zur automatischen Erstellung
neuer, sehr spezifischer Datenterme für die Segmentierung von Objekten aus volume-
trischen Daten, die auf einer sehr einfachen Benutzereingabe basiert.
Experimente zeigen, dass die vorgestellten Methoden, im Gegensatz zu konventionel-
len aktiven Oberflächen und Level Set Methoden, eine genaue Segmentierung der un-
tersuchten Objekte ermöglichen. Dabei können die Datenterme leicht an neue Aufnah-
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mebedingungen angepasst werden.
Schließlich stellen wir eine Methode vor, die es ermöglicht, topologisches Wissen

zu lernen und zur gleichzeitigen Klassifikation und Segmentierung von Objekten zu
nutzen. Dieser Ansatz beruht auf hierarchischen Markov Random Fields. Im Vergleich
zu konventionellen Markov Random Fields konnte eine deutliche Verbesserung in der
Genauigkeit der Segmentierung eines Datensatzes elektronenmikroskopischer Aufnah-
men gezeigt werden.
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1. Introduction

In life sciences, more and more complex biological models are to be investigated. The emerging
field of systems biology aims for building models integrating the regulatory processes of organisms
from the genome over cell organelles up to the behavior of the whole organism [Kitano, 2002]. The
role of proteins as “dynamic actors” [Bu and Callaway, 2011] is thereby of major interest. Besides
technical instruments for the automated analysis of e.g. certain properties of cell populations by
flow cytometry or Western Blots, image-based analysis is a very important basis for new findings.
Images can, in contrast to biophysical or biochemical approaches, provide not only quantitative but
also contextual information. Recent advances in fluorescence microscopy lead to the possibility to
rapidly generate large amounts of volumetric image data and even to record a specimen over time.
In contrast to two-dimensional recordings of single sections of the specimen, volumetric recordings
offer the possibility to observe the specimen as a whole. By recording several successive time-
points, it is even possible to monitor its development.
However, the capability of human experts to observe dynamic processes in large amounts of vol-
umetric data is strongly limited for the following reasons: First, in order to draw statistical con-
clusions, huge amounts of data have to be evaluated. Secondly, scientists usually already expect
certain effects of their experiments on the data such that manual evaluations are potentially biased.
Thirdly, if the biologically relevant information has to be found in three-dimensional space from
volumetric recordings, the task of even analyzing a single dataset is very tedious. Most often, the
data is then processed slice by slice by an expert who tries to combine the information from the
current slice with the information gathered in neighboring slices. In contrast, an automated system
is able to analyze volumetric information as such. High importance is therefore attached to com-
puterized methods that either lead to a full automation of the analysis of the recorded data, or help
the expert in analyzing the data in a semi-automated way. Crucial steps towards this automation
are data preprocessing, such as denoising, deblurring, and registration of the data, object or event
detection, and object segmentation.
This thesis is devoted to the automatic segmentation of small biological specimen from microscopic
recordings. The specimen we are dealing with are cells, cell nuclei, and other cell organelles, i.e.
we are working at the limit of the optical resolution. However, the exact knowledge of the individ-
ual cell or cell nucleus anatomy is crucial for the analysis of cellular and sub-cellular mechanisms.
Depending on the concrete application, biologists for example want to measure the variation of size
and shape of cells in a population, are interested in protein colocalizations, i.e. the co-occurrence of
two or more proteins, or want to investigate the distribution of a certain protein in relation to the cell
nucleus, nucleolus, mitochondria, or other structures. For these questions, it is usually necessary to
record different data channels and relate them to one another. An example is given in figure 1.1.
In this exemplary experimental setting, the cell nucleus is recorded in channel 0, the nucleolus in
channel 1, and the protein under investigation in channel 2. From the segmentations of the cell nu-
cleus and nucleolus and the detected protein clusters, a cell nucleus model can be built, that allows,
for example, to measure the distances from the protein clusters to the nuclear membrane.
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Figure 1.1.: Schematic sketch of a localization task. Data recorded in different channels need to be
segmented and aligned in order to analyze protein patterns.

1.1. Segmentation in Microscopic Data

In the present work, we focus on the segmentation task, but we also give a short excursus to im-
age deconvolution techniques that are in some cases a necessary tool for the processing of strongly
blurred microscopic data. The image segmentation problem in general can be considered ill-posed.
This is especially the case for the object segmentation task, even if full three-dimensional recordings
are available. In object segmentation, the objective is not primarily to find regions homogeneous
in color and texture but to segment whole semantic objects independently from the appearance of
object parts. The question remains how to identify these objects as such. Good segmentations can
only be achieved if sufficient prior information about the underlying object is given. Such infor-
mation can be image-based or object-based. Under certain imaging conditions, the cell nucleus
might for example yield higher image intensities than the cytoplasm such that the brightest region
in the recording corresponds to the cell nucleus. Similarly, one often assumes homogeneous image
intensities within single cell compartments. In this case, it makes sense to produce segmentations
yielding high inter-region dissimilarity and high intra-region similarity. Often, edges in the image
correspond to object boundaries. Object specific information can for example be given in form
of topological knowledge. For example, we know that the cell nucleus is a closed region inside
the cell and has, depending on the imaging conditions, a different appearance than the cytoplasm

2



1.1. Segmentation in Microscopic Data

but can have intensities similar to other cell organelles as for example mitochondria. Topological
knowledge becomes especially important when parts of the object are not visible in the image. Even
though we are not confronted with occlusions when working on full volumetric data, the informa-
tion on the object boundaries is often not complete in fluorescence microscopic recordings.
One reason for deficient boundary information in fluorescence microscopic images is the blur that
is introduced by the imaging system. Especially along the optical axis, the data is heavily blurred.
Depending on the size of the recorded specimen and the recording system, it might therefore even
be impossible to reconstruct the true boundary position in lower and upper object regions. Another
reason for limited data quality is the potentially uneven fluorescent staining. Often, the stained
protein is not evenly distributed in the specimen or the staining itself does not work perfectly. In
these cases, the recorded object boundary has a strongly varying appearance even though it should
theoretically be homogeneous. Due to absorption, bleaching, and scattering effects, boundary in-
formation can even be completely missing in some image regions.
To cope with these challenges and to facilitate the inclusion of topological knowledge, our algo-
rithms for the segmentation in volumetric microscopic recordings are based on parametric active
surfaces. Besides naturally incorporating topological information in the parameterization, they also
allow for an object-based optimization of the surface by local image cues. Further constraints on
the object surface like expected smoothness can easily be imposed. Since our data mainly consists
of recordings from cell cultures, where isolated cells are fixed or floating in a growth medium, we
can expect to find good initial estimates for the positions and sizes of our objects. The appropriate
initialization of active surfaces should thus be accomplishable, such that good segmentations can be
achieved by local optimizations. However, our main contributions lie in the creation of appropriate
data force fields driving the surfaces towards the object boundaries. These force fields could as well
be used in a convex optimization setting with non-parametric active surfaces if the incorporation of
topological knowledge is not essential, and are therefore not limited to local optimizations.
A main issue we are facing is the fact that for fluorescence microscopic recordings, the measured
image intensities can hardly be directly used as a cue for the object boundary. Blurring, bleaching
and signal attenuation effects are too strong to allow for a direct evaluation of image intensities.
Our approaches for the segmentation in fluorescence microscopic data are therefore based on the
gradient information in the images.
Since in many cases the necessary information on the object we want to segment is not accessible at
a local scale, we have to combine local and global image information in order to produce meaningful
segmentations. To this end, we have developed a method based on the optimization of a hierarchi-
cal graphical model that allows for the automatic learning of topological information from ground
truth annotations. This method was applied to the segmentation of two-dimensional recordings
from electron microscopy into background, cytoplasm, and several cell organelles. Segmentations
of these high resolution images are crucial to measure for example the cell or cell nucleus surface
area that can only be roughly estimated from fluorescence microscopic recordings.
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1.2. Contributions

Our contributions are in the field of image deconvolution and image segmentation.

In conventional fluorescence microscopic data, deconvolution is often needed especially for quali-
tative data analysis. It can also be used as preprocessing step for a later segmentation of the data.
Common methods for blind deconvolution in conventional fluorescence microscopy use very com-
plex prior assumptions on the blurring kernel. In [Keuper et al., 2012], we have proposed a very
simple, image-based regularization method for the reconstructed blurring kernel, that nevertheless
stabilizes the blind deconvolution scheme. Besides the presentation of this new kernel regulariza-
tion, we also provide an evaluation of three commonly used methods for the regularization of the
reconstructed data in [Keuper et al., 2012]. The method and its evaluation are described in section
4.7.1.

In [Koziolek, 2011], we have, together with Maja Temerinac-Ott, pursued the idea of computing
the regularization of the blurring kernel not in the spatial domain but in the frequency space. This
makes sense because in theory, the kernel should be well localized in the frequency domain and is
infinitely extended in the spatial domain. A theoretic revision of the first attempts made in [Kozi-
olek, 2011] and its evaluation will be proposed in section 4.7.2.

We have presented a new data term for the segmentation of cell nucleoli with active surfaces from
volumetric multi-channel recordings: the Channel Differential Structure that will be described in
section 5.3.1.

An active surface model has been proposed for the segmentation of cell nuclei that we have pub-
lished together with the Channel Differential Structure in [Keuper et al., 2009]. The data term
proposed in [Keuper et al., 2009] combines knowledge about the objects of interest with informa-
tion from the object detection step in order to produce robust segmentations. The proposed method
and its evaluation on a synthetic dataset as well as a dataset of fluorescence microscopic recordings
of Drosophila S2 cell nuclei will be described in section 5.3.2.

Since volumetric data recorded with conventional fluorescence microscopy is strongly blurred, the
correct object boundary in direction of the optical axis is hard to find. However, segmentation ar-
tifacts originating from the introduced blurring can be alleviated with the Mean Shift Gradient
Vector Flow method we have proposed in [Keuper, 2010; Keuper et al., 2010b]. This method
combines the standard Gradient Vector Flow computation with the Mean Shift method on gradient
fields. The resulting vector field is not only less easily influenced by image blur but also more robust
against noise. In [Chlap, 2010], we have used Mean Shift Gradient Vector Flow in order to produce
robust Landmark candidates in recordings of Zebrafish embryos. In [Renz, 2010], we have tested
the Mean Shift tracking algorithm on volumetric videos of cell nuclei in frog kidney. The derivation
and evaluation of the Mean Shift Gradient Vector Flow method will be described in section 5.3.3.

The active surface data term presented in [Keuper et al., 2009] is adapted to a special, typical imag-
ing setting, where the objects of interest, the cell nuclei, are entirely stained. If this is not given,
the data term has to be newly adapted to the presented imaging setting. In [Keuper et al., 2010a],
we have proposed a method for a semi-automatic generation of edge filters that perform this task.
The method is based on a pre-clustering of radial boundary profiles. It has been evaluated on a set of
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confocal microscopic recordings of tobacco protoplast cells in which different membrane proteins
were stained. The proposed algorithm will be described in section 5.3.4.

For the optimization of active contours and surfaces, the adjustment of the weighting factors for
data and regularization terms is crucial. In [Keuper et al., 2010c], we have proposed a method
for the automatic adjustment of weighting factors for active surfaces. The method dynamically
adapts active surface weighting factor depending on the data point currently covered by the surface.
By dynamically increasing the regularization parameter, we can also handle low data quality with
deficient boundary information. The proposed algorithm and its evaluation of Drosophila S2 cell
recordings as well as on recordings of cell nuclei in the Arabidopsis root tip will be described in
section 5.4.

Furthermore, we have developed a hierarchical Markov Random Field method that enables to
use local and regional information for the segmentation of recordings into semantically different
classes. The method has been applied to the segmentation of cells and several sub-cellular struc-
tures different in size from electron microscopic (EM) data, and was published in [Keuper et al.,
2011]. A detailed description of the method is given in chapter 6. The hierarchical Markov Random
Fields are built upon a region-wise texture classification. Appropriate features for this classifica-
tion have been evaluated in [Huhn, 2009]. In [Morath et al., 2013], we have used semi-automatic
segmentation, only using the first step of the method proposed in [Keuper et al., 2011] for the de-
termination of cell and cell nucleus surface area in different kinds of human and mouse cells.
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1. Introduction

1.4. Related Work

Even though the aim of this thesis is clearly defined as producing reliable segmentations for cells
and sub-cellular structures in microscopic images, the methods we have developed to this end are
quite diverse and range from traditional image segmentation methods to image deconvolution tech-
niques.
Related work on the segmentation of cells and cell nuclei from microscopic images is very diverse.
Countless methods have been published that are specialized for the segmentation of cells or cell
nuclei from special recording settings. When focusing on work treating the segmentation problem
in three-dimensional microscopic recordings, some works are to be mentioned as for example the
three-dimensional Gaussian intensity models [Thomann et al., 2002; Heinzer et al., 2008] and more
elaborate parametric models like the super-ellipsoidal intensity models [Wörz et al., 2010, 2007].
These methods focus, as our active surface approach, on the segmentation of whole objects. How-
ever, the resulting shape variations are limited and the segmentation result is strongly coupled to the
measured image intensities that are, at least in our data, not sufficiently reliable. Region-based level
sets, also strongly depending on image intensities, have for example been used in [Dufour et al.,
2005] in the context of three-dimensional cell segmentation.
A different approach has been pursued for example in [Sommer et al., 2011; Fehr et al., 2005;
Ronneberger et al., 2005; Kaster et al., 2011], where the object segmentation is built upon two
or three-dimensional feature-based learning of the objects’ textures or structures and a subsequent
voxel-wise classification. These approaches are not object-based such that for example the delin-
eation of touching cells can not always be solved. In [Lou et al., 2012], cell nuclei are segmented
based on previously learned shape priors.
A detailed overview on state-of-the-art segmentation methods in general will be given in chapter 2.
Furthermore, references to works closely related to our individual, proposed methods will be given
in the respective chapters such that differences and similarities can be directly pointed out.

1.5. Structure of this Thesis

This thesis is structured as follows. First, we will give an overview on image segmentation tech-
niques that have been developed in the field of natural image segmentation in chapter 2. These
methods are relevant since they formalize general concepts that, with few adaptations, can be ap-
plied to three-dimensional data. Then, we will describe the image formation process of the micro-
scopic data we use in this thesis in chapter 3. Chapter 4 is devoted to the description of methods
for the blind deconvolution of three-dimensional recordings, where we contributed two regulariza-
tion methods for the reconstructed kernel. In chapter 5, we will describe our active surface models
with the data terms designed for the challenges in fluorescence microscopic data. In chapter 6, we
will present our hierarchical Markov Random Field for the learning of topological information for
image segmentation before we will finally conclude in chapter 7.
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1.6. Mathematical Notation

1.6. Mathematical Notation

N the space of natural numbers
R the space of real numbers
C the space of complex numbers
Ω ⊆ Rd image domain in d-dimensional space
Ω1 t Ω2 union over open regions Ω1 and Ω2

Ω1 ∪ Ω2 union over closed regions Ω1 and Ω2

x d-tuple of real coordinates
Γ : [0, 1]→ Ω ⊆ R2 a contour in R2

|Γ| the length of contour Γ
κ(s) the curvature of a contour Γ at position s ∈ [0, 1]
Γ : [0, 1]× [0, 1]→ Ω ⊆ R3 a contour in R3

vT transposed vector v

∇I =
(
∂I
∂x1

, . . . , ∂I∂xd

)T
the gradient operator on I : Rd → R

div(I) = ∂I
∂x1

+ · · ·+ ∂I
∂xd

the divergence operator on I : Rd → R
∆I = ∂2I

∂x21
+ · · ·+ ∂2I

∂x2d
the Laplace operator on I : Rd → R

G = (V, E) undirected graphical model
V = {v1, . . . , v|V|} set of nodes
|V| cardinality of the set of nodes
N neighborhood system
X probability space
` ∈ X label configuration
`i label of vertex vi
C set of all cliques in graph G
Ψ(`) potential functions
Φ : Rd → R d-dimensional embedding function〈
· , ·
〉

inner product
Gσ a Gaussian normal distribution with standard deviation σ
∗ the convolution operator
p(·) probability density function
H(·) Heavyside function
δ the Dirac impulse
TV(·) the TV norm
‖ · ‖ the L2 norm of a vector
| · | the absolute value
ΠS(·) projection onto the set S
o : Ω→ R the objective function
s : Ω→ R the specimen function
h : Ω→ R the point spread function
n : R→ R a voxel-wise noise function
nG zero mean Gaussian noise function
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1. Introduction

f̂ estimate of function f
fm(x) = f(−x) the mirrored function f
F(·) the Fourier transform
F−1(·) the inverse Fourier transform
f ′ derivative of a differentiable function f
x∗ the complex conjugate of x ∈ C
J0 zero order Bessel function of the first kind
ı the imaginary unit
Pml associated Legendre polynomial of order m and degree l
Y m
l spherical harmonic basis function of order m and degree l
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2. Overview on Image Segmentation

In this chapter, we give an overview on existing state-of-the-art segmentation methods in the field of
natural image segmentation. Although these methods were initially proposed for the segmentation
in two-dimensional images, they can mostly very easily be adapted to the three-dimensional case.
Here, we are listing a large variety of methods, that range from discrete graphical models over con-
tinuously defined active contours to superpixel segmentation methods. These methods are in one or
the other way the basis for our own segmentation methods that will be presented in chapters 5 and
6. Our methods for the segmentation of cells, cell nuclei, and nucleoli from volumetric recordings
(see chapter 5) are based on parametric active contour models, which we will describe in sections
2.3.1-2.3.4. For the segmentation of natural images, these methods are widely believed to be out-
performed by convex, region-based methods (see sections 2.3.6 and 2.3.8). On our microscopic
data, we can, however, show that the use of edge-based, parametric active surfaces is beneficial.
Discrete optimization of graphical models (see section 2.2) and a superpixel segmentation method
(section 2.4.1) are important steps in our segmentation with hierarchical Markov Random Fields
(chapter 6).
Image segmentation methods generally aim at subdividing an image into segments according to
some predefined rules. For example, these segments could correspond to whole objects visible in
the image, to object parts or just to regions of homogeneous color or texture. If the objective is to
segment brighter from darker regions in an image, threshold-based methods can succeed. Otsu’s
threshold [Otsu, 1979] for example segments the image such that the gray-value variation is minimal
inside the resulting regions whereas it is maximal between the regions. Obviously, these methods
can not cope with strong background variations, i.e. high intra-class variations and they have to fail
as soon as the same gray-value can belong to foreground and background. Segmentation problems
involving noisy data and more complex structures to segment - for example whole objects - thus
need a more evolved formulation of the objective.
It follows that a good object segmentation can only be achieved if sufficient prior knowledge about
the underlying object is given. Otherwise, due to missing information in the recorded data, object
segmentation has to be considered as an ill-posed problem. The most commonly used property
is the continuity and smoothness of the object’s contour, but more specific, priorly learned shape
knowledge can be included in order to improve segmentation results [Leventon et al., 2000; Cootes
et al., 2001; Cremers et al., 2002; Cremers, 2006; Brox et al., 2011]. Specially in the field of natural
image segmentation, where one has to deal with 2D projections of 3D objects and object occlusions,
this approach is very helpful. The prerequisite is that the shape variation inside one object class is
limited or can be modeled (e.g. by poselets as done in [Brox et al., 2011]), and a sufficiently large
number of fully labeled training examples is given, which is not always the case - especially when
dealing with volumetric data.
An objective function that has often been considered in literature is the Mumford-Shah functional
[Mumford and Shah, 1989]. Its minimization has been the aim of many later works in image
segmentation and image denoising. In the following, we will briefly sketch the Mumford-Shah
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functional (2.1). Then, we will describe how its discrete counterpart, the Potts model, has been
optimized in the context of Markov Random Fields (section 2.2). Continuous deformable models
will be described in section 2.3. The last section of this chapter is dedicated to describing superpixel
segmentation methods. Superpixels can be used as basis for higher-level segmentation methods.

2.1. The Mumford-Shah Functional

Mumford and Shah introduced energy formulations for the image denoising and image segmenta-
tion problem, assuming that the image domain consists of segments that are separated by a contour
Γ : [0, 1] → Ω ⊆ R2 placed on the image. The first, most general energy proposed in [Mum-
ford and Shah, 1989] is minimal if the image is decomposed into regions or segments such that it
varies smoothly within each segment and there are strong variations between two segments. For
this purpose, a function u is introduced that approximates the original image I defined on Ω ⊆ R2,
is differentiable within the disjoint, open regions Ωi with Ω = Ω1 t · · · t Ωn t Γ, and may be dis-
continuous across the boundary Γ. Additionally, the resulting boundary length |Γ| should be small.
The functional is given by [Mumford and Shah, 1989]

EMumford-Shah(u,Γ) = µ2

∫
x∈Ω

(u− I)2dx︸ ︷︷ ︸
Edata(u)

+

∫
x∈Ω\Γ

‖∇u‖2dx + ν|Γ|︸ ︷︷ ︸
Eint(u,Γ)

, (2.1)

where µ and ν are constant weighting factors for the data driven energy term Edata and the in-
ternal energy term Eint depending only on the segmentation itself. ∇ is the nabla operator with

∇u =
(
∂u
∂x1

, ∂u∂x2

)T
. The optimal result given by the pair (u,Γ) is a smooth version of the original

image I , where only the segment boundaries are drawn sharply [Mumford and Shah, 1989]. The
resulting u is a smooth image with sharply drawn edges which is often considered the objective
of the image denoising problem. The objective has, however, also been used for image segmenta-
tion as for example [Cremers et al., 2002]. A first approach to find approximate solutions to the
functional (2.1) by variational methods has been proposed in [Ambrosio and Tortorelli, 1990]. In
[Felzenszwalb and Huttenlocher, 1998], an objective similar to the one formulated in equation (2.1)
is solved based on a graph-theoretic approach for image segmentation.
In [Mumford and Shah, 1989], the authors proposed two further energy functionals that are basi-
cally variations of EMumford-Shah with a special choice for u, namely the piecewise constant model
EMumford-Shah

0 and the geodesic model EMumford-Shah
∞ . The piecewise constant model is given by

EMumford-Shah
0 (u,Γ) =

n∑
i=1

∫
x∈Ωi

(
uΩi − I

)2
dx + ν0|Γ|, (2.2)

where uΩi = meanΩi(I) should take on the mean value of the image I inside each open region
Ωi. The constant ν0 is defined as ν0 = ν/µ. This functional behaves similarly to the discrete Potts
model defined in equation 2.14 (see section 2.2.6), and is a typical objective for image segmentation
problems. The optimal result is a “cartoon” of the original image, which is why this functional is
also referred to as the cartoon limit. An important difference between the Mumford-Shah functional
and the Potts model is the boundary length |Γ| that is continuously modeled in the Mumford-Shah
functional but can only take on discrete values in the Potts model.
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The geodesic functional is given by

EMumford-Shah
∞ (Γ) =

∫ 1

0

ν∞ −( ∂I

∂n(s)

(
Γ(s)

))2
 ds, (2.3)

where ν∞ is constant, n is the unit normal to Γ, and ds is an infinitesimal part of the curve Γ. This
last functional given in [Mumford and Shah, 1989] is independent from u and seeks for a contour Γ
that is as short as possible while, perpendicular to Γ, the image I varies most strongly. Obviously,
this energy is minimal if Γ is the empty set, which, however, is not the desired solution of the image
segmentation problem.
The optimization of these objective functions has been the basis of various discrete and continuous
segmentation methods. Discrete methods can be theoretically embedded into the Markov Random
Field framework whereas continuous optimization is done using variational approaches.

2.2. Discrete Graphical Models

Probabilistic graphical models are widely used to represent dependencies between sets of discrete
random variables. In these graphical models, the nodes represent random variables and the edges
encode their mutual dependencies. The most commonly used graphical models are, among others,
Bayesian Networks and Markov Random Fields (MRFs). Bayesian Networks are directed acyclic
graphs which means that there exists an underlying ordering of the nodes and the edges are lead-
ing from parent nodes to child nodes. As a consequence, nodes are conditionally independent of
each other given their parents [Grenander and Miller, 2007]. Markov Random Fields are undirected
graphical models and thus provide handling for Markov processes where no natural ordering of the
random variables is given. Thus MRFs are a suitable tool for image processing tasks like image de-
noising or segmentation, where one usually wants to model the dependencies between neighboring
pixels or voxels on a grid. They are the basis for many discrete image segmentation methods. In
the following, we will give a brief introduction on MRFs. For a more detailed description, refer to
[Winkler, 2003; Bishop, 2009] or to the original work of [Geman and Geman, 1984] in the context
of image processing.

2.2.1. Markov Random Fields

A MRF is based on an undirected graphical model G = (V, E), where V is a discrete set of nodes

with cardinality |V| and E ⊆ {(vi, vj)|vi, vj ∈ V, vi 6= vj} with |E| ≤
(
|V|
2

)
is a set of edges,

i.e. of pairs of those nodes. These edges define a neighborhood systemN that fulfills the following
properties

• ∀vi ∈ V: vi /∈ N (vi)

• ∀vi, vj ∈ V: vj ∈ N (vi) ⇐⇒ vi ∈ N (vj)

• vj ∈ N (vi) =⇒ ∃e ∈ E that connects vi and vj .

Each node vi ∈ V is assigned a random variable Xi out of a finite set of random variables X =
{X0, . . . , X|V|} in the probability space X . In undirected graphical models, the joint probability
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distribution factorizes over the maximal cliques of the graph

P (X = `) =
1

Z

∏
c∈C

Ψc(`), (2.4)

where ` is the configuration of X, the Ψc(`) are potential functions that only depend on those
components of ` that are in the clique c. The set of all cliques in G is denoted by C, and Z is a
normalization constant given by

Z =
∑
`∈X

∏
c∈C

Ψc(`), (2.5)

that is called partition function. In contrast to other probabilistic models, in MRFs the conditional
probabilities depend only on the local neighborhoods. X defines a MRF on G = (V, E) if the
joint probability distribution P (X = `) is positive on X and the so-called local characteristics
P (Xi = `i|Xj = `j , j 6= i) fulfill the local Markov property:

• P (X = `) > 0 for all possible configurations ` ∈ X

• P (Xi = `i|Xj = `j , i 6= j) = P (Xi = `i|Xj = `j , vj ∈ N (vi)).

A so defined MRF is specified by specifying all its local characteristics which is very complex and
in most cases not possible in practice [Winkler, 2003]. It is the equivalence of MRFs to Gibbs
distributions that provides a handling for specifying MRFs.

2.2.2. Gibbs Distributions

A Gibbs distribution is a probability distribution on the probability space X with

P (X = `) =
1

Z
e−U(`)/T , (2.6)

where the partition function is Z =
∑
`∈X

e−U(`)/T and U : X → R is called energy function. The

constant T controls the “width” of the probability distribution P (X). In a Gibbs distribution P (X)
with respect to the graph G = (V, E), the energy function U is of the form

U(`) =
∑
c∈C

Ψc(`). (2.7)

C denotes the set of all cliques in G, and the Ψc : X → R depend only of those components `i of
` that are in c. The equivalence of MRFs to Gibbs distributions has been proved in several works
(see e.g. [Grenander and Miller, 2007] and the references given there). Given this equivalence, it is
possible to specify an MRF by specifying potentials U : X → R.

2.2.3. Image Segmentation with MRFs

In image segmentation tasks, one usually considers nodes vi ∈ V of the graph G = (V, E) represent-
ing the image pixels. The edges e ∈ E represent the mutual dependencies between two neighboring
pixels. The image is thus described by a two dimensional lattice structure, in most cases with a
four- or eight-pixel neighborhood. The extension to a three dimensional lattice structure for the
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segmentation of volumetric data with six-, 18- or 26-voxel neighborhood is straightforward. In this
framework, the segmentation is a labeling task. The true label configuration ` is hidden and the aim
is to estimate the `i for each node vi, depending on a given observable feature vector yi and the local
neighborhood. A simple example for yi would be the color information at position i. The energy
function U for the n × n lattice of nodes vi ∈ V for 1 ≤ i, j ≤ n2 with a four-pixel neighborhood
is of the form

U(`,y) =
∑

1≤i≤n2

Ψ{i}(yi, `i) +
∑

1≤i,j≤n2

vj∈N (vi)

Ψ{i,j}(`i, `j)
(2.8)

The functions Ψ{i}(yi, `i) are the node potentials and determine the influence of the observable
data on the labeling, the Ψ{i,j}(`i, `j) are called edge potentials and determine the influence of
the local neighborhood. The use of higher order potential functions is appealing, because they can
model more complex dependencies. In recent years, ternary potential functions Ψ{i,j,k}(`i, `j , `k)
have come to be used in practice [Komodakis and Paragios, 2009; Andres et al., 2011].

2.2.4. MAP Estimation

The quality of an estimate ˆ̀ for a labeling ` given the feature vectors yi for 1 ≤ i ≤ n2, and
the local neighborhood system can be measured in different ways. A measure that many popular
methods (e.g. [Boykov and Kolmogorov, 2004; Juan and Boykov, 2006; Kohli and Torr, 2007;
Delong and Boykov, 2008]) seek to maximize is the maximum a posteriori probability (MAP) of
the estimate

ˆ̀ = argmax
`

n2∏
i=1

(
P (`i|yi)

)
= argmax

`

n2∏
i=1

(
P (yi|`i)P (`i)

P (yi)

)
. (2.9)

P (yi) does not depend on `i and can be neglected for the maximization. The maximization of the
MAP probability P (`|y) is equivalent to maximizing the energy U(`,y) [Winkler, 2003] and to
minimizing the negative log-likelihood which is −U(`,y). Other estimates that have been used
as an alternative to the MAP criterion are for example the Marginal Posterior Mode (MPME), the
Posterior Minimum Mean Squares (MMSE) or the iterated conditional modes (ICM) [Besag, 1986]
estimate. In [Winkler, 2003], some advantages and disadvantages of the different estimates are
listed.
The exact inference of the label configuration ` is not tractable in general, because of the compu-
tation of the partition function Z. In the worst case, the number of possible configurations can be
growing exponentially with the number of nodes such that the computation ofZ is an NP-hard prob-
lem. There are many algorithms that generate approximate solutions based on random sampling,
like for example the Gibbs sampler (for generating an MMSE estimate) or Simulated Annealing
[Geman and Geman, 1984]. Those are iterative methods, starting with an initial configuration `0,
where in every sampling step only one of the random variables Xi can change its state. Message
passing algorithms on grid-structured graphs like the Loopy Belief Propagation are deterministic,
but there is, depending on the model, no guarantee that the algorithm converges to a good solution
or even converges at all [Bishop, 2009]. While we can thus only find approximate solutions for the
NP-hard multi-label problems, binary labeling tasks can be efficiently solved. For the special case
of binary labeling problems (i.e. foreground-background segmentation), the minimum cut or Graph
Cut algorithm [Greig et al., 1989] can generate the exact MAP estimation in polynomial time. In
the following, we will briefly describe the basics of this algorithm, before we give in 2.2.6 more
details on the multi-label problem and its approximate solutions.
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2. Overview on Image Segmentation

2.2.5. Two-Label Image Segmentation and Minimal Cuts

The minimum cut (Min-Cut) or Graph Cut algorithm has been proposed by [Greig et al., 1989] for
the reconstruction of binary images with priors similar to the famous Ising model. The Ising model
was introduced in 1925 by E. Ising to explain ferromagnetism [Winkler, 2003], but it has also been
studied in the field of binary image segmentation (e.g in [Geman and Geman, 1984]). In this model
the configuration space X is binary, i.e. `i ∈ {+1,−1}, homogeneous, and isotropic. The energy
function U is given by

U(`, λ) = α
∑

1≤i≤n2

λi`i + β
∑

1≤i,j≤n2

vj∈N (vi)

`i`j (2.10)

for constant parameters α > 0, weighting the influence of the external field λ, and β > 0 en-
couraging labels of neighboring nodes to take on the same value. Maximizing this second term
corresponds to minimizing the boundary length measured as

∑
1≤i,j≤n2

vj∈N (vi)

(`i − `j)
2. The optimal

solution will therefore be biased towards boundaries in the directions of the image grid (grid bias).

The formulation of the MAP estimation for this binary labeling problem as minimum cut prob-
lem allowed Greig et al. [1989] to use the Ford-Fulkerson algorithm [Ford and Fulkerson, 1962]
to find the exact solution in polynomial time [Winkler, 2003]. To do so, the MAP estimation is
formulated as minimization of the negative log-likelihood −Ū that can be translated to a maximum
flow problem.
Let the energy −Ū be defined for `i ∈ {0, 1} for 1 ≤ i ≤ n2 as

− Ū(`,w) =
∑

1≤i≤n2

wi(`i) +
∑

1≤i,j≤n2

wij

(
`i, `j

)
. (2.11)

w consists of unary terms wi that correspond to the external data and binary terms wij defin-
ing the interactions between neighboring vertices. Here, the unary terms wi are defined with
wi = ln

(
P (yi|Xi = 0)/P (yi|Xi = 1)

)
and the binary terms are given as wij > 0 if vj ∈ N (vi)

and wij = 0 otherwise. Note that for wi = −αλi and wij(`i, `j) = −β if vj ∈ N (vi) and `i = `j ,
wij(`i, `j) = 0 otherwise, the expressions (2.10) and (2.11) are equivalent.
Generally, it can be shown that binary labeling problems can be formulated as minimum cut prob-
lems if and only if the pairwise terms are regular, i.e submodular [Kolmogorov and Zabih, 2004]:

wij(1, 1) + wij(0, 0) ≤ wij(1, 0) + wij(0, 1). (2.12)

For these energies, a flow or capacity network can be defined. This capacity network is a directed
graph with n2 +2 vertices, one vertex vi for each of the n2 image pixels and two additional vertices:
a source s and a sink t. The influence of the external data, i.e. the unary potentials wi, is encoded
in these additional vertices: There are directed edges from s to every vertex vi with the respective
capacity csi = wi and directed edges from every vertex vi to the sink t with capacity cit = −wi.
As before, two neighboring vertices vi and vj are connected by an undirected edge with capacity
cij = wij . In this network, the task is now to determine the maximal flow that can pass from source
to sink. As stated in [Ford and Fulkerson, 1962], the maximal flow is equivalent to the minimal cut
separating source from sink, where a cut is defined as

cut
(
C ∪ {s}, C̄ ∪ {t}

)
=
∑
vi∈C̄

max(0, wi) +
∑
vi∈C

max(0,−wi) +
∑

vi∈C,vj∈C̄

wij , (2.13)
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where C ∪ C̄ = V .
There have been several algorithms proposed in literature to find the minimal cut with growing
efficiency: beginning with augmenting paths algorithms [Ford and Fulkerson, 1962; Dinic, 1970;
Greig et al., 1989] and the push-relabel algorithm of [Goldberg and Tarjan, 1988] to more efficient
algorithms that make use of the images’ grid structure like [Boykov and Kolmogorov, 2004; Juan
and Boykov, 2006; Kohli and Torr, 2007; Delong and Boykov, 2008] or use primal-dual problem
formulations like [Komodakis et al., 2007] just to name few. In [Szeliski et al., 2008] an overview
and comparison of different optimization methods in terms of performance and run-time is given.
While the binary labeling problem can be efficiently solved, this is, as we have mentioned before,
not the case for the practically much more relevant problem of multi-label segmentation. In the
following, we will briefly discuss the challenges that arise from multi-label problems and describe
how the solutions found for the binary labeling task can be employed in order to find good solutions
for the multi-label problem.

2.2.6. Multi-Label Problems

Multi-object segmentation corresponds to finding a partitioning of V into disjoint subsetsC1, . . . , Ck.
In order to model multi-object segmentations, we must allow theXi to take on more than two states,
i.e. `i ∈ {1, . . . ,m}, where m is the number of objects. The natural generalization of the Ising
model (see section 2.2.5) to more than two states is the Potts model [Potts, 1952].
In the Potts model, the energy has the form

U(`,w) =
∑

1≤i≤n2

wi`i +
∑

1≤i,j≤n2

vj∈N (vi)

wijδ`i,`j , (2.14)

where δ`i,`j is the Kronecker symbol, i.e. δ`i,`j = 1 if `i = `j , δ`i,`j = 0 otherwise. In the
standard Potts model, discontinuities between states are equally penalized regardless of the states,
i.e. wij > 0 is constant. This model was first used in [Geman et al., 1990] in the context of image
processing.
To allow for more flexibility in the choice of the energy to be optimized than offered by the Potts
model, we are considering energies of the form

U(`,w) =
∑

1≤i≤n2

wi`i +
∑

1≤i,j≤n2

vj∈N (vi)

wij(`i, `j), (2.15)

wherewij is a potential function depending on the states `i and `j . Energies of this form can account
for the fact that some labels are more likely to co-occur than others.
In figure 2.1, an example of this multi-label problem is given. The already mentioned sampling
methods like the Gibbs sampler and ICM as well as Loopy Belief Propagation can, among others,
be used to find approximate solutions for this multi-object segmentation problem. However, there
is no efficient method producing an exact solution in general as the problem is NP-hard [Boykov
et al., 2001]. Here, the term super-/submodularity comes into play. A multi-label function is called
submodular [Kolmogorov and Rother, 2007] if the pairwise terms satisfy

wij(a, b) + wij(c, c) ≤ wij(a, c) + wij(c, b) (2.16)

for all states or labels a, b, c ∈ {1 . . .m}. If wij is submodular, −wij is supermodular. The min-
imization of submodular energies (and the maximization of supermodular energies) of an ordered
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2. Overview on Image Segmentation

Figure 2.1.: Multi-label graph structure corresponding to the energy given in (2.15) for a 3×4 image
grid and three labels. An example labeling is marked in red. The illustration is taken
from [Werner, 2007].

set of labels can be done in polynomial time [Ishikawa, 2003; Kolmogorov and Zabih, 2004]. How-
ever, as pointed out in Kolmogorov and Zabih [2004], the available algorithms are still very slow.
Furthermore, an ordering of the labels can not easily be provided for many applications as for ex-
ample image segmentation. These facts explain the popularity of approximation methods.
An approximation method that is widely used for the MAP maximization of multi-label MRFs with
supermodular energies are Graph cuts with α-expansions [Boykov et al., 2001]. The basic idea is to
split the multi-label problem into a series of two-label segmentation problems that are submodular
and can be easily solved using the minimum cut algorithm (see section 2.2.5). Beginning with an
initial labeling, the algorithm iteratively applies so-called α-expansion operations. For every label
α, the minimum cut is computed, i.e. every variable Xi can keep its old value or switch to the
label α. The cut is applied if the energy decreases, rejected otherwise. The algorithm terminates
when no α-expansion move leads to an energy decrease anymore. The algorithm has shown fast
convergence and has a guaranteed approximation quality [Boykov et al., 2001]. In [Kolmogorov
and Rother, 2007], the authors advertise the use of Graph cuts algorithms for the minimization of
non-submodular (i.e. the maximization of non-supermodular) energies. The method reviewed in
[Kolmogorov and Rother, 2007] for example produces a partial labeling for non-submodular ener-
gies.
In recent years, the MAX-SUM solver reviewed in [Werner, 2007] has become very popular. This
solver directly tackles the multi-label segmentation and provides a solution for the linear program-
ming relaxation of the MAP maximization of a multi-label MRF. It converges even for energies that
are not supermodular [Werner, 2007]. As the problem is still NP-hard, the MAX-SUM solver can
of course not provide the exact solution.
Although the minimum cut method and its multi-label counterparts are widely used for image seg-
mentation, they do not always lead to the desired segmentation result. One of the major drawbacks
of the minimum cut is that it actually favors cutting isolated pixels from the image [Wu and Leahy,
1993]. If there is a pixel or a small region with low capacities to its neighbors, the cut separating
this small region will be extremely cheap, because the cost increases with the number of edges to
be cut. This is of cause also depending on the unary terms of the graph. The problem will not arise
for nodes with strong unary costs. If , however, there are no strong affinity of a node to a certain
label, one has to carefully choose the edge capacities in order to avoid such “cost-free” cuts [Wu
and Leahy, 1993]. There have been several methods proposed to solve this problem on a graph-
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theoretic basis as for example the algorithms proposed in [Hagen and Kahng, 1992; Shi and Malik,
2000; Ding et al., 2001]. The next section is devoted to these balanced cuts.

2.2.7. Balanced Cuts

In general, it is not well defined what the ideal segmentation algorithm should do. However, there
is an agreement that the algorithm should not have a preference for cutting off small areas corre-
sponding to small sets of isolated nodes in the graph. Generally, there are two objectives pursued in
literature: either, the segmentation is preferred to be independent of the size of the resulting regions.
This is the case for Ratio cuts that have been proposed in [Hagen and Kahng, 1992] (see section
2.2.7.1) and for Normalized cuts [Shi and Malik, 2000] (see section 2.2.7.2). Or, the resulting pixel
subsets are preferred to be similar in size. This is the case for Min-max cuts (see section 2.2.7.3)
[Ding et al., 2001] as well as for Ratio Cheeger cuts and for Normalized Cheeger cuts [Buehler and
Hein, 2009; Hein and Buehler, 2010; Szlam and Bresson, 2010]. Unfortunately, finding the exact
solution of these cuts is NP-complete [Shi and Malik, 2000; Ding et al., 2001; Hein and Buehler,
2010]. This puts these balanced cuts in the context of stochastic relaxation methods and spectral
clustering (see section 2.2.7.4).

2.2.7.1. Ratio Cuts

For a partitioning of the graph nodes into two disjoint subsets C and C̄ with C ∪ C̄ = V where we
have no preference on which set should be foreground and which should be background, let a cut
be defined as

cut(C, C̄) =
∑

vi∈C,vj∈C̄

wij . (2.17)

The Ratio cut [Hagen and Kahng, 1992] is then defined as

RCut(C, C̄) =
cut(C, C̄)

|C|
+

cut(C, C̄)

|C̄|
, (2.18)

i.e. the Ratio cut value is normalized by the cardinality of the subsets. As a consequence, the
global optimum of the Ratio cut is independent of the size of the resulting partitions. As pointed
out by [Shi and Malik, 2000], it is also independent of the similarities within the resulting groups
C and C̄. However, for image segmentation, we usually want to optimize not only for low inter
group similarity but also for high intra group similarity. As shown in [Shi and Malik, 2000], these
properties are fulfilled by the Normalized cut.

2.2.7.2. Normalized Cuts

The Normalized cut [Shi and Malik, 2000] is defined as

NCut(C, C̄) =
cut(C, C̄)

vol(C)
+

cut(C, C̄)

vol(C̄)
, (2.19)

where
vol(C) =

∑
vi∈Cvj∈V

wij (2.20)

denotes the volume of C. The volume of a subset C describes the total connection from nodes
in C to all nodes in V . This normalization leads to cuts with high intra-class similarity and high
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inter-class dissimilarity. Normalized cuts are an important step in one of the most popular state of
the art segmentation methods [Arbeláez et al., 2009, 2011]. There it helps to introduce global image
knowledge into the segmentation. We will describe the method of [Arbeláez et al., 2009, 2011] with
some more details in section 2.4.1.

2.2.7.3. Min-Max Cuts

The Min-Max cut [Ding et al., 2001] is defined as

MCut(C, C̄) =
cut(C, C̄)

vol(C)− cut(C, C̄)
+

cut(C, C̄)

vol(C̄)− cut(C, C̄)
. (2.21)

As shown in [Ding et al., 2001], the normalization used in Min-max cut favors cuts that yield
equally large partitions. This is different from the Ratio cut and Normalized cut objectives, that do
not have a preference for the cluster sizes. Ding et al. [2001] argue that this is generally an impor-
tant property, as it prevents unstable results. For image segmentation tasks, however, it depends on
the concrete application if the assumption holds that the desired image partitions have the same size.

Ratio cuts, Normalized cuts and Min-Max cuts can be estimated using spectral clustering algo-
rithms. In the following, we will give a brief introduction to the spectral clustering algorithms
presented in [Hagen and Kahng, 1992; Shi and Malik, 2000; Ding et al., 2001]. For a detailed
introduction to spectral clustering, please refer to [von Luxburg, 2007].

2.2.7.4. Spectral Clustering

The basic idea of spectral clustering is to make use of the spectrum of a matrix encoding the graph
structure of G = (V, E) in an appropriate way. Let us go back to the two-label segmentation
problem in equation (2.11) and assume all unary terms wi = 1. The according adjacency matrix
W is a n2 × n2 matrix with W (i, j) = wij for i, j = 1 . . . n2. Note that by definition of the binary

terms wij = wji, i.e. W is symmetric. The degree of a vertex vi ∈ V is defined as di =

n2∑
j=1

wij .

The diagonal n2 × n2 matrix D of all di is called degree matrix. Then L = D − W is called
the graph Laplacian. The graph Laplacian L and its normalized versions are the basis of spectral
clustering. L has n2 non-negative eigenvalues that will be denoted by λ1 . . . λn2 . The smallest
strictly positive eigenvalue of L is called the spectral gap. Since the number of eigenvalues λi = 0
equals the number of connected components in the graph [von Luxburg, 2007], in fully connected
graphs (like this should be the case for images) the spectral gap is given by λ2. Now, we come to
the connection between spectral clustering and Ratio cuts, Normalized cuts and Min-Max cuts.
The optimal partitioning according to the Ratio cut criterion is given by the Rayleigh quotient [von
Luxburg, 2007]

min
`

RCut(`) = min
y

yT (D −W )y

yTy
, (2.22)

and the optimal partitioning according to the Normalized cut criterion by

min
`

NCut(`) = min
y

yT (D −W )y

yTDy
. (2.23)
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Here, ` is an indicator vector with `i = 1 if node i belongs to the subset C and −1 otherwise

and y = (1 + `) − k

1− k
(1 − `), where k is depending on the degree matrix D and defined as

k =

∑
`i>0 di∑
i di

. If the yi are relaxed, i.e. if we allow yi ∈ R, equations (2.22) and (2.23) can be

minimized by solving the eigenvalue system of the graph Laplacian L and the normalized graph
Laplacian D−1/2LD−1/2 respectively [Chung, 1997]:

(D −W )y = λy (2.24)

D−1/2(D −W )D−1/2y = λy. (2.25)

The eigenvector v(2) to the second smallest eigenvalue λ2 (the spectral gap) is the global optimizer
for the relaxed problem (2.22) and (2.23) respectively [von Luxburg, 2007]. For multi-label prob-
lems, i.e. for a k-way partitioning of the graph, it can be shown [von Luxburg, 2007] that the relaxed
solution is given by the k eigenvectors to the k smallest non-zero eigenvalues.
The Min-Max cut can also be expressed in terms of the Rayleigh quotient [Ding et al., 2001] as

min
`

MCut(`) = min
y

JN (y)

1− JN (y)/2
⇒ min

y
JN (y) (2.26)

where

JN (y) =
yT (D −W )y

yTDy
. (2.27)

As a result, the solution of the relaxed Min-Max cut problem is given by the same eigenvalue system
of the normalized graph Laplacian (equation (2.25)) as it is for the Normalized cut.
Obviously, the solution of the relaxed problem does not directly induce a partitioning of the graph
G = (V, E), since the values of the eigenvector v(2) tend to vary smoothly. A solution can for
example be found by thresholding v(2) such that the thresholding result minimizes the respective
cut objective [Ding et al., 2001; Shi and Malik, 2000]. For multi-label problems, [Hagen and
Kahng, 1992; Shi and Malik, 2000] propose two possibilities. Either, the graph can be recursively
partitioned until the desired number of regions is reached, or one can perform a k-means clustering
on the k eigenvectors belonging to the k smallest non-zero eigenvalues in order to partition the
graph into k segments.
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2.3. Active Contour Models

Active (or deformable) contours are a widely used concept for image segmentation. The basic idea
of active contours is that a contour Γ : [0, 1] → Ω ⊆ R2 placed on the image is drawn towards
the object’s contour by image and contour forces. Most often, these forces optimize a previously
defined energy that is typically of the form

E(Γ) = Edata(Γ) + Eint(Γ), (2.28)

where Edata(Γ) is the data term, that is minimal if Γ lies exactly on the object contours in the im-
age, and whereEint(Γ) is the internal contour term that imposes some prior constraints on Γ. While
MRFs formulate the segmentation problem inside a probabilistic framework, continuous active con-
tour models start directly with the formulation of the energy to be minimized. The Mumford-Shah
functional (see section 2.1) has often been the basis for the active contour energy formulation.
The number of publications in the field of deformable contours is so large that an extensive de-
scription is beyond the scope of this thesis and we can only give a brief overview. We start with
parametric active contours, i.e. contours that are explicitely represented by a function Γ (section
2.3.1-2.3.4). Those parametric active contours are mostly edge driven (2.3.1-2.3.3) and hence re-
lated to the functional (2.3) proposed by Mumford and Shah. An implicitly represented edge driven
active contour model, Geodesic Active Contours, will be briefly described in 2.3.4. The implicit
representation of active contours by embedding functions, however, has the advantage that it can
naturally incorporate regional information in the contour evolution such that they are eligible for the
optimization of the cartoon model (2.2). Region based active contours will be described in section
2.3.5 - 2.3.8 for two-label and multi-label segmentation tasks.

2.3.1. Parametric Active Contours – Snakes

Parametric active contours or snakes were first proposed by Kass et al. [1988]. In their work, the
contour Γ is represented by a spline. Splines are functions that are composed of piecewise concate-
nated polynomial functions. Linear splines, for example, consist of concatenated line segments that
are represented by control points. Higher order splines like quadratic or cubic splines are piece-
wise composed of quadratic and cubic polynomials respectively. At the connection points of these
higher order splines, one usually claims smooth transitions. For example cubic C2 splines are twice
differentiable [de Boor, 1978].
In [Kass et al., 1988], the controlled continuity framework from Terzopoulos [1986] is used to
enforce smooth curves. This regularization is a generalization of the quadratic Tikhonov regular-
ization [Tikhonov and Arsenin, 1987] that we will also discuss in the context of image deblurring
(see section 4.6.2). The internal energy of the contour γ parameterized by s ∈ [0, 1] is given by

Eint(Γ) =
1

2

∫ 1

0
α

∣∣∣∣∣∂Γ

∂s
(s)

∣∣∣∣∣
2

+ β

∣∣∣∣∣∂Γ2

∂2s
(s)

∣∣∣∣∣
2

ds, (2.29)

where α and β are steering the influence of the first and second order terms that are controlling the
stretching and the bending of the contour Γ respectively.
For the data term Edata(Γ), Kass et al. [1988] propose three different functionals, drawing the
contour to lines, edges and terminations in the image

Edata(Γ) = wlineEline(Γ) + wedgeEedge(Γ) + wtermEterm(Γ). (2.30)
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For the functional attracting the contour to lines, the authors propose to use the image intensity itself

with Eline(Γ) =

∫ 1

0
I(Γ(s))ds. The sign of the weighting parameter wline determines whether the

contour is attracted to dark or to bright lines.
The edge functional is maybe the most commonly used. Its objective is related to (2.3). Assuming
the contour Γ should be attracted to large image gradients, it is natural to set

Eedge(Γ) =

∫ 1

0
−
∥∥∥∇I (Γ(s)

)∥∥∥2
ds. (2.31)

In order to increase the distance from which the snake is attracted to the desired contour (the so-
called capture range), Kass et al. [1988] propose a scale-space approach where the snake is first
drawn towards blurred image edges. The result is used as initialization on less strongly blurred
image edges, and so on.
The termination functional aims for pulling the contour to line terminations, using the curvature of
level lines. The curvature of level lines is given by

Eterm(Γ) =

∫ 1

0

∂2I

∂x2
2

(
∂I

∂x1

)2 (
Γ(s)

)
− 2

∂2I

∂x1∂x2

∂I

∂x1

∂I

∂x2

(
Γ(s)

)
+
∂2I

∂x2
1

(
∂I

∂x2

)2 (
Γ(s)

)
(
∂I

∂x1

2 (
Γ(s)

)
+

∂I

∂x2

2 (
Γ(s)

))3/2
ds,

(2.32)
where x1 and x2 are the components of the coordinate vector x. Usually, this functional is computed
on a smoothed image [Kass et al., 1988]. The minimization of the energy E(Γ) from (2.28) is
done using the calculus of variations. For minima of E(Γ), the first variation must vanish, i.e.
∂E(Γ+εΓ̄)

∂ε

∣∣∣∣
ε=0

= 0 for any scalar ε close to zero and test function Γ̄ (test contour). This leads to a

Euler-Lagrange equation that can be considered as a force balance system [Xu and Prince, 1998]:

Fdata + Fint = 0. (2.33)

For example, for a contour that should be attracted to image edges, i.e. E(Γ) = Eedge(Γ)+Eint(Γ),
the Euler-Lagrange equation is given by

−∇
∥∥∥∇I (Γ(s)

)∥∥∥2
− α∂

2Γ

∂s2
(s) + β

∂4Γ

∂s4
(s) = 0. (2.34)

A minimum can be found by gradient descent. A time variable t is introduced and one assumes that
at convergence, the contour Γ does not change anymore over time, i.e. ∂Γ

∂t = 0.
One of the disadvantages of snakes is that the global optimum of the energy functional is actually
the empty set with a contour length |Γ| = 0. Therefore, one hopes to find the local minimum
corresponding to the desired solution. As a consequence, the snakes need to be initialized closely
to the sought image contour. A further problem is that, even if the snake is initialized sufficiently
close to the object contour, it may get caught in isolated points with strong gradients in the image
that are caused by noise, or, if the forces are too strong, it can jump over the sought contour, i.e. it
easily gets caught in a local minimum that is not the desired solution.
One of the big advantages of snakes is that the data term Edata(Γ) can easily be modified and
furthermore, one can even directly manipulate the resulting data force. This idea was also the basis
for Balloon Snakes [Cohen, 1991] and Gradient Vector Flow (GVF) snakes [Xu and Prince, 1997,
1998], that tackle many of the aforementioned problems.
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2.3.2. Balloon Snakes

An extension to the original snake method of Kass et al. [1988] are balloons that have been proposed
by Cohen [1991]. In [Cohen, 1991] two specific problems of the snake model that are addressed
are listed:

• “If the curve is not close enough to an edge, it is not attracted by it.”

• “If the curve is not submitted to any forces, it shrinks on itself.”

In order to alleviate these problems, the author proposes to modify the data forces, that were origi-
nally defined as Fdata = ∇

∥∥∇I∥∥2. The proposed data forces are

Fballoon
data (s) = k1n(s) + k

∇
∥∥∇I∥∥2∥∥∥∇ ∥∥∇I∥∥2

∥∥∥
(
Γ(s)

)
, (2.35)

where the k1 and k are constant weighting parameters. The first term is a force with amplitude
k1 that pulls the curve in the direction of its unit normal vector n. The effect of this force is thus
an inflation of the curve that counteracts the shrinking effect of the internal contour force. The
second term is the normalized original data force. The normalization ensures that the curve moved
according to the force does not eventually “jump” over the sought object contour, i.e. it ensures that
the steps are small enough. Since the shrinking force is curvature dependent, the choice of k and k1

is critical. In general, it is important that k is chosen larger than k1. Otherwise, the edge forces are
not able to stop the curve at the object contour.

2.3.3. Gradient Vector Flow

In [Xu and Prince, 1997, 1998], the authors propose to compute a vector diffusion on the gradi-
ent field, called gradient vector flow (GVF) in order to produce data force fields for snakes Fdata.
They show that, compared to directly using the gradients ∇

∣∣∇I(Γ(s))
∣∣2, GVF increases the cap-

ture range and makes it possible to drive the contours into concavities. Additionally the contours
are less prone to noise.
GVF aims for providing a smooth vector field in regions where no edges are given in the data, and
for keeping the original gradient information in regions with strong edges. Thus, when the vector
field is used as an external force field e.g. for active contours, the capture range is much larger than
it would be, if the original gradient information was used.
The two dimensional gradient vector flow field is the vector field v : Ω→ R2,v(x) =

(
u(x), v(x)

)T
that minimizes the energy functional

EGVF(v) =

∫
Ω
µ(‖∇v‖2) + ‖∇M‖2‖v −∇M‖2dx, (2.36)

where the first term µ(‖∇v‖2) = µ
(
‖∇u(x)‖2 + ‖∇v(x)‖2

)
determines the smoothness of the

vector field and the second term is minimal for

v = ∇M, (2.37)

i.e. it preserves the original information for strong gradients. M denotes an edge map and is
typically set to M =

∣∣∇I∣∣. The parameter µ regularizes the trade-off between the first and the
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2.3. Active Contour Models

second term. The energy is minimized by the solution of the following Euler-Lagrange equations:

µ∇2u−

(
u− ∂M

∂x1

)(∂M
∂x1

)2

+

(
∂M

∂x2

)2
 = 0

µ∇2v −

(
v − ∂M

∂x2

)(∂M
∂x1

)2

+

(
∂M

∂x2

)2
 = 0 (2.38)

The solution can be found by gradient descent.

2.3.4. Geodesic Active Contours

In [Caselles et al., 1997], the authors aim at finding minimal distance paths based on an image
induced metric. The geodesic active contour model is derived from the following energy functional
that is related to the edge based functional given by Kass et al. [1988]:

EGAC
1 (Γ) = α

∫ 1

0

∣∣∣∣∣∂Γ

∂s
(s)

∣∣∣∣∣
2

ds− ν
∫ 1

0

∥∥∥∇I (Γ(s)
)∥∥∥ ds (2.39)

with constant weighting factors α and ν, that is optimized by a geodesic curve in a Riemannian
space induced from the image I [Caselles et al., 1997]. The minimization of equation (2.39) is, for
some strictly decreasing function g : [0,+∞[→ R+ with g(x) → 0 for x → +∞, equivalent to
minimizing [Caselles et al., 1997]

EGAC
2 (Γ) =

∫ 1

0
g

(∥∥∥∇I (Γ(s)
)∥∥∥) ∣∣∣∣∣∂Γ

∂s
(s)

∣∣∣∣∣ ds, (2.40)

As for the original snakes model, the global optimum of this energy is the empty set with a contour
with zero length. This is not a desired result. A local minimum of equation (2.40) can be found by
gradient descent. The Euler-Lagrange equation is given by

g

(∥∥∥∇I (Γ(s)
)∥∥∥)κ(s)n(s)−

〈
∇g
(∥∥∥∇I (Γ(s)

)∥∥∥) , n(s)

〉
n(s) = 0, (2.41)

where n(s) is the unit normal of the contour Γ in s, κ is the curvature, and
〈
. , .
〉

denotes the inner
product.
In [Caselles et al., 1997], the optimization of the contour is computed using a level set represen-
tation. The paper thus connects the snake model (see section 2.3.1) to level sets that had been
previously introduced by Osher and Sethian [1988] in the context of modeling solid-liquid inter-
faces and are thus based on the theory of curve evolution.
Level sets provide a handling for implicitly representing contours using so-called embedding func-
tions. A contour Γ in a two dimensional image I is represented by a 2D embedding function
Φ : Ω ⊆ R2 → R, such that the actual contour is given by the zero level set of the embedding
function Γ = {x ∈ Ω ⊆ R2|Φ(x) = 0}. For Φ(x) > 0, the position x is inside the segmented
region, for Φ(x) < 0 the position x is outside the segmented region. The contour Γ can be evolved
by evolving the embedding function Φ over time, introducing an additional time variable t. Then,
the contour at time t is given by the zero-level set of Φ(t,x).

25



2. Overview on Image Segmentation

The movement of the contour Γ in the direction of its normal vector
∂Γ(s, t)

∂t
= k1n(s) (compare

equation (2.35)) corresponds to a front propagation movement of the embedding function (a proof is
given in [Caselles et al., 1997]). The front propagation movement with curvature dependent speed
is given by the following differential equation [Osher and Sethian, 1988]

∂Φ

∂t
= ‖∇Φ‖div

(
∇Φ

‖∇Φ‖

)
, (2.42)

where ∇Φ denotes only the derivatives in the spatial directions and κ = div

(
∇Φ

‖∇Φ‖

)
is the

mean curvature of the contour. The mean curvature dependent front propagation, the so-called
mean curvature motion, moves the contour in its normal direction and thus reduces its length. The
initial contour is defined by the set {x|Φ(0,x) = 0}. Level sets have also been used before in the
context of image segmentation. For example the geometric active contours proposed in [Caselles
et al., 1993] and the model proposed in [Malladi et al., 1995] have a similar objective as the later,
more evolved geodesic active contours, but in these works, the problem not defined as an energy
minimization.
Compared to parametric active contours, the implicit representation of level sets has the advantage
that topological changes can be naturally handled. A modeling of region properties of the segmented
object and background is very easy since Φ represents the whole enclosed and exclosed region.
Furthermore, the extension to higher dimensions is straightforward since there is no underlying
control point structure that would have to be translated to higher dimensions.
For the contour Γ represented by the embedding function Φ, the gradient descent resulting from
equation (2.41) is given by

∂Φ

∂t
= ‖∇Φ‖div

(
g
(∥∥∇I∥∥) ∇Φ

‖∇Φ‖

)

= g
(∥∥∇I∥∥) ‖∇Φ‖div

(
∇Φ

‖∇Φ‖

)
+

〈
∇g
(∥∥∇I∥∥) , ∇Φ

〉
. (2.43)

The approach is not limited to a certain edge detector function g
(∥∥∇I∥∥) but can be used with any

function g(I) that stops the contour at the desired boundary. This function could for example be
defined as

g(I) =
1

1 +
∣∣∇(Gσ ∗ I)

∣∣p , (2.44)

where p = 1 or 2, Gσ is a Gaussian normal distribution with standard deviation σ and ∗ is the
convolution operator. The concept of geodesic length minimization has been used in many works on
image segmentation [Goldenberg et al., 2001; Paragios et al., 2001; Paragios and Deriche, 1999a,b,
2000]. For example in the works of Paragios and Deriche [1999a,b, 2000], Geodesic Active Regions
have been proposed, combining geodesic active contours with region-based contour evolution for
image segmentation and motion tracking.

2.3.5. Region-based Active Contours

The level set method described in the above section does not use any regional information in order
to perform a segmentation, but only rely on boundary information. Paragios and Deriche [1999a,b,
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2.3. Active Contour Models

2000] combine the edge-based geodesic active contours with a region term, in which the region
properties are modeled, as proposed before in [Zhu and Yuille, 1996], by the conditional probabil-
ities p1(I(x)) = p(I(x)|x ∈ Ω1) and p2(I(x)) = p(I(x)|x ∈ Ω2), where Ω1 and Ω2 are the two
regions separated by Γ with Ω1 ∪ Ω2 = Ω and Ω1 ∩ Ω2 = ∅. The resulting geodesic active regions
are defined by the objective function [Paragios and Deriche, 1999a]

EGAR(Γ) = (1− α)EGAC
2 (Γ)−

α

(∫
Ω1

log
(
p1(I(x))

)
dx +

∫
Ω2

log
(
p2(I(x))

)
dx

)
. (2.45)

Actually, in the original papers [Paragios and Deriche, 1999a,b, 2000], the edge terms in EGAC
2 (Γ)

are formulated in a general way by a conditional boundary density function g
(
pB

(
I
(
Γ
)))

=

g
(
p
(
I (x) |x ∈ B

))
instead of g

(∥∥∥∇I (Γ(s)
)∥∥∥), measuring the conditional probability of an

observed image pixel intensity given the pixel lies on the correct boundary B. The gradient-based
edge indicator function

∥∥∥∇I (Γ(s)
)∥∥∥ is a common choice for pB

(
I
(
Γ
))

. The first term in equa-
tion (2.45) thus measures the geodesic length for an edge detector function. The second term of
EGAR measures the negative log-likelihood of an observed image I given the regions Ω1 and Ω2. In
[Paragios and Deriche, 1999a,b, 2000], all probabilities are described using multivariate Gaussian
normal distributions. The minimization on the energy EGAR is done using gradient descent. The
Euler-Lagrange equation computed from EGAR is

(1− α)

g(∥∥∥∇I (Γ(s)
)∥∥∥)κ(s)n(s)−

〈
∇g
(∥∥∥∇I (Γ(s)

)∥∥∥) , n(s)

〉
n(s)

+

α

log

(
p2(I(Γ))

p1(I(Γ))
(s)

)
n(s)

 = 0, (2.46)

where κ is the curvature of Γ and n is the unit normal pointing towards region Ω1. The first part
of this equation equals the Euler-Lagrange equation derived from EGAC

2 given in equation (2.41)
weighted by 1−α. As for geodesic active contours, the representation of the contour is changed to
a level set function Φ for the curve evolution.
A purely region-based active contour method based on level sets with a simpler region model has
been proposed in [Chan and Vese, 2001]. They formulate the region-based energy functional with
the help of the Heavyside function

H : R→ {0, 1}, H(x) =

1, if x ≥ 0

0, otherwise
(2.47)

as

Eregion-based (Φ) =

∫
Ω
‖∇H

(
Φ(x)

)
‖dx + λ

∫
Ω
|H
(
Φ(x)

)
|dx

+ν1

∫
Ω

(
I(x)− µ1

)2
H
(
Φ (x)

)
dx

+ν2

∫
Ω

(
I(x)− µ2

)2 (
1−H

(
Φ (x)

))
dx, (2.48)
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where
∂H

∂x
= δ is the Dirac impulse such that

∫
Ω
‖∇H

(
Φ(x)

)
‖ dx is the contour length,∫

Ω
|H
(
Φ(x)

)
| dx measures the size of the region inside the contour and actually results in a shrink-

ing force. This term is mostly neglected in practice. λ, ν1, and ν2 are constant weighting factors,
and µ1 and µ2 are the averages of I inside and outside the contour respectively:

µ1(Φ) =

∫
Ω
I(x)H

(
Φ (x)

)
dx∫

Ω
H
(
Φ (x)

)
dx

(2.49)

and

µ2(Φ) =

∫
Ω
I(x)

(
1−H

(
Φ (x)

))
dx∫

Ω

(
1−H

(
Φ (x)

))
dx

. (2.50)

The energy Eregion-based corresponds to the cartoon limit of the Mumford-Shah energy functional
(2.2). The minimization is done using gradient descent. The Euler-Lagrange equation is deduced
assuming fixed µ1 and µ2 and replacing H in equation (2.48) by a C2 regularized function Hε

with δε =
∂Hε

∂x
. δε(Φ) takes on positive values closely around the region boundary and is zero

everywhere else. The resulting Euler-Lagrange equation is

δε(Φ)

div

(
∇Φ

‖∇Φ‖

)
− ν1(I − µ1)2 + ν2(I − µ2)2 − λ

 = 0. (2.51)

In [Chan and Vese, 2001], the average values µ1 and µ2 are updated as the contour evolves and the
gradient descent update on the evolving contour only acts locally. The result thus strongly depends
on the initialization.

2.3.6. Convex Relaxation

For fixed values µ1 and µ2 it is possible to formulate the region-based energy minimization as a
convex optimization problem using convex relaxation [Chan et al., 2006] and the total variation
(TV) norm. The TV norm of a function u : Ω→ R is generally defined as

TV(u) = sup
v∈DTV

∫
Ω
u divv dx (2.52)

with the dual variable v from

DTV = {v ∈ C1(Ω)2| ‖v(x)‖ ≤ 1 ∀x ∈ Ω}. (2.53)

For continuously differentiable functions, the TV norm equals

TV(u) =

∫
Ω
‖∇u‖dx. (2.54)
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original image initialization 50 iterations 100 iterations final result

Figure 2.2.: Result of the convex region-based segmentation. The mean values µ1 and µ2 were set
to 0.2 and 0.55 (on a scale of from 0 to 1) respectively, λ was set to 0.017.

According to the coarea formula, the TV norm of a function with bounded variation (i.e. TV(u) <
∞) equals the sum of the contour lengths of all regions that can be generated by thresholding u
[Strang, 1983]. The TV norm of functions with bounded variation is thus a measure for the contour
length.
To allow for a convex formulation of the region-based two-label segmentation problem, the level
set function Φ is replaced in [Chan et al., 2006] by a binary function u : Ω → {0, 1} which makes
the Heavyside function dispensable. The energy then reads

Econvex (u) =

∫
Ω
‖∇u‖ dx + ν

∫
Ω

((
I − µ1

)2 − (I − µ2

)2)
u dx, (2.55)

where the TV norm measures the contour length and ν is a constant weighting factor. This restric-
tion of u to binary functions is then relaxed to the interval [0, 1] to make the energy convex. The
according Euler-Lagrange equation is

div

(
∇u
‖∇u‖

)
− ν

(
(I − µ1)2 − (I − µ2)2

)
= 0. (2.56)

The condition that 0 ≤ u(x) ≤ 1 is important because otherwise the function u would tend to
+∞ whenever it is positive and to −∞ whenever it is negative [Chan et al., 2006]. The condition
can for example be kept by reprojecting u to the valid interval after every iteration. Since the
energy is convex, the globally optimal relaxed function u can be found by gradient descent. Faster
implementations can be done using a primal-dual optimization scheme [Chambolle, 2004; Aujol
and Chambolle, 2005]. An alternative is to linearize the equation with a lagged diffusivity fixed
point iteration scheme [Vogel and Oman, 1996]. For the resulting linear system, the optimization
can be done efficiently using Successive over-relaxation as for example in [Klodt et al., 2008]. The
solution of the original segmentation problem can be found by thresholding the optimal u. In this
very special case, all thresholds between zero and one lead to a globally optimal solution of the
original segmentation problem [Chan et al., 2006]. Recall that the labeling problem for two labels
could also be solved exactly using discrete optimization (see section 2.2.5). An advantage of the
continuous optimization is that the contour length is modeled accurately and there is no metrication
error (i.e. no grid bias) in the segmentation result [Klodt et al., 2008; Cremers et al., 2011]. An
example of a segmentation result with the convex method of Chan et al. [2006] on a natural gray
value image is displayed in figure 2.2. The optimization was done as described in [Klodt et al.,
2008] with a lagged diffusivity scheme and Successive over-relaxation.
Based on this approach of Chan et al. [2006], Bresson et al. [2005, 2007] have proposed a convex
relaxation method for the optimization of snakes and geodesic active contours. Instead of the TV
norm as used in [Chan et al., 2006], a weighted TV norm is used in [Bresson et al., 2005] as a
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original image initialization 50 iterations 100 iterations final result

Figure 2.3.: Result of the convex geodesic active contour segmentation. The mean values µ1 and
µ2 were set to 0.2 and 0.55 (on a scale from 0 to 1) respectively, λ was set to 2.5.

measure of the geodesic contour length. The objective function proposed by Bresson et al. [2005]
for two-label image segmentation is given by

EGAC convex (u) =

∫
Ω
g(I)‖∇u‖ dx + ν

∫
Ω

((
I − µ1

)2 − (I − µ2

)2)
u dx, (2.57)

with 0 ≤ u(x) ≤ 1. Here, the weighted TV norm minimizing the geodesic contour length is used
in combination with a region-based data term in order to render the geodesic active contour model
convex. The functional is thus not strictly convex - its convexity depends on the choice of the
parameter ν ≥ 0. The functional corresponds to the piece-wise constant Mumford-Shah functional
(equation 2.2). The minimization can again be done using gradient descent. The Euler-Lagrange
equation is

div

(
g(I)

∇u
‖∇u‖

)
− ν

(
(I − µ1)2 − (I − µ2)2

)
= 0. (2.58)

A primal-dual optimization scheme for the above functional has been proposed in [Bresson et al.,
2007]. A result of the convex geodesic active contour segmentation with the piece-wise constant
data assumption implemented with a lagged diffusivity scheme and Successive over-relaxation is

displayed in figure 2.3. The contour length is weighted by g(I) =
1√(

∇(Gσ ∗ I)
)2

+ 1
.

For the model proposed in [Bresson et al., 2005], the convexification of the snake energy is done by
adding a region term which in some way requires that the intensities inside the object differ from
the intensities outside. For natural images, this is usually no problem. However, when looking at
microscopic images with for example a membrane staining, this constraint can not always be met.

2.3.7. Multi-Label Segmentation with Level Sets

Different implementations of so-called multi-phase level sets have been proposed for example in
the works of [Zhao et al., 1996; Vese and Chan, 2002; Paragios and Deriche, 2002; Chung and Vese,
2005; Brox and Weickert, 2006; Lellmann and Schnörr, 2011; Pock et al., 2009; Chambolle et al.,
2012]. The extension to multiple regions is not straightforward. One of the major challenges for
the multi-label level set segmentation is that one must ensure that every image pixel is attributed to
exactly one region, i.e. Ω1 ∪ · · · ∪ ΩN = Ω and Ωi ∩ Ωj = ∅ for all i 6= j. For binary partitioning
problems, this condition is always fulfilled. For more regions, different approaches to solve the
problem have been proposed.
The work of Vese and Chan [2002], builds upon the binary region-based level set segmentation
[Chan and Vese, 2001] presented in the previous section (section 2.3.5). The image is recursively
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subdivided by level set functions such that the segmentation of an image into N = 2M regions is
computed using M level set functions. This is a suitable concept if the number of desired regions
is a power of two. Every point is attributed to exactly one region automatically. Unfortunately, this
representation entails further problems if the desired number of regions is not a power of two. Then,
empty regions have to be generated. An additional disadvantage is that, during the evolution, label
transfers are only possible between certain labels.
Chung and Vese [2005] propose to generate a multi-label segmentation by evaluating several level
lines of one level set function. Unfortunately, some cases can not be modeled this way, as for ex-
ample triple junctions [Chung and Vese, 2005]. In this case, a further level set function has to be
used for further subdivision. For example when using two level set functions with two levels each,
nine regions can be generated with this approach.
In the approaches of Zhao et al. [1996], Paragios and Deriche [2002] and Brox and Weickert [2006],
one level set function is used for each of the N regions to be generated. This entails the problem
that pixels can either be attributed to multiple regions, to one region, or to none of the regions.
Here, we omit the details on the different solutions to this problem that have been proposed in the
papers cited above and come directly to the more recent convex relaxation methods for multi-label
segmentation problems. In the non-convex models, the segmentation result is heavily depending on
the initialization. No guarantee can be given for the quality of the segmentation result. However,
even for multi-label problems where finding the exact segmentation is known to be NP-hard (com-
pare section 2.2.6), it is possible to provide solutions within a bound of the optimal solution using
convex relaxation [Cremers et al., 2011].

2.3.8. Convex Relaxation Methods for Multi-Phase Level Sets

Convex relaxation methods for multi-phase level sets have been proposed for example in [Zach
et al., 2008; Pock et al., 2009; Cremers et al., 2011; Chambolle et al., 2012; Lellmann et al., 2009;
Lellmann and Schnörr, 2011]. A quite general formulation can be found in [Lellmann and Schnörr,
2011].
Recall that for the two-label case, the convex relaxation methods are based on the TV norm of the
indicator function u. In order to measure the length of the contours represented by an indicator
function u : Ω → {1, . . . , n} where u(x) = ` if and only if x ∈ Ω`, the TV norm has to be
transferred to the multi-label case.
The perhaps most straightforward extension of the convex relaxation methods seen before (section
2.3.6) to the multi-label case was proposed in [Zach et al., 2008]. The indicator function u is
represented by a vector of binary indicator functions ui with

∑n
i=1 ui = 1 such that u(x) = ` ⇔

u`(x) = 1. The energy proposed to minimize is

EML convex
Zach =

∫
Ω
ν

n∑
`=1

‖∇u`‖+
〈
u(x) , s(x)

〉
dx, λ > 0 (2.59)

where the data term is linear in u and determined by s(x) = (s1(x), . . . , sn(x))T . By analogy to
the two label case, the si can for example be chosen as si(x) = (I(x)− µi)2, where µi is the mean
value of region i.
The ui are relaxed to the convex set C := {u : Ω→ Rn|ui(x) ≥ 0,

∑n
i=1 ui(x) = 1} to allow for

a convex optimization. The final labeling is determined by assigning each point x the label ` of the
maximum in {ui(x)|i = 1, . . . , n}.
A different relaxation based on convex constraints on the dual variable is proposed in [Pock et al.,
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2009]. In this work, the labeling function u is represented by n−1 binary functions θ1(x), . . . θn−1(x)
where

θ`(x) =

1 if u(x) > `

0 otherwise
(2.60)

such that the labeling function u can be expressed by u(x) = 1 +
∑n

`=1 θ`(x). The objective func-
tion in [Pock et al., 2009] is defined based on this label representation and the dual representation
of the TV norm

min
θ∈B

sup
ξ∈K

n−1∑
`=1

−ν
∫

Ω
θ` divξ`dx +

∫
Ω
|θ`(x)− θ`+1(x)|s`+1dx. (2.61)

where the vector θ of θ` is from the set

B =
{
θ = (θ1, . . . , θn−1)|Ω→ {0, 1}n−1

}
, (2.62)

with θ0 = 1 for all x, θn = 0 for all x, and the set K is defined as

K =

ξ = (ξ1, . . . , ξn−1)|Ω→ R2×(n−1),

∣∣∣∣∣∣
∑

`1≤`≤`2

ξ`(x)

∣∣∣∣∣∣ ≤ 1,∀x ∈ Ω, 1 ≤ `1 ≤ `2 ≤ n− 1

 .

(2.63)
The objective function is made convex by relaxing the θi to the convex set

R =
{
θ = (θ1, . . . θn−1)|Ω→ [0, 1]n−1

}
. (2.64)

Because of the absolute value, the objective function in (2.61) is not continuously differentiable. For
the minimization, an additional dual variable is introduced in [Pock et al., 2009] such that (2.61)
transforms to

min
θ∈B

sup
ξ∈K
η∈W

n−1∑
`=1

−ν
∫

Ω
θ` divξ`dx +

∫
Ω

(θ`(x)− θ`+1(x))η`+1(x)dx. (2.65)

where
W =

{
η = (η1, . . . ηn)|Ω→ Rn, |η`(x)| ≤ s`(x), ∀x ∈ Ω, 1 ≤ i ≤ n

}
. (2.66)

The primal-dual optimization is done by alternating gradient descent in the primal variable θ and
gradient ascent in the dual variables ξ and η. The resulting update scheme is 1

θk+1
` = ΠR

(
θk` − τp

(
−νdivξ` −

(
η` + η`+1

)))
ξk+1
` = ΠK

(
ξk` + τd · ν

(
∇θk+1

`

))
ηk+1
` = ΠW

(
ηk` + τd

(
θ`−1 − θ`

))
. (2.67)

1The listed update scheme differs from the one given in [Pock et al., 2009] in some details, but follows directly from
computing the derivatives of (2.65).
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The Π denote projections onto the respective convex sets R, K and W , the τ denote step-widths
for the gradient descent. Pock et al. [2009] propose to compute the projection of ξ onto the convex
set K using Dykstra’s algorithm [Boyle and Dykstra, 1986], whereas the projections ontoR andW
can be done by truncation.
In the works of [Lellmann et al., 2009; Lellmann and Schnörr, 2011], a vector-valued formulation
of the TV norm was proposed. As in [Zach et al., 2008], the indicator function u is represented
by a vector of binary indicator functions ui with

∑n
i=1 ui = 1 such that u(x) = ` ⇔ u`(x) = 1.

These functions are combined with a vector valued TV formulation based on the Euclidean metric
[Lellmann et al., 2009; Lellmann and Schnörr, 2011]

TV(u) = sup
v∈DTV

−
n∑
j=1

∫
Ω
u divv(j) dx (2.68)

where v(j) is the j-th column of the 2× n matrix v from

DTV = {v ∈ C∞(Ω)2×n| ‖v(x)‖ ≤ 1 ∀x ∈ Ω}, (2.69)

where Ck is the space of k-times continuously differentiable functions on Ω and ‖v‖ is the Frobe-

nius norm of the matrix v with ‖v‖ =
√∑2

i=1

∑n
j=1 |vij |2. For continuously differentiable vector-

valued functions, the TV norm equals

TV(u) =

∫
Ω

√
‖∇u1‖2 + · · ·+ ‖∇un‖2dx. (2.70)

The resulting multi-phase level set energy in [Lellmann et al., 2009] is

EML convex
Lellmann = −

∫
Ω

〈
u(x) , s(x)

〉
dx + νTV(u), ν > 0, (2.71)

where the data term determined by s is defined as before.
This original problem is relaxed in order to compute the optimization on a convex set C := {u :
Ω→ Rn|ui(x) ≥ 0,

∑n+1
i=1 ui(x) = 1}. The Euler-Lagrange equation to equation (2.71) is

∂E

∂ui
= −si − ν div

(
∇ui√∑n
i=1 ‖∇ui‖2

)
= 0. (2.72)

In [Lellmann and Schnörr, 2011], a primal-dual optimization algorithm is proposed to solve this
Euler-Lagrange equation. Alternatively, as in the work of [Klodt et al., 2008] for the convex two
label segmentation, a lagged diffusivity scheme can be developed for the optimization2. We briefly
sketch this numerical scheme here, because it is the one used in order to produce the example
segmentation in figure 2.4. The source of non-linearity in equation (2.72) is the diffusivity d =

1√∑n
i=1 ‖∇ui‖2

which is depending on the solution u. It follows that equation (2.72) can be

linearized by a fixed point iteration scheme, transforming (2.72) into a sequence of linear equations
that can be solved efficiently. The optimization can be done by alternating the computation of the
diffusivities for the current u and solving the linear system of equations for fixed diffusivities. As in

2The use of this optimization scheme for the energy formulated by [Lellmann et al., 2009; Lellmann and Schnörr, 2011]
was suggested by Thomas Brox in his lecture on Computer Vision.
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2. Overview on Image Segmentation

original image Pock et al. [2009] Lellmann et al. [2009]

Figure 2.4.: Result of the multi label level set segmentation with different convex relaxation meth-
ods and energy formulations. The segmentation has been computed for four labels with
fixed mean color values in rgb color space with λ = 25.

[Klodt et al., 2008], the linear systems of equations can be solved using Successive over-relaxation.
The resulting update for the ui is given by

uk+1
i (x) = (1− ω)uki (x) + ω

∑
y∈N (x)

y1≤x1∧y2≤x2

dx∼yu
k+1
i (y) +

∑
y∈N (x)

y1>x1∨y2>x2

dx∼yu
k
i (y)− si(x)/ν

∑
y∈N (x)

dx∼y

,

(2.73)
where

dx∼y =
dx + dy

2
. (2.74)

The diffusivities are computed as

dx =
1√∑n+1

j=1 ‖∇uj(x)‖2 + ε
(2.75)

with a sufficiently large ε in order to avoid numerical problems for
∑N+1

j=1 ‖∇uj(x)‖2 close to
zero. ω ∈ (0, 2) is the relaxation parameter. For ω = 1, the scheme in equation (2.73) equals the
Gauss-Seidel method. After each iteration, the ui must be reprojected into the convex set, such that∑n

i=1 ui(x) = 1 ∀x ∈ Ω.
From the optimal relaxed ui a final segmentation can be generated by assigning each point x the
label ` of the maximum in {ui(x)|i = 1, . . . , n}. The reprojection to discrete labels generally does
not have the globally optimal energy, but is within bounds of the optimal solution [Lellmann and
Schnörr, 2011].

Segmentation results with the convex relaxation methods proposed in [Pock et al., 2009] and [Lell-
mann et al., 2009] with five labels are shown in figure 2.4. The segmentation with the convex
relaxation proposed in [Lellmann et al., 2009] has been implemented using the SOR scheme (equa-
tion 2.73). The results are comparable in huge parts of the image. It is however interesting to
observe that the eye area is assigned to different labels by the two methods. The difference in the
results can be due to the fact that the relaxation used in [Pock et al., 2009] is tighter than the one
proposed in [Lellmann et al., 2009].
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2.4. Superpixel Generation

For many higher level image processing applications like object detection [Fulkerson et al., 2009],
video segmentation [Ochs and Brox, 2011], or semantic image segmentation [Keuper et al., 2011;
Yang et al., 2010; Lim et al., 2009; Fulkerson et al., 2009], it is beneficial to group the image
pixels into small regions of homogeneous color and texture. This grouping leads to a reduced com-
plexity and the resulting regions build a natural domain for the computation of features [Arbeláez
et al., 2011]. These regions are also referred to as superpixels [Arbeláez et al., 2011]. There are
many methods available for generating such superpixels [Vincent and Soille, 1991; Felzenszwalb
and Huttenlocher, 1998; Comaniciu and Meer, 2002; Felzenszwalb and Huttenlocher, 2004; Naj-
man and Schmitt, 1996; Mičušík and Pajdla, 2007; Arbeláez et al., 2011; Liu et al., 2011] or their
volumetric analogon [Kaster et al., 2011]. A very simple and robust method from the field of math-
ematical morphology is the watershed transform [Vincent and Soille, 1991; Najman and Schmitt,
1996; Roerdink and Meijster, 2000]. In its basic form, it builds upon the gray-level values of an
image that are interpreted as a topographic relief, i.e. the intensity of every point is interpreted as
its elevation. Starting from the local minima of this topographic map, the regions are defined by the
catchment basins. A review of different algorithms for the computation of the watershed transform
is given in [Roerdink and Meijster, 2000].
Various modifications of the watershed transform have been published to make it directly applica-
ble to image segmentation tasks, where whole objects should be segmented from the image. The
marker-based watershed transform for example allows for predefined catchment basins [Beucher,
1990; Najman and Schmitt, 1996] such that there is only one watershed region per object. Hierar-
chical segmentations based on the watershed transform aim at weighting the resulting boundaries
with the importance of the contour [Beucher, 1990; Najman and Schmitt, 1996; Arbeláez et al.,
2011] such that the desired segmentation can be found by thresholding the weighted contours.
In the following, we will describe two very different algorithms for the generation of superpixels
that have been used in some of our own contributions [Keuper et al., 2011; Morath et al., 2013;
Keuper et al., 2010b]. The first method gPb-OWT-UCM of Arbelaéz et al. [Arbeláez et al., 2011,
2009] has been used for the segmentation in electron microscopic images in our publications [Ke-
uper et al., 2011; Morath et al., 2013]. It combines Normalized cuts (see section 2.2.7.2) and a
new watershed based algorithm in order to produce region hierarchies. The second method Mean
shift segmentation of Comaniciu and Meer [2002] only evaluates local image information in order
to create regions. The fundamentals of this method have been used in our work on robust gradient
vector fields for the segmentation with active surfaces [Keuper et al., 2010b].

2.4.1. gPb-OWT-UCM

The method gPb-OWT-UCM proposed by [Arbeláez et al., 2011, 2009] generates a hierarchical
segmentation of an image. Contours in higher levels of the resulting hierarchy usually belong to
more important structures of the image whereas contours in the lowest level of hierarchy define su-
perpixels, i.e. small regions of homogeneous color and texture. These smallest superpixels should
contain all visible edge information of the image and are most often smaller than the smallest object
of interest in the image.
The first part of the gPb-OWT-UCM algorithm is the contour detection that has first been proposed
in [Martin et al., 2004]. The contour detection uses brightness, color and texture information: the
original image is split into four separate feature channels, where the first three contain the image’s
brightness and color information and the fourth channel represents the image specific texture in-
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original image gPb

Figure 2.5.: Result of the gPb contour detection for the different orientations θ for an example color
image. The results are visualized with a jet colormap, i.e. dark red corresponds to high
magnitudes whereas dark blue corresponds to low magnitudes.

formation. For these four channels, oriented gradients are computed: for every image pixel, the
circular neighborhood within a certain radius σ is split into two halves at an angle θ. The gradient
magnitude for the orientation θ is computed as the χ2 distance of the histograms of the two half-
disks. Multiscale information is gained by linearly combining the gradient responses for spherical
pixel neighborhoods with different radii σ. The result is called mPb. The last step of the contour
detection is what the authors call globalization [Maire et al., 2008]. An adjacency matrix W is built
based on the boundary information in mPb. For every pair of pixels within a certain neighborhood,
W (i, j) is computed from the maximal value of mPb on the line īj connecting the two pixels i and
j as

W (i, j) = exp

(
−max

p∈īj
max
θ

mPb(p, θ)

ρ

)
, (2.76)

where ρ is a constant. For W , the generalized eigenvalue problem is solved [Shi and Malik, 2000]
(see section 2.2.7.2). On the resulting eigenvectors, gradients are computed with Gaussian deriva-
tive filters in the same orientations as the color and texture gradients before. The filter responses
then contain the spectral contour information sPb. The linear combination of the oriented gradients
and sPb is called global Pb (gPb). The gPb for an example image can be seen in figure 2.5.

The second part of the algorithm is the Oriented Watershed Transform (OWT) [Arbeláez et al.,
2009, 2011]. On the maximal response of the contour detector over the orientations maxθ gPb, an
initial watershed segmentation is computed that produces an oversegmentation of the image. For
the resulting watershed boundary lines, the orientations are computed and binned such that they
can be compared with the orientations of the detected contour gPb with a simple look-up. Every
contour pixel is weighted with the strength of the contour detector output gPb in the according ori-
entation. In the last step, the average of these weights is computed for every watershed contour arc.
The result of the OWT is a set of closed, non self-intersecting weighted contours.
The last part of the algorithm consists in computing an Ultrametric Contour Map (UCM) [Arbeláez,
2006] in order to define the duality between these contours and a hierarchy of regions. From the
result of the OWT, a graph is constructed containing the regions as nodes and the watershed contour
arcs as edges. The edges are weighted with the weights of the OWT. In this graph, nodes that are
connected with the weakest edges are subsequently merged. The result is a tree of regions where the
original regions are the leaves and the root is the entire image. In the upper levels of the hierarchy,
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original image OWT UCM

Figure 2.6.: Result of the OWT and UCM for an example color image. The result has been dilated
for the visualization.

only the most dominant structures of the image are present, whereas the lower levels contain many
details. The OWT and UCM for the example from figure 2.5 can be seen in figure 2.6.
In [Arbeláez et al., 2011] and [Arbeláez et al., 2009], a final segmentation was obtained by thresh-
olding the UCM at an automatically chosen level. The threshold was chosen according to the best
F-measure, which is defined as the harmonic mean of precision and recall. However, the authors
also provide a framework for the interactive refinement of the segmentation by user-specified anno-
tations. This framework was used by an expert in [Morath et al., 2013] to generate final segmenta-
tions from transmission electron microscopic recordings of cells. In [Keuper et al., 2011], we used
the hierarchic segmentation result as input for our multi-label segmentation method with hierarchic
MRFs (compare section 6).

2.4.2. Mean Shift

The mean shift procedure as presented in [Cheng, 1995] aims at analyzing the density distribution
of arbitrary feature spaces and can be used to detect density maxima or to perform filtering or
clustering of feature points. The theoretical basis for the application of the procedure to images has
been presented in [Comaniciu and Meer, 2002]. The mean shift algorithm is based on the kernel
density estimation also known as Parzen Window Technique. In the following, we summarize the
derivation of the mean shift algorithm described in [Comaniciu and Meer, 2002]. Superpixels can be
generated using the mean shift segmentation procedure, which will be described in section 2.4.2.5.

2.4.2.1. Kernel Density Estimation

For n independent data points xi, i = 1, . . . , n in d-dimensional space Rd, that are generated by an
unknown probability distribution f , a kernel density estimator with the kernel bandwidth parameter
b is given by

f̂(x) =
1

nbd

n∑
i=1

K

(
x− xi
b

)
, (2.77)

where K(x) is a d-variate kernel that integrates to one. For radially symmetric kernels, the multi-
variate kernel density estimate can be given by

f̂b,K(x) =
ck,d
nbd

n∑
i=1

k

(∥∥∥∥x− xi
b

∥∥∥∥2
)
, (2.78)

where the function k(x) is the radial profile of the kernel K(x):

K(x) = ck,dk(‖x‖2). (2.79)
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The function k(x) with k(x) ≥ 0 only needs to be defined for x ≥ 0. The constant ck,d with
ck,d > 0 ensures, thatK(x) integrates to one. While the algorithm derived in [Comaniciu and Meer,
2002] can work with arbitrary kernels fulfilling the above listed properties, the authors specify two
kernels used in practice: the Epanechnikov kernel and the normal kernel. The Epanechnikov kernel
has the profile

kE(x) =

1− x, if 0 ≤ x ≤ 1

0, if x > 1.
(2.80)

The radially symmetric kernel is given by

KE(x) =

1
2c
−1
d (d+ 2)(1− ‖x‖2), if ‖x‖ ≤ 1

0, otherwise.
(2.81)

where cd is the volume of the d-dimensional unit sphere. kE is not differentiable for x = 1, for
x 6= 1, k′E(x) is uniform. For a visualization, see figure 2.7.
The profile of the normal kernel is given by

kN (x) = exp

((
−1

2
x

))
, x ≥ 0. (2.82)

The multivariate normal kernel is then given by

KN (x) = (2π)−d/2 exp

((
−1

2
‖x‖2

))
. (2.83)

(a) Radial profile kE of the Epanechnikov ker-
nel.

(b) Surface plot of the 2D Epanechnikov ker-
nel KE .

Figure 2.7.: Epanechnikov kernel and the according profile.
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2.4.2.2. Density Gradient Estimation

The main step of the mean shift procedure is to determine the positions of local maxima (modes)
in this density distribution of the feature space. Thus, zero positions of the actual density gradient
∇f(x) = 0 are estimated by gradient ascent of the estimate f̂b,K(x). For differentiable profiles k,
the gradient of f̂b,K(x) is given by [Comaniciu and Meer, 2002]

∇f̂b,K(x) =
2cb,d
nbd+2

n∑
i=1

(x− xi)k
′

(∥∥∥∥x− xi
b

∥∥∥∥2
)

=
2ck,d
nbd+2

 n∑
i=1

k′

(∥∥∥∥x− xi
b

∥∥∥∥2
)

x−

n∑
i=1

xik
′

(∥∥∥∥x− xi
b

∥∥∥∥2
)

n∑
i=1

k′

(∥∥∥∥x− xi
b

∥∥∥∥2
)
,

where the first term is proportional to the density estimate with kernel G(x) = cg,dg(‖x‖2) with
g(x) = −k′(x) and the second term is the mean shift

mb,G(x) =

∑n
i=1 xig

(∥∥∥x−xi
b

∥∥∥2
)

∑n
i=1 g

(∥∥∥x−xi
b

∥∥∥2
) − x, (2.84)

from which the gradient ascent iteration is derived as:

yj+1 =

∑n
i=1 xig

(∥∥∥yj−xi
b

∥∥∥2
)

∑n
i=1 g

(∥∥∥yj−xi
b

∥∥∥2
) . (2.85)

In each iteration, the points are shifted towards the next local density modes.

2.4.2.3. Mean Shift in the joint Spatial-Range Domain

In [Comaniciu and Meer, 2002], the authors show how the mean shift procedure can be employed as
a discontinuity preserving image filter. This is done by interpreting the image as a two-dimensional
lattice of p-dimensional vectors (p = 1 in the gray level case, p = 3 for color images). The
lattice then forms the spatial domain, the color information forms the range domain of a d = p+ 2
dimensional feature vector in the joint spatial-range domain. The mean shift is performed using a
multivariate kernel [Comaniciu and Meer, 2002]

Kbs,br(x) =
C

b2sb
2
r

k

(∥∥∥∥xs

bs

∥∥∥∥2
)
k

(∥∥∥∥xr

br

∥∥∥∥2
)
, (2.86)

defined as a product of two radially symmetric kernels with the common profile k(x). xs is the spa-
tial part, xr the range part of the feature vector. These bandwidth parameters bs and br control the
size of the kernel in the spatial and range domain and thus determine the resolution of the density
maximum detection. c is the corresponding normalization constant.
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original image bs = 5, br = 5 bs = 5, br = 10

bs = 10, br = 5 bs = 10, br = 10 bs = 10, br = 15

Figure 2.8.: Influence of the bandwidth parameters bs and br on the resulting superpixels with the
mean shift segmentation method for an example color image. The minimal regions size
M has been set to 10. The colors have been interpreted as features in the L*u*v* color
space [Comaniciu and Meer, 2002].

2.4.2.4. Mean Shift Filtering

The mean shift filtering is computed on the d-dimensional feature vectors xi, i = 1 . . . n in the joint
spatial-range domain. The algorithm given in [Comaniciu and Meer, 2002] is as follows.
For each pixel:

1. Initialize j = 1 and yi,1 = xi.

2. Compute yi,j+1 according to equation (2.85) until convergence, y = yi,c.

3. Assign zi = (xsi ,y
r
i,c)

T .

zi are pixels of the resulting filtered image. The subscripts s and r denote the spatial and range
components of the vectors respectively. In the resulting image, the pixels at position xsi are assigned
the range component of the convergence point yri,c.

2.4.2.5. Mean Shift Clustering

In [Comaniciu and Meer, 2002], the clustering of image pixels using mean shift in the joint spatial-
range domain is also used to compute image segmentations into homogeneous regions. The seg-
mentation algorithm given in [Comaniciu and Meer, 2002] is based on the mean shift filtering on the
d-dimensional feature vectors xi, i = 1 . . . n in the joint spatial-range domain. The zi, i = 1 . . . n
are the filtered image pixels and `i are the labels of the pixels. The algorithm is given in [Comaniciu
and Meer, 2002] as follows:

1. Run the mean shift filtering procedure for the image and store all information
about the d-dimensional convergence point in zi, i.e. zi = yi,c.

2. Delineate in the joint spatial-range domain the clusters {Cp}p=1...m by grouping
together all zi which are closer than bs in the spatial domain and br in the range
domain.

3. For each image pixel i = 1 . . . n, assign `i = {p|zi ∈ Cp}.
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2.4. Superpixel Generation

4. Optional: Eliminate spatial regions containing less than M pixels.

The result of the mean shift clustering of image pixels is a segmentation of the image. However, it
only results in closed regions if the value M is chosen sufficiently large. In the experiments given
in [Comaniciu and Meer, 2002], M is chosen between 2 and 6 times larger than br. The size and
homogeneity of the regions resulting from the mean shift segmentation depends on the choice of
the parameters bs and br. The influence of these parameters on the resulting regions can be seen in
figure 2.8. The mean shift was computed with an Epanechnikov kernel using the EDISON library3.

3http://coewww.rutgers.edu/riul/research/code.html
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3. Microscopic Data

In this work, we mainly deal with the analysis of single cells and sub-cellular structures from
microscopic recordings. Our data is mainly recorded using widefield fluorescence microscopy but
also standard confocal microscopy, spinning disk confocal microscopy, and electron microscopy are
employed. Depending on the employed imaging technique, different problems arise for the analysis
of the recorded data. Therefore, knowledge about the effects of the different imaging modalities is
required when tackling the segmentation in microscopic datasets. The special challenges present in
these datasets mostly cause state-of-the-art image segmentation techniques (see chapter 2) to fail,
when they are applied without further adaptations. A brief overview on the image acquisition with
different microscopy techniques is given in section 3.1. We focus only on those techniques that were
actually used for the acquisition of our data. Especially data recorded with widefield microscopy
suffers from strong blurring. For many image analysis tasks, these data have to be reconstructed
using deconvolution techniques (see chapter 4).

3.1. Image Formation with Fluorescence Microscopy

As the name implies, fluorescence microscopes use the phenomenon of fluorescence: Light with a
certain wavelength excites the fluorescent molecules of the specimen. These excited, fluorescent
molecules then emit light with a longer wavelength that can be observed and recorded with a cam-
era or a detector [Sarder and Nehorai, 2006]. The most important part of fluorescence microscopes
is the dichroic (or dichromatic) mirror. It reflects the excitation light and directs it to the specimen
while it is transparent to light in the emission wavelength, such that the emitted light can pass the
mirror and be observed by a detector. Thus, it is possible to observe exclusively the light emitted
by the specimen [Spring, 2003; Lichtman and Conchello, 2005].
In order to record a specimen with fluorescence microscopy, the parts of interest must be fluores-
cent. This can be achieved by marking these parts with fluorescent stains (for example DAPI (4’,6-
diamidino-2-phenylindole) marks the DNA). Specific proteins can be marked using immunofluores-
cence, where antibodies are bound to specific antigens. These “primary” antibodies are either flu-
orescent themselves or are bound to a “secondary” antibody, conjugated to a fluorophore [Fritschy
and Härtig, 2001; Lichtman and Conchello, 2005]. In immunofluorescence, the Green Fluorescent
Protein (GFP) plays an important role [Chalfie et al., 1994], because it can be introduced into an
organism and used as a marker of gene expression. Last but not least, some biological specimen
are autofluorescent, as for example mitochondria and lysosomes that contain amino acids [Menter,
2006], but also chlorophyll shows autofluorescence. Autofluorescence is not always a desired effect
for fluorescence microscopy, because it possibly interferes with the detection of other fluorescent
stains.
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3.1.1. Widefield Fluorescence Microscopy

For the analysis of living cells, conventional (i.e. widefield) fluorescence microscopy still plays an
important role, because it is prevalently available and, compared to confocal microscopy, has some
advantages concerning temporal resolution and phototoxicity. Usually a mercury lamp that emits
white light is used as light source. From this white light, the wavelength of the excitation light
is selected by optical filters. The dichroic mirror directs the excitation light to the specimen such
that the fluorescent molecules of the specimen are excited. These fluorescent molecules emit light
of a certain emission wavelength spherically in all directions. A part of the emitted light passes
through the dichroic mirror and is again filtered by a barrier filter suppressing the remaining light of
the excitation wavelength [Spring, 2003]. This emitted light can be directly observed or recorded
by a conventional charged coupled device (CCD) camera [Spring, 2003]. See figure 3.1 for an
illustration and [Spring, 2003; Abramowitz, 1993] for more details.

Light Source

Excitation Filter

Emission Filter

Dichroic Mirror

Sample

In-Focus Plane
Out-Of-Focus Planes

CCD Camera

Lenses

Figure 3.1.: Schematic sketch of a widefield microscope.

The 3D information of the specimen is recorded in a set of 2D images. Since the whole specimen
is illuminated for every image, there is always light from in-focus and from out-of-focus planes
recorded. Thus, the resolution along the optical axis (the resolution in z-direction) is heavily re-
duced [Sarder and Nehorai, 2006]. The recorded out-of-focus light also determines the impulse
response, the point-spread function (PSF) of the imaging system. A detailed description of the
factors determining the PSF and methods for the estimation of the PSF of an imaging system will
be given in section 3.1.3. Besides the PSF, there are several factors limiting the recording qual-
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ity [Sarder and Nehorai, 2006] as the spatial fluctuation of illumination in the specimen and lamp
flicker. Self absorption, bleaching effects, and scattering can lead to the attenuation of certain image
areas and the quantum nature of light causes Poisson noise [Sarder and Nehorai, 2006; Boyd, 1983].
Simplified, the image formation can be described by a convolution of the specimen function s with
the microscope specific PSF h and a voxelwise noise function n.

o = n(s ∗ h), (3.1)

where

• Ω ⊆ R3 is the image domain,

• o : Ω→ R denotes the objective function, i.e. the recorded image,

• s : Ω→ R is the specimen function,

• h : R3 → R is the point spread function (PSF),

• ‘∗’ is the convolution operator,

• n : R→ R is a voxelwise noise function, and

• h integrates to one:
∫
R3

h(x)dx = 1.

3.1.2. Confocal Microscopy

Compared to widefield microscopes, confocal laser scanning microscopes (CLSM) can produce
images with a higher resolution in the direction of the optical axis. They do so by point-wise
scanning through the sample using a laser beam [Lichtman and Conchello, 2005], such that the laser
is focused onto exactly one point at a time. As a result, very little fluorescence is emitted from out
of focus points. The remaining out-of-focus light is discarded using a pinhole that is placed in front
of the detector, in most cases a photomultiplier. Due to the limited sensitivity of the photomultiplier
compared to a CCD, confocal microscopes are far less light sensitive, thus resulting in a poorer
signal to noise ratio [Sarder and Nehorai, 2006; Toomre and Pawley, 1996]. In order to produce
good image quality, it is required to scan slowly through the specimen and expose it for longer time.
The enhanced image quality thus comes with negative side effects that are photobleaching and high
phototoxicity. In figure 3.3, a sketch of a confocal microscope is given. For more details refer to
[Wilhelm et al., 2012].
Since it becomes more and more necessary to image living specimen, the long scanning times of
CLSM are problematic because they limit the temporal resolution. This problem is overcome by
the use of spinning disk confocal microscopes. In spinning disk microscopes, the excitation light
is directed through multiple spinning microlenses and a spinning pinhole disk (Nipkow Disk) onto
the sample such that multiple points are excited at the same time. The emission light from these
points passes through the same pinhole disk and is directed to a CCD camera. For more details on
spinning disk microscopy refer for example to [Graef et al., 2005].
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Laser

Emission Filter

Beam Splitter 
(Dichroic Mirror)

Sample

In-Focus Plane
Out-Of-Focus Planes

Detector
(Photomultiplier)

Beam Expander

Scanner

Pinhole

Figure 3.2.: Schematic sketch of a confocal laser scanning microscope.

(a) Widefield recording. (b) Spinning disk recording.

Figure 3.3.: Exactly the same sample of Drosophila S2 cell nuclei recorded with a widefield and a
spinning disk confocal microscope. The volumetric data is displayed in two orthogonal
views. The arrows indicate the position of the cutting plane. Especially the resolu-
tion along the optical axis is greatly reduced in the widefield recording. The sample
preparations and recordings have been provided by Jan Padeken. The registration of
the images has been computed using normalized cross-correlation.
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3.1.3. PSF Estimation

The PSF of a fluorescence microscope depends on several facts as for example the Numerical Aper-
ture (NA), the emission wavelength λ, and the position of the recorded object. The NA is propor-
tional to the sine of one half of the angular aperture Θ of the objective and the refractive index of the
immersion medium nimm: NA = nimm · sin Θ [Abramowitz, 1993]. Most importantly, the finite lens
aperture introduces diffraction ring patterns in the recorded xy-sections [Sarder and Nehorai, 2006],
the so called Airy pattern (see figure 3.5(a)), that limits the resolution of the recording system 1.
A second important effect is caused by refractive index mismatch. In an ideal recording setting,
the refractive indices n of immersion medium, specimen embedding medium, and specimen are
the same. Differences between these refractive indices cause spherical aberrations2 (see figure 3.4).
Because of the Airy pattern, the PSF of widefield microscopes does not have a compact support
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Out-Of-Focus Planes

Cover Glass

Objective Lens

Embedding Medium

Immersion Medium

n

n

Embedding Medium

Immersion Medium

nemb
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Θ
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(a) Aberration-free imaging. The
refractive index of the immer-
sion medium and the refractive
index of the embedding medium are
equal.

(b) Imaging with spherical aberration.
The refractive index nimm of the immer-
sion medium and the refractive index
nemb of the embedding medium are dif-
ferent.

Figure 3.4.: Sketch showing the imaging of a bead with and without refractive index mismatch.

[Frisken-Gibson and Lanni, 1992; Born and Wolf, 1999; Goodman, 1996; Streibl, 1985; Stokseth,
1969; Gustafsson et al., 1995] and usually has values of an unneglectable range in the whole image
domain Ω.
In order to analyze or to alleviate the blur introduced in the recording by the PSF, it is crucial to
estimate the PSF as good as possible (see section 4). PSF estimates can be generated either analyt-
ically by simulating the recording system or experimentally by measuring the impulse response of
a point light source [Agard, 1984]. A third possibility is to estimate the PSF from the recording of
an object using blind deconvolution techiques (see section 4).

1According to the Abbe diffraction limit, the lateral resolution is limited to dxy =
λ

2NA
and the axial resolution is

limited to dz =
2λ

NA2 [Lipson et al., 2011].
2Spherical aberration means that the light rays are focused depending on the radial distance from the optical axis.

Ideally, all light should be focused to one point, independently from the distance to the optical axis at which it enters
the lens.
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3. Microscopic Data

3.1.3.1. PSF Simulation

(a) Airy Pattern (b) Symmetric PSF

(d) OTF of the symmetric PSF

(c) Asymmetric PSF

(e) OTF of the asymmetric PSF

Figure 3.5.: The Airy Pattern (a) and yz-sections of simulated 3D widefield PSFs with the Gibson
and Lanni model [Frisken-Gibson and Lanni, 1992] without (b) and with (c) spherical
aberration. The magnitude of the according OTFs are shown in (d) and (e). The PSF’s
and OTF’s values have been γ-corrected with γ = 1/3 for the visualization and are
displayed with a hot color map.

There are several methods to theoretically model the recording system and thus model the PSF
[Stokseth, 1969; Streibl, 1985; Frisken-Gibson and Lanni, 1992; Born and Wolf, 1999] or its Fourier
domain equivalent, the object transfer function (OTF) [Frieden, 1967; Nakamura and Kawata, 1990;
Sheppard and Gu, 1994; Philip, 2009; Schönle and Hell, 2002]. A complete presentation of all
methods is beyond the scope of this thesis and only the most common methods are shortly presented.
The well-known model from Born and Wolf [Born and Wolf, 1999; Frisken-Gibson and Lanni,
1989] simulates the optical system with some restrictions. The model describes the diffraction that
occurs when the observed fluorophore particle is in the focal plane. The PSF simulated with [Born
and Wolf, 1999] thus does not depend on the position of the simulated particle.
This is different for the method of Gibson and Lanni [Frisken-Gibson and Lanni, 1992] that takes
the different refractive indices of the lens immersion medium and the specimen embedding medium
into account. This way, the resulting spherical aberration can be modeled. Even further refractive
index-mismatches for example of the specimen and the embedding medium can be modeled by
[Frisken-Gibson and Lanni, 1992]. The simulated particle can be located at any point in the sample.
The resulting PSF depends on the z-position of the recorded point. The computation is based on the
Kirchhoff diffraction integral and given by

h(x, y, z) =
C

z

∣∣∣∣∣∣
∫ 1

0
Jo

(
kNAρ

√
x2 + y2

z

)
eıW (ρ)ρdρ

∣∣∣∣∣∣
2

, (3.2)

where C is a constant, J0 is the zero order Bessel function of the first kind, k = 2π/λ is the wave
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3.1. Image Formation with Fluorescence Microscopy

number, NA the numerical aperture, ı denotes the imaginary unit, and W (ρ) is the phase aberration
at the normalized radius ρ, which is in fact depending on the different refractive indices and the
depth of the in-focus plane. Figure 3.5 shows xz-sections of two simulated PSF recordings with
different refractive indices, generated with the ImageJ3 tool described in [Kirshner et al., 2011]
using the model of Gibson and Lanni [Frisken-Gibson and Lanni, 1992]. The refractive index of
the immersion medium is 1.5 in both cases. For the PSF with spherical aberration, we have used a
refractive index of 1 for the specimen. For the remaining parameters we took the default values (NA
= 1.4, λ = 500nm, particle position in z-direction = 2000nm, resolution in xy-direction = 0.25µm
and in z-direction 0.5µm).
In the model of Richards and Wolf [Richards and Wolf, 1959; Aguet, 2009], the phase aberration is
described as in [Frisken-Gibson and Lanni, 1992], but the electric field components are considered
independently, such that the vector-valued diffraction can be modeled. However, this only offers
small improvements in the accuracy compared to the scalar-valued diffraction model of [Frisken-
Gibson and Lanni, 1992] at higher computational costs (see [Pankajakshan et al., 2009])4.
Due to the nature of optical systems, it often makes sense to directly analyze the Fourier domain
properties of the imaging system which has been done for example in [Frieden, 1967; Nakamura
and Kawata, 1990; Sheppard and Gu, 1994; Philip, 2009; Schönle and Hell, 2002; Gustafsson et al.,
1995]. In [Frieden, 1967], the three-dimensional OTF for systems with small apertures was derived.
This approximation is not valid for lenses with high aperture [Schönle and Hell, 2002; Philip, 2009],
such that improved approximations need to be considered for fluorescence microscopes. In [Naka-
mura and Kawata, 1990], the authors deduce the support of the widefield OTF, the finite region
where it has non-zero values. The values of the widefield OTF are not determined in [Nakamura
and Kawata, 1990] since the focus of the paper is the computation of the confocal OTF. In [Philip,
2009] and [Schönle and Hell, 2002], the computation of the widefield OTF is deduced, defined by
the autocorrelation of a spherical cap of the Ewald Sphere. [Schönle and Hell, 2002] derive the
OTF as a line integral also modeling refractive index mismatches, whereas [Philip, 2009] give an
algorithm to directly compute the OTF-values for aberration-free systems.
In this thesis, we only use knowledge about the support of the widefield OTF, since it determines
the resolution of an imaging system. Frequencies outside the OTF support are cut off during the
imaging process. The OTF support of a widefield microscope is depicted in figure 3.6. The recorded
light field is assumed to be nearly monochromatic with constant wavelength λ. The corresponding
wave-number is k = 2π/λ for the whole field, which means that the Fourier transform of the field
amplitude has non-zero values only on a shell with radius 2π/λ (figure 3.6(a)). Since only the light
from a limited angle Θ can be recorded (figure 3.6(b)), the recorded information is limited to a
“cap” of the spherical shell in the Fourier space (figure 3.6(c)). The autocorrelation of this spher-
ical cap is the region from which intensity information is accessible, i.e. the support of the OTF.
Compare [Gustafsson et al., 1995; Philip, 2009] for more detailed information.

3ImageJ is a public domain image processing software written in Java. The program and documentation can be down-
loaded from http://rsbweb.nih.gov/ij/.

4Recently, the method of Richards and Wolf [Richards and Wolf, 1959] has also been implemented in ImageJ [Kirshner
et al., 2011].
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3. Microscopic Data

Figure 3.6.: Illustration of the support of the widefield OTF. (a) The spherical shell on which the
Fourier transform of the monochromatic light field amplitudes is non-zero. (b) The
objective lens with a finite acceptance angle Θ. (c) The spherical cap containing the
recorded amplitude information. (d) The resulting OTF support. (Compare [Gustafsson
et al., 1995; Philip, 2009] for similar visualizations)

The OTF is rotation symmetric around the kz frequency axis. Therefore, it is sufficient to com-
pute the OTF for the positive frequencies. Furthermore, the OTF value at frequency position

ξ = (kx, ky, kz)
T equals the value at position ξ̄ =

(
0,
√

kx
2 + ky

2, kz

)T
. The OTF at frequency

ξ = (0, ky, kz)
T can be computed as [Philip, 2009]:

F(h)(ξ) = const · 1

‖ξ‖
sin−1
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k2 sin2 Θ−

((
ky

2 + kz
2 + 2kkz cos Θ

)
/2ky

)2

k2 − ‖ξ‖2/4


1/2

. (3.3)

It can be observed that in kz-direction, the OTF drops to zero very quickly. The conical region
where the OTF is zero is called missing cone and explains the significant amount of blur in z-
direction. Here, even low frequency information is cut off. This missing cone can also be seen
in the OTFs computed from the simulated PSFs (compare figure 3.5 (d) and (e)). However, in the
OTFs computed from the simulated PSFs, there are artifacts originating from sampling and from
the fact that the PSFs are cut off at some point in the spatial domain. For comparison, we have
directly simulated the OTF with the same parameters as the symmetric PSF in figure 3.5(b) with
the simulation method proposed by Philip [2009]. The result is displayed in figure 3.7. For this
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3.1. Image Formation with Fluorescence Microscopy

parameter setting, the computed OTF is also cut off in kxky-direction. For a higher spatial resolu-
tion (0.125 × 0.125 × 0.25µm3), the simulated OTF and the symmetric PSF computed from this
OTF are shown in figure 3.8. With this resolution, the frequencies are not cut off anymore. Small
artifacts in the resulting PSF can be seen around the center. It follows that when using simulation
methods for the widefield PSF, one has to decide for either a good simulation in the spatial do-
main with artifacts in the frequency domain or for a good representation in the frequency domain
but artifacts in the spatial domain. Furthermore, to the best of our knowledge, there is no method
published that allows for the direct computation of the OTF values of a spherically aberrated system.

(a) Simulated OTF. (b) OTF computed from simulated PSF.

Figure 3.7.: Comparison between the simulated OTF and the same OTF computed from the simu-
lated PSF from figure 3.5(b) for the parameters NA = 1.4, λ = 500nm, nimm = nemb =
1.5, and a spatial resolution of 0.25× 0.25× 0.5µm3.

(a) Simulated OTF. (b) PSF computed from OTF.

Figure 3.8.: A kxkz-section of the simulated OTF for the parameters NA = 1.4, λ = 500nm, nimm =
nemb = 1.5, and a spatial resolution of 0.125× 0.125× 0.25µm3 and an xz-section of
the PSF computed from this OTF.

The PSF of confocal laser scanning microscopes is related to the widefield PSF. Using the Helmholtz
reciprocity theorem, the authors of [Pankajakshan et al., 2009] write the CLSM PSF as

hCLSM(x, y, z) = c ·
∣∣h(x, y, z;λex)

∣∣2 · ∫
r2≤D2

4

∣∣h(x− x1, y − y1, z;λem)
∣∣2 dx1dy1, (3.4)

where h is the widefield PSF, λex and λem are the excitation and emission wavelengths, r2 = x2
1+y2

1

and D is the back-projected diameter of the circular pinhole. The computation of the confocal
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3. Microscopic Data

(a) Bead recording. (b) Averaged bead over four recordings.

(c) OTF from measured PSF.

Figure 3.9.: Measured PSF from bead recording. xz-sections through the center of the bead are
shown with a γ-correction with γ = 1/3. The section of the OTF is visualized with
γ = 1/4. The recordings have been taken by Jan Padeken.

OTF is given in [Nakamura and Kawata, 1990], where it is also shown that the confocal OTF has
no missing cone. In [Zhang et al., 2006], the authors show that the confocal PSF can be well
approximated by a 3D Gaussian function.

3.1.3.2. PSF Estimation using Bead Recordings

The PSF of a recording system can be measured by recording fluorescent microspheres, so called
beads. In order to have a punctual light source, it is important that the recorded bead is smaller than
the resolution. Furthermore, all recording parameters must be exactly the same as in the specimen
recording (NA, wavelength λ, refractive indices of immersion and embedding medium, etc.). A
remaining problem is the recorded noise. In order to compute a PSF estimation from a recorded
image, the recorded background noise can be estimated by fitting a Poisson distribution to the image
intensity distribution. The underlying assumption is that the recorded bead is small in relation to
the recorded background and the photon noise is Poisson distributed [Boyd, 1983]

PΛ(X = k) =
Λk

k!
e−Λ. (3.5)

A common method to reduce noise in the measured PSF is to record multiple beads and build
the average over the recordings. The resulting measurement contains less noise. However, the
recordings of the beads have to be properly aligned. Otherwise, fine structures are lost and undesired
blur is introduced.
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3.2. Fluorescence Microscopic Datasets

Figure 3.10.: Drosophila S2 cell nucleus recordings. a) Channel 0: The DAPI stained chromatin. b)
Channel 1: The GFP stained fibrillarin of the nucleoli inside the nuclei. c) Orthogonal
views of one of the cell nuclei for channel 0 (top row) and channel 1 (bottom row). In
the yz-view, the strong blurring caused by the widefield PSF is visible.

In figure 3.9, the result of a PSF measurement is shown. For this measurement, a TetraSpeck 0.2µm
bead was recorded four times5. The used parameters are NA = 1.4, λ = 358, nimm = 1.516, nemb =
1.45, and a spatial resolution is 0.0642×0.0642×0.2µm3. The measured PSF is highly asymmetric
and noisy even after averaging. Vertical lines in the computed OTF from this measurement indicate
that the values are cut off in z-direction.

3.2. Fluorescence Microscopic Datasets

The segmentation methods developed in this thesis have been applied to several different datasets
recorded with fluorescence microscopy. Three of these datasets on which we show results in this
thesis will be briefly described in the following.

3.2.1. Drosophila S2 Cell Nuclei

The first dataset (see figure 3.10) used in this thesis consists of volumetric recordings of Drosophila
S2 cell nuclei imaged with widefield microscopy. The S2 or Schneider cell line is a commonly
used cell line originally derived from Drosophila embryos. In 45 recordings, 440 cells have been
fully imaged. Some additional cells were lying on the boundary of the recording and were therefore
useless for biological evaluation. The data originates from a project initiated by Patrick Heun and
Olaf Ronneberger and was recorded by Jan Padeken in the Max-Planck-Institute for Immunobi-
ology and Epigenetic in Freiburg. For the biological question at hand, it was our goal to provide
exact knowledge about the sub-nuclear anatomy, i.e. the exact position of the nucleolus6 within the
cell nucleus. Usually, there were three channels recorded, where the DAPI staining inside the cell
nucleus is imaged in channel 0, channel 1 shows the GFP stained fibrillarin inside the nucleolus and

5The recording has been done together with Jan Padeken.
6The nucleolus is a structure inside the nucleus, that is important for the transcription of ribosomal RNA.
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3. Microscopic Data

the third channel shows a protein to be investigated. Our work focuses on the segmentation of cell
nuclei and nucleoli from the first two channels. DAPI stains the chromatin inside the nucleus such
that bright regions in channel 0 probably belong to the nucleus. However, the nucleolus inside the
nucleus does not contain DNA. It is therefore not stained by DAPI and causes a “hole” in the nu-
cleus recording. The fibrillarin stained in channel 1 is certainly inside the nucleolus but the density
of the staining near the nucleolus boundaries is inhomogeneous. The true nucleolus boundary thus
has to be searched in between the stained bright regions in channel 1 and the dark region inside the
nucleus in channel 0. A sketch illustrating the task we want to approach within these data is given
in figure 3.11. However, we only give an example of a possible biological evaluation. The exact
biological question is not mentioned here, because it has not been published so far.
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Figure 3.11.: Schematic sketch of the task given in the Drosophila S2 cell nucleus dataset. The
sought nucleolus boundary needs to be extracted from information given in the DAPI
(recorded in channel 0) and the fibrillarin staining (recorded in channel 1).

The voxel size in xy-direction is 0.064µm in z-direction 0.2µm. The recordings were taken with
a Deltavision Microscope using a 60x oil immersion objective with NA = 1.4. The excitation
wavelength for DAPI is λ = 358. The used embedding medium is SlowFade Gold from Invitrogen
with a refractive index nemb = 1.45 and the immersion medium had a refractive index nimm =
1.516.
In figure 3.10, an example slice from the first two channels is displayed, as well as orthogonal slices
of one of the nuclei. The main challenges in this dataset are the strong blurring in z-direction as
well as the inhomogeneous staining. For example in channel 0, regions of dense chromatin cause
bright “blobs” in the recorded data. Dark regions can either correspond to less dense chromatin, to
the nucleolus, or to background.
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Figure 3.12.: Orthogonal views of a sample root tip after fixation and DAPI staining. Bright spher-
ical structures correspond to the cell nuclei. The differentiated nuclei of the root tip
and the dividing cells can be clearly distinguished from the undifferentiated interphase
cells. The different layers of the root have been manually colorized in the xy-plane.
The figure has been created by my colleague Thorsten Schmidt who kindly let me use
it in this thesis for visualization.

3.2.2. Cell Nuclei in the Arabidopsis Thaliana Root Tip

The second dataset consists of volumetric CLSM recordings of Arabidopsis thaliana root tips. The
recording, staining, and fixation have been done by Taras Pasternak at the Institute of Biology II,
University of Freiburg. As for the Drosophila S2 cells, DAPI staining was used that binds to DNA.
Bright regions thus correspond to nuclear chromatin. The nucleoli inside the nuclei are visible as
dark “holes”. Smaller bright spots around the nuclei correspond to mitochondria. In figure 3.12,
orthogonal views of a root tip are shown. In the xy-section, the different layers in the root are
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3. Microscopic Data

a) b) c) d) e) f)

Figure 3.13.: (a-c) Slices of the recorded channels: a) differential interferent contrast (DIC) image.
b) protein pattern (Cyt). c) chloroplasts. (d-e) maximum intensity projections in z-
direction (top row) and in y-direction (bottom row) of the protein stainings: d) Cyt. e)
ER. f) GA 8.

annotated. The size and shape of the nuclei varies with the layer and differentiation state. Since the
specimen are quite thick, a signal attenuation due to absorption and light scattering can be observed
in z-direction. In the visualization in figure 3.12, this attenuation has been alleviated with a γ-
correction. In the tip, however, a dark region in the lower left part of the xz-section is still visible
that originates from signal attenuation. For each root, two partially overlapping image stacks were
recorded and stitched together using xuvTools [Emmenlauer et al., 2009]7. These data have already
been investigated for mitosis analysis in [Schulz et al., 2006; Skibbe et al., 2012], where detection
algorithms are presented.

3.2.3. Tobacco Protoplast Cells

This dataset consists of volumetric CLSM recordings of living tobacco leaf protoplasts that were
prepared and recorded by my colleague Robert Bensch and Karsten Voigt at the Institute of Bi-
ology II, University of Freiburg. Protoplasts are cells whose cell walls have been enzymatically
removed. Plant protoplasts can be used to study the function of the plasma membrane, cellular re-
programming or cellular development [Dovzhenko et al., 1998]. An exact segmentation of the cells
is needed for various applications, such as the description of the cell anatomy itself or of develop-
mental processes in a meaningful anatomical coordinate system. Each recorded sample contains
one to three single cells. The recorded resolution varies and is either 0.28 × 0.28 × 0.4µm3 or
0.28× 0.28× 0.5µm3. Besides the recorded noise, the most limiting fact for the recording quality
was the absorption, resulting in a signal intensity attenuation in the z-direction (see bottom row in
fig. 3.13). The cells have been recorded on three successive days. Directly after preparation, the
cells are usually roundish with the chloroplasts mainly located on the bottom side. With time, they
develop more elongated and complex shapes and the chloroplasts redistribute inside the cell. Three
channels have been recorded, a transmitted light channel and two confocal fluorescence channels,
one showing the auto-fluorescence of the chloroplasts and another showing the fluorescence of the

7The stitchings have been done by Thorsten Schmidt.
8This visualization of the data has been generated by Robert Bensch who kindly let me use it in this thesis.
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tagged protein (see fig. 3.13a-c). The position of the chloroplasts is important because it influences
the protein pattern.
Three different protein patterns have been recorded which all have a different appearance (see fig.
3.13d-f). While the cytoplasm (Cyt, 55 cells in the database) fills the whole space between the
chloroplasts, the endoplasmatic reticulum (ER, 46 cells) forms a mesh structure and the golgi appa-
ratus (GA, 86 cells) is organized in spot-like structures. All protein patterns are located in the outer
shell of the cell, i.e. between outer cell membrane and inner vacuole membrane (cf. fig. 3.13b).

3.3. Transmission Electron Microscopy

The resolution of fluorescence microscopes is physically limited by the wavelength λ of the emitted
photons and the NA (compare section 3.1). Imaging with electrons instead of light allows for much
higher resolutions because the electrons can be accelerated to much shorter wavelengths. However,
for transmission electron microscopes (TEM), the recording principles are quite similar to light
microscopes and are only briefly summarized here. A detailed description of the functionalities of
TEM is given in [Fultz and Howe, 2007]. In TEM, an electron emission source generates an elec-
tron beam that travels inside a vacuum. The lenses, consisting of electromagnets, direct the electron
beam through the sample, such that only very thin samples, usually about 100nm thick, can be
imaged. The observed image is the integration over the whole depth of the sample. The electron
beam passing through the sample is made visible on a phosphor screen or recorded by a CCD cam-
era. Constrast is usually formed by absorption of electrons in the sample (mass-thickness contrast).
Thicker regions or regions with higher atomic number appear darker than regions with lower atomic
number. Other mechanisms to produce contrast in the electron microscope are diffraction contrast
and phase contrast.

3.4. TEM Data

The TEM dataset used in this thesis consists of 27 two-dimensional recordings of bone marrow-
derived mast cells (BMMC). For the recording, the cells were cut into thin slices of approximately
90 nm thickness. The image size is 1024 × 1024 pixels with a resolution of 11.6 × 11.6nm2 per
pixel. Two example recordings are shown in figure 3.14. Fine details of the cell like membrane
protrusions (called microvilli) or the lamella structure of mitochondria are visible. The recordings
have been taken by Marta Rodriguez-Franco at the Faculty of Biology, University of Freiburg. For
this dataset, ground truth annotations are available, segmenting the images into the five different
classes background, cytoplasm, nucleus, mitochondria, and other vesicles.
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Figure 3.14.: TEM recordings of BMMC cells. The extended dark regions inside the cell correspond
to the nucleus. Smaller, elongated dark structures are mitochondria.
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4. Deconvolution

Recall that the image formation of fluorescence microscopes can be approximated by the equation

o = n(s ∗ h), (4.1)

where s is the specimen function, h the microscope specific PSF, and n a voxelwise noise func-
tion. Deconvolution techniques seek to reconstruct the specimen s from the image o under certain
assumptions on the noise function n. Blind deconvolution methods do so by estimating the PSF at
the same time, while non-blind deconvolution methods rely on a given PSF estimate (see section
3.1.3).
It is easy to see that the deconvolution of 3D widefield data is ill-posed because a part of the in-
formation is already lost even if the correct PSF was given (see again section 3.1.3). In blind
deconvolution, the situation is even worse, because the number of variables to be estimated from
the measured signal o increases drastically. However, blind deconvolution techniques can cope with
deficient initial PSF estimates. This is beneficial, because the PSF depends on many parameters,
is subjected to changes in the recording system, like thermal expansions, aberrations, or an unex-
pected behavior of the recorded specimen, and is therefore hard to estimate a priori.
For the deconvolution of widefield microscopic data, Maximum Likelihood Expectation Maximiza-
tion (MLEM) deconvolution methods have proved to be very efficient [Sarder and Nehorai, 2006;
Holmes, 1992; Conchello and McNally, 1996; Kenig et al., 2010]. However, they do not converge
if no regularization is implemented [Sarder and Nehorai, 2006]. Blind deconvolution methods even
tend to converge to the trivial solution, where the deconvolution kernel (the estimated PSF) collapses
to the δ-impulse and the reconstructed specimen equals the recorded image. Thus, it is necessary to
regularize either the specimen function or the deconvolution kernel or both.
In the following, we describe the blind MLEM deconvolution framework with different specimen
function regularizations (see sections 4.2 - 4.5). For the regularization of the deconvolution kernel
in the blind MLEM deconvolution framework, we propose two different methods. First, a zero
order Tikhonov penalizer is employed for the regularization (see section 4.7.1). This approach has
been evaluated with different specimen function regularizations together with Maja Temerinac-Ott
and published in [Keuper et al., 2012]. With this very general penalty term, we can easily avoid the
trivial solution and stabilize the blind MLEM scheme without introducing a complex PSF model.
Secondly, we propose to use a regularization of the Fourier transform of the deconvolution ker-
nel, employing its frequency space properties (see section 4.7.2). A preliminary implementation of
this idea has been the subject of a student project co-supervised by Maja Temerinac-Ott [Koziolek,
2011]. Here I present a much improved version.

4.1. Related Work

Image deconvolution is a vast topic with applications in the fields of microscopic image recon-
struction, motion deblurring, or the deblurring of astronomic images. The algorithms depend on
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the assumptions on the noise function n. Assuming n is a function adding Gaussian noise to the
recording, i.e.

o = s ∗ h+ nG, (4.2)

linear deconvolution methods such as the Wiener Filter [Wiener, 1949], the Tikhonov-Miller filter
[Miller, 1970] or a simple pseudo-inverse filter can be employed. However, in diffraction-limited
systems where certain frequencies are cut off during the recording process, linear methods have
no means to recover any of these frequencies since zero multiplied by any number remains zero
[Carasso, 1999]. Furthermore, linear methods provide no control over the range of the restored data.
This is why non-linear image deconvolution methods based on statistic considerations are widely
believed to outperform conventional linear methods [Carasso, 1999; Sarder and Nehorai, 2006],
coming at the cost of higher computational complexity since generally, no direct computation of
the solution is possible. A further advantage of non-linear methods is that more complex noise
models as for example Poisson noise can be modeled. In [Sarder and Nehorai, 2006], an overview
of the advantages and disadvantages of several linear and non-linear deconvolution methods for
widefield microscopy is given. In [Carasso, 1999] the derivation of several nonlinear deconvolution
methods as the Lucy-Richardson method [Lucy, 1974; Richardson, 1972], the Maximum Likeli-
hood Expectation Maximization (MLEM) method [Shepp and Vardi, 1982], the Poisson maximum
a posteriori method, and a maximum entropy method [Nuñez and Llacer, 1990] are described in
detail.
The MLEM and the Lucy-Richardson method both lead to the same deconvolution algorithm al-
though the derivations are different. MLEM was first proposed in [Shepp and Vardi, 1982] for the
reconstruction of positron emission tomography recordings and is based on Poisson statistics. In the
papers of Richardson [1972] and Lucy [1974], no assumptions are made on the specific statistical
model for the noise process in the recording.
MLEM deconvolution methods have proved to be very efficient for image restoration and particu-
larly for deconvolution of widefield microscopic data [Kenig et al., 2010; Markham and Conchello,
2001; Preza and Conchello, 2004]. Without using a prior model of the data to be reconstructed,
MLEM tends to amplify noise and to introduce ringing artifacts [Sarder and Nehorai, 2006; Shaw,
1996]. However, using pre-denoised images, it has shown to be possible to use MLEM deconvo-
lution methods without regularization [de Monvel et al., 2001]. More common methods use prior
models such as the Tikhonov-Miller (TM) penalizer [vanKempen et al., 1997] or Total Variation
(TV) regularization [Dey et al., 2004b,a, 2006], enforcing smoothness in the deconvolved data and
thus reducing noise. In [Conchello and McNally, 1996], the authors use an intensity penalization
for the data term, hindering the data from taking too high values. However, in [Conchello and Mc-
Nally, 1996] not the maximum likelihood but the information divergence is optimized.
MLEM based blind deconvolution methods estimate not only the specimen function but also the
PSF from the recorded data and an initial guess of the PSF [Markham and Conchello, 1999; Kenig
et al., 2010]. In [Markham and Conchello, 1999; Kenig et al., 2010] the PSF update is regular-
ized by a projection of the current estimate onto a given PSF model. In [Markham and Conchello,
1999], the parameters of the PSF model given in [Frisken-Gibson and Lanni, 1992] are estimated
in each step, in [Kenig et al., 2010], the current estimate is projected onto the space spanned by all
simulated PSFs using a kernel PCA. In [Kenig et al., 2010], the PSF simulation is done using the
method of [Stokseth, 1969] which is similar to [Frisken-Gibson and Lanni, 1992]. [Kenig et al.,
2010] proposes to additionally use a residual denoising technique for data and PSF restoration as
done before in [Starck et al., 2002] for the deconvolution of astronomical images. In [Hom et al.,
2007], an adaptive image deconvolution algorithm (AIDA) is presented: a blind (myopic) deconvo-
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4.2. Maximum Likelihood Expectation Maximization Deconvolution

lution framework for 2D and 3D data. The basic assumption is that the PSF of the optical system is
approximately known and either given in the form of the object transfer function (OTF, the Fourier
transform of the PSF) or as several OTFs of which the true OTF is expected to be a linear com-
bination. During the deconvolution process, the PSF estimation is bound to these given OTFs by
the L2-norm. Also the data fidelity term in [Hom et al., 2007] is based on the L2 and in contrast
to MLEM does not assume Poisson statistics. As [Kenig et al., 2010], [Pankajakshan et al., 2009]
use the PSF model of [Stokseth, 1969] in the blind MLEM deconvolution framework. Similarly to
[Hom et al., 2007], they bind the estimated PSF with a quadratic term to the simulated PSF.

4.2. Maximum Likelihood Expectation Maximization
Deconvolution

Even though the Lucy-Richardson deconvolution and the MLEM deconvolution approach lead to
the same update scheme, we present our methods in the MLEM framework, because it easily allows
for extensions. Priors on the specimen function as well as on the deconvolution kernel can be
incorporated in a natural way using Bayes’ theorem.
For the derivation of the MLEM algorithm we follow [Carasso, 1999]. The aim of the MLEM
algorithm is to find the specimen function estimate that maximizes the conditional probability of
the measured objective function:

ŝ = arg max
s
{p(o|s, h)}, (4.3)

where o denotes the objective function, s the specimen function, and h the PSF from equation (3.1).
Since photon noise is Poisson distributed [Boyd, 1983], the recorded objective function o(x) at
voxel x can be viewed as a sample of a Poisson distribution with mean (s ∗ h)(x) [Carasso, 1999],
such that

p(o(x)|s, h) =
((s ∗ h)(x))o(x) exp

(
−(s ∗ h)(x)

)
o(x)!

. (4.4)

Since the intensity at each voxel in o is drawn from an independent Poisson process, the objective
function o given the specimen s and the PSF h can be expressed in an ML way as the product

p(o|s, h) =
∏

x∈Ω⊆R3

((s ∗ h)(x))o(x) exp
(
−(s ∗ h)(x)

)
o(x)!

, (4.5)

where Ω ⊆ R3 is the recording domain. Instead of maximizing (4.5), it is equivalent to minimize
the negative log-likelihood function

− log(p(o|s, h)) =

∫
Ω
−o(x) · log(s ∗ h)(x) + (s ∗ h)(x) + log(o(x)!)dx. (4.6)

The term log(o(x)!) is constant relative to s and can thus be ignored in the optimization. The
functional that has to be minimized is

JMLEM(s) =

∫
Ω

(s ∗ h)(x)− o(x) · log(s ∗ h)(x)dx. (4.7)

The minimization of 4.7 is equivalent to finding a solution to ∇J(s) = 0, where ∇J(s) is found
using the calculus of variation (see appendix A).∇J(s) = 0 yields the Euler-Lagrange equation∫

Ω
hm(x)dx−

(
hm ∗ o

(h ∗ s)

)
(x) = 0, (4.8)
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where hm(x) = h(−x) is the mirrored PSF and where the PSF h is assumed to integrate to one:∫
Ω
hm(x)dx = 1. This equals (

hm ∗ o

(h ∗ s)

)
(x) = 1. (4.9)

Given this equation, two different optimization schemes can be derived, namely an additive scheme
and a multiplicative scheme. The additive scheme uses the fact that at convergence, the difference
ŝk+1 − ŝk = 0, yielding the gradient descent algorithm

ŝk+1(x) = ŝk(x) + δt

(hm ∗ o

(h ∗ ŝk)

)
(x)− 1

 , (4.10)

where δt denotes the timestep.
In order to derive the multiplicative scheme, the property that at convergence ŝk+1

ŝk
= 1 is employed.

The resulting iterative MLEM scheme is the same as in the Lucy-Richardson algorithm:

ŝk+1(x) = ŝk(x) ·

(hm ∗ o

(h ∗ ŝk)

)
(x)

 . (4.11)

This update scheme has some desired properties such as the conservation of the positivity and the
conservation of the radiant flux [Carasso, 1999]. However it does not converge if no regularization
is implemented [Sarder and Nehorai, 2006] and thus, stopping criteria are usually employed. Fur-
thermore, one has to take care for the case that the denominator becomes zero. To avoid numerical
problems, we set ŝk+1(x) = 0 if (h ∗ ŝk)(x) = 0. As an alternative, one could also add an epsilon
to the denominator.

4.3. Blind EM Deconvolution

In the blind deconvolution framework, we seek to estimate both the specimen function ŝ = arg max
s
{p(o|s, h)}

and the PSF ĥ = arg max
h
{p(o|s, h)}. We thus have to differentiate equation (4.7) with respect to s

and h and set the derivative to zero. The derivative with respect to h is given by [Kenig et al., 2010]sm ∗( o

(h ∗ s)
− 1

) (x) = 0, (4.12)

where sm(x) = s(−x) is the mirrored specimen function. It follows that(
sm ∗ o

(h ∗ s)

)
(x) =

∫
Ω
s(y) dy. (4.13)

The additive update scheme for estimating the PSF h is thus

ĥk+1(x) = ĥk(x) + δt

(
ŝmk ∗

o

(ĥk ∗ ŝk)

)
(x)−

∫
Ω
ŝk(y) dy. (4.14)
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and the multiplicative update scheme is given by

ĥk+1(x) =
ĥk(x)∫

Ω ŝk(y)dy
·

(
ŝmk ∗

o

(ĥk ∗ ŝk)

)
(x). (4.15)

The blind MLEM deconvolution algorithm is given by alternately updating ĥ with equation (4.15)
and ŝ with

ŝk+1(x) = ŝk(x) ·

(
ĥmk ∗

o

(ĥk ∗ ŝk)

)
(x). (4.16)

4.4. Residual Denoising

Since the measured objective function o is noisy, this update scheme can lead to amplified noise in
the deconvolved data. This effect can be reduced by denoising the residual Rk defined by

o = ŝk ∗ ĥk +Rk ↔ Rk = o− ŝk ∗ ĥk (4.17)

Since the function h is considered to be a blurring kernel and ĥk is an approximation of h, ŝk ∗ ĥk
should be noise-free such that all the noise of o is contained in Rk [Kenig et al., 2010]. Rk can be
denoised with any denoising function as wavelet denoising [Starck et al., 2002] or median filtering
[Kenig et al., 2010]

R̄k = denoise(Rk). (4.18)

We decided to follow [Kenig et al., 2010] in using a 3× 3× 3 median filter. With this, the residual
denoised objective function ō = ŝk ∗ ĥk + R̄k can be computed. ō is used instead of o in the update
scheme.
The multiplicative MLEM scheme with residual denoising is then:

ŝk+1 = ŝk ·

(
ĥmk ∗

ŝk ∗ ĥk + R̄k

(ĥk ∗ ŝk)

)
(4.19)

ĥk+1 =
ĥk∫

Ω ŝk(y)dy
·

(
ŝmk ∗

ŝk ∗ ĥk + R̄k

(ĥk ∗ ŝk)

)
(4.20)

4.5. Regularization

A possibility to introduce prior knowledge on the specimen function or the PSF into the decon-
volution process is the penalized MLEM algorithm [Green, 1990a,b]. Penalized MLEM does not
optimize the maximum likelihood p(o|s, h) but the maximum a-posteriori probability (MAP). In
the blind deconvolution case, we thus seek to find

ŝ, ĥ = arg max
s,h
{p(s, h|o)}. (4.21)

From Bayes rule, we know that p(s, h|o) = p(o|s,h)p(s,h)
p(o) . Since s and h can be assumed to be

statistically independent:

p(s, h|o) =
p(o|s, h)p(s)p(h)

p(o)
. (4.22)
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Again, we maximize p(s, h|o) by minimizing the negative log-likelihood

− log(p(s, h|o)) = − log(p(o|s, h))− log(p(s))− log(p(h)) + log(p(o)), (4.23)

where − log(p(o|s, h)) is given by equation (4.6). As [Kenig, 2009], we define the general prior
probability functions

p(s) = exp(−λDPD(s))

for the data and
p(h) = exp(−λKPK(h)) (4.24)

for the kernel. PD(s) and PK(h) can be arbitrary penalty functionals, returning high values for
inputs that do not match the prior knowledge and low values for inputs that do. λD and λK are
positive constants, that serve as weights for the penalty terms. Since p(o) does not depend on s and
h, the last term of equation (4.23) can be omitted for the optimization, finally yielding the penalized
MLEM functional:

JPMLEM(s, h) = JMLEM(s, h) + λDPD(s) + λKPK(h). (4.25)

Usually, the optimization is implemented using Greens multiplicative one step late (OSL) algorithm
[Green, 1990b], even though it may fail to converge if there occur oscillations in the derivative of
the penalty term. The OSL update is given by

ĥk+1(x) =
ĥk(x)∫

Ω ŝk(y)dy + λK
∂
∂hPK(h)|hk(x)

(
ŝmk ∗

o

(ĥk ∗ ŝk)

)
(x). (4.26)

and

ŝk+1(x) =
ŝk(x)

1 + λD
∂
∂sPD(s)|sk(x)

(
ĥmk ∗

o

(ĥk ∗ ŝk)

)
(x). (4.27)

In the following, we present some common penalty terms based on image statistics as well as two
new methods for the kernel regularization.

4.6. Specimen Function Regularization

Many statistical priors for the specimen function have been investigated in literature, from simple in-
tensity regularizations preventing the reconstructed specimen function from collapsing [Conchello
and McNally, 1996] to more elaborate priors as the Gaussian Prior [Verveer and Jovin, 1997] that
can be considered as a generalization of the Tikhonov-Miller regularization [vanKempen et al.,
1997], the entropy prior [Verveer and Jovin, 1997], that minimizes the entropy in the intensity
distribution, or Total Variation regularization [Dey et al., 2004a, 2006]. While the intensity reg-
ularization adds very little prior knowledge to the functional, most other terms are based on the
assumption that the specimen function is in some way continuous or smooth.

4.6.1. Intensity Penalty

For example in [Conchello and McNally, 1996] the zero order Tikhonov stabilizer is used as reg-
ularization for the specimen estimation. This simple regularizer avoids that the specimen function
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4.6. Specimen Function Regularization

takes on too high values and leaves the range of the recorded image. The energy functional is given
by

JIP(s, h) = JMLEM(s, h) + λIP

∫
Ω
s(x)2dx + λKPK(h) (4.28)

where λIP is the weighting for the intensity penalty regularization. The according Euler-Lagrange
equation for the specimen function optimization is

1−

(
hm ∗ o

(h ∗ s)

)
(x) + 2λIPs(x) = 0, (4.29)

and the resulting, regularized OSL update for the specimen function is

ŝk+1(x) =
ŝk(x)

1 + 2λIPŝk(x)
·

(
ĥmk ∗

o

(ĥk ∗ ŝk)

)
(x). (4.30)

4.6.2. Tikhonov-Miller

In order to enforce smoothness in the reconstructed image, the quadratic TM regularizer can be
employed [vanKempen et al., 1997]. The energy functional becomes

JTM(s, h) = JMLEM(s, h) + λTM

∫
Ω
‖∇s(x)‖2dx + λKPK(h) (4.31)

where λTM is the weighting factor for the TM regularization. The Euler-Lagrange equation is given
by

1−

(
hm ∗ o

(h ∗ s)

)
(x)− 2λTM∆s(x) = 0, (4.32)

where ∆s = ∂2s
∂x21

+ ∂2s
∂x22

+ ∂2s
∂x23

is the Laplace operator.
The TM regularized specimen estimation update scheme is:

ŝk+1(x) =
ŝk(x)

1− 2λTM∆ŝk(x)
·

(
ĥmk ∗

o

(ĥk ∗ ŝk)

)
(x). (4.33)

The discrete computation of the ∆s is given in the appendix B.1.

4.6.3. Total Variation

An alternative is the Total Variation (TV) regularizer [Dey et al., 2004a, 2006]. TV does not enforce
smoothness but piecewise constancy. Thus, it depends on the specimen which of the two models
performs better. The energy functional with a TV regularizer on the data term is:

JTV(s, h) = JMLEM(s, h) + λTV

∫
Ω
‖∇s(x)‖dx + λKPK(h), (4.34)

where λTV is the weighting for the TV regularization. The Euler-Lagrange equation is given by:

1−

(
hm ∗ o

(h ∗ s)

)
(x)− λTVdiv

(
∇s(x)

‖∇s(x)‖

)
= 0, (4.35)
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where div(s) = ∂s
∂x1

+ ∂s
∂x2

+ ∂s
∂x3

is the divergence. The TV regularized specimen estimation update
scheme is:

ŝk+1(x) =
ŝk(x)

1− λTVdiv
(
∇ŝk(x)
‖∇ŝk(x)‖

) ·(ĥmk ∗ o

(ĥk ∗ ŝk)

)
(x). (4.36)

For the computation of the divergence term div
(
∇s(x)
‖∇s(x)‖

)
, we follow [Dey et al., 2006] in using the

numerically stable scheme presented in [Rudin et al., 1992] for two-dimensional image denoising
extended to three dimensions (see appendix B.2).

4.7. Kernel Regularization

In order to regularize the deconvolution kernel for the blind deconvolution, we have followed two
different approaches. The first approach is based on a very simple intensity based regularization,
preventing the kernel from collapsing. This approach has been evaluated together with different
specimen function regularizations in [Keuper et al., 2012]. In [Cho and Lee, 2009] an intensity
penalization has been used for the kernel regularization in a motion deblurring application. However
[Cho and Lee, 2009] as well as [Hom et al., 2007] use the L2 norm and a Gaussian noise model for
the data fitting term resulting in a different optimization scheme than the one we use.
A second, more elaborate approach uses information on the frequency spectrum of the PSF in order
to regularize the deconvolution kernel.

4.7.1. Kernel Intensity Penalty

To stabilize the deconvolution kernel, we add a zero order Tikhonov stabilizer to the energy func-
tional, that penalizes too high intensities in the kernel. With this regularization, we can avoid the
trivial solution, where h is the δ-impulse and the reconstructed specimen function equals the objec-
tive function. The penalized MLEM functional with kernel intensity penalization (KIP) is

JKIP(s, h) = JMLEM(s, h) + λDPD(s) + λKIP

∫
Ω
h(x)2dx, (4.37)

where λKIP is the weighting for the intensity penalty regularization of the kernel. The resulting
Euler Lagrange equation is∫

Ω
s(y)dy −

(
sm ∗ o

(h ∗ s)

)
(x) + 2 · λKIPh(x) = 0. (4.38)

The update scheme for the kernel is given by

ĥk+1(x) =
ĥk(x)∫

Ω ŝk(y)dy + 2 · λKIPĥk(x)
·

(
ŝmk ∗

o

(ĥk ∗ ŝk)

)
(x). (4.39)
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4.7.2. TV in the Frequency Domain

For widefield microscopic recordings, we know that the PSF is actually not smooth (compare sec-
tion 3.1.1), such that a straight forward regularization of the kernel by imposing smoothness is not
reasonable.
Therefore, we want to employ the properties of the PSF in the frequency domain for regularization.
We decompose the Fourier transform of our PSF h into its amplitude and phase (or argument) φ:

F(h) = |F(h)|︸ ︷︷ ︸
amplitude

· F(h)

|F(h)|︸ ︷︷ ︸
eıφ

. (4.40)

F(h) denotes the Fourier transform of h. Now, from section 3.1.1, we know that the OTF (the
Fourier transform of the PSF) fulfills several properties: Its support is limited and inside its do-
main, its values vary smoothly. Therefore, we formulate an energy with frequency domain TV
regularization of the deblurring kernel (KFTV) as

JKFTV(s, h) = JMLEM(s, h) + λDPD(s) + λKFTV

∫ ∥∥∥∇|F(h)|(ξ)
∥∥∥dξ. (4.41)

It is easy to see that the regularization term equals a TV regularization of the amplitudes of the
kernel in the frequency domain. The optimum of the TV energy term, a constant amplitude of the
OTF, does not account for the fact that the support of the OTF is limited. We therefore ensure a
limited support by generating a mask for the OTF. Outside this mask, its values have to be zero.
This idea of setting certain PSF frequencies to zero has before been formulated in [Holmes, 1992]
and has been tested on two-dimensional data.
In order to make sure that our mask does not cut off any valid frequencies, we compute the largest
theoretically possible OTF support for a widefield microscope according to [Philip, 2009]. The OTF
is largest for the smallest possible emission wavelength and the largest possible sin(Θ) where Θ is
the angle of the maximum cone of light that can enter the objective lens (see section 3.1.3, figure
3.6). We thus compute the maximal OTF-support with wavelength λ = 380nm and Θ = π

2 − ε.
See figure 4.1 for a visualization. Values outside this support are set to zero in every iteration of
the deconvolution update. This operation can introduce negative values in the current PSF estimate.
In order to reestablish the non-negativity of the PSF estimate, [Holmes, 1992] proposed to cut off
negative PSF values and set them to zero. This non-linear operation caused numerical problems in
our data. It reintroduces frequencies outside the OTF support. Additionally, PSF values that are cut
off will not be able to take on any value different from zero in the multiplicative update scheme.
Instead of setting negative values to zero, we normalize the PSF to a valid range to avoid of these
problems.
The minimization of functional (4.41) is again done using the calculus of variations. Since the
Fourier transform is linear, a variation in the spatial domain can be written in the Fourier domain as

∫ ∥∥∥∇|F(h+ εg)|(ξ)
∥∥∥dξ =

∫ ∥∥∥∇|F(h) + εF(g)|(ξ)
∥∥∥dξ. (4.42)
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kz

ky 4π/λ

+
(0, 2π/λ,0)

Figure 4.1.: For Θ→ π
2 , the OTF support tends to a horn torus with radius 2π

λ .

The gradient of the kernel regularization term
∫ ∥∥∥∇|F(h)|(ξ)

∥∥∥dξ can be computed as described

in appendix C, yielding the following Euler-Lagrange equation

∫
Ω
s(y)dy−

sm ∗( o

(h ∗ s)

)− λKFTVF−1

div

 ∇|F(h)|∥∥∥∇|F(h)|
∥∥∥
 · F(h)

|F(h)|︸ ︷︷ ︸
eı·arg(F(h))

 = 0. (4.43)

The resulting multiplicative update scheme for the deconvolution kernel is:

ĥk+1 =

ĥk ·
(
ŝmk ∗

o
(ĥk∗ŝk)

)
∫

Ω
ŝk(y)dy − λKFTVF−1

div

 ∇|F(ĥk)|∥∥∥∇|F(ĥk)|
∥∥∥
 · F(ĥk)

|F(ĥk)|


. (4.44)

Implementation Since, for efficiency reasons, we want to compute the convolutions using the
Fast Fourier transform [Cooley and Tukey, 1965] 1, there are some issues to mention here. If during
the recording, the Nyquist criterion is fulfilled, i.e. the recorded resolution is high enough, the
true sampled OTF completely fits into the recorded array. The largest possible OTF however might
be larger, i.e. allow for higher frequencies. As a consequence, our method, as any unregularized
method, allows for high frequencies in the reconstructed PSF. As the multiplication in the spatial
domain corresponds to a convolution in frequency domain, these high frequencies potentially cause
problems. They are wrapped with other frequencies (aliasing) in the circular convolution computed
by the FFT. These aliasing effects can be avoided by choosing a sufficient spatial resolution. In our
experiments, a resolution of 0.2 × 0.064 × 0.064µm3, which is commonly used in practice, was
sufficient to avoid artifacts.

1We use the FFTW implementation http://www.fftw.org.
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A similar problem arises from the PSF in the spatial domain. Since the OTF has a limited support,
the true PSF does not. Of course, its values can only be reconstructed in a finite array. If this
array is chosen too small, the reconstructed PSF can have non-zero values at the array boundaries
such that zero-padding for the convolutions introduces artifacts. In our implementation, we initially
extend the array by padding it with zeros, assuming that the initial PSF estimate drops to zero at
the array boundaries. During the deconvolution process, we update the PSF in the whole, extended
array, even though we know that this might again lead to aliasing effects after applying a circular
convolution, if the PSF grows too large. A possible remedy for this problem would be to iteratively
increase the array size. However, since our implementation performed well during the experiments,
we did not try this potentially very time and memory consuming alternative.

4.8. Test Datasets

Two datasets were used for the quantitative and qualitative evaluation of the presented blind de-
convolution methods. The first dataset is purely synthetic and thus allows to give reliable numbers
for the method evaluation. This dataset will be described in section 4.8.1. Since synthetic datasets
obey the underlying model of the imaging process, it is always requisite to have a look at real micro-
scopic recordings, as well. The second dataset used for evaluation consists thus of two microscopic
recordings of the identical specimen: one taken with a widefield microscope and one taken with
a spinning disk microscope. For lack of the true ground truth, we use the spinning disk recording
instead, although we know that this dataset is itself blurred by a small PSF. This dataset will be
described in 4.8.2.

4.8.1. Recording Simulation

For an authentic specimen simulation, we used the HeLa Cell Nucleus simulation tool from [Svo-
boda et al., 2009]. A slice view of the simulated cell nucleus is shown in figure 4.2(a). For the
recording, we assumed a background fluorescence of 1.2% of the maximum specimen fluorescence.
The specimen was blurred with an ideal widefield PSF without spherical aberration downloaded
from 2. The PSF was generated assuming a refractive index of 1.518, numerical aperture NA = 1.4,
wavelength λ = 530nm, spatial resolution δr = 64.5nm and an axial resolution δz = 160nm in a
volume of total size 16.4× 16.4× 16µm3.
The simulated HeLa Cell nucleus was first blurred with this PSF. Then, we added two different
levels of Poisson noise, resulting in signal to noise ratios (SNR) of 18.588 and 27.552 (where the
blurred PSF is considered the signal). The SNRs from the final simulations to the ground truth PSF
are 1.628 (SIM 1) and 1.6135 (SIM 2) respectively.
For non-blind deconvolution, the PSF of the recording must be given in advance, but also for blind

deconvolution, it is beneficial to have a good initial estimate of the PSF. Especially for the blind
deconvolution of widefield data, where the PSF is large, a good initial estimate is essential. For our
experiments on real data, we determined an initial PSF estimate by measuring bead recordings. For
the simulation, we also simulated this PSF estimation step. The bead recording was simulated by
convolving a small sphere with a radius of 90nm with the simulated PSF. A background fluores-
cence of 1% of the maximum intensity value L was added and a volume of 6.5 × 6.5 × 8.3µm3

was cropped around the simulated bead in order to simulate a finite bead recording. Then we added

2http://bigwww.epfl.ch/deconvolution/?p=bead.
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(a) Ground Truth (b) SIM 1 (c) SIM 2

Figure 4.2.: Simulated HeLa cell nucleus and the simulated recordings with different noise levels
displayed in three orthogonal views. In every view, the central slice is shown.

Poisson noise. The resulting SNR was 2.9856 in the cropped volume. Since the blind deconvolu-
tion only seeks to reconstruct the PSF in a finite, pre-defined volume, we considered the cropped
original PSF inside the same volume (6.5× 6.5× 8.3µm3) as ground truth.
The estimated background fluorescence was 1.08%. Assuming a Poisson distribution p with λp =
0.0108 ·L, we fit the scaling of the Poisson distribution to a stepsize of sp = 0.0500. Based on this
distribution, we set a threshold such that it is larger than 95% of the resulting samples. Everything
smaller than this threshold was estimated as background.

4.8.2. Real Data

The microscopic recordings were taken from a fixed DAPI stained Drosophila S2 cell nucleus. For
the widefield microscope, a voxel size of 0.0642 × 0.0642µm2 in xy direction and 0.2µm in z-
direction was used. With the same microscope settings and voxel size, a TetraSpeck 0.2µm bead
was recorded four times. The average of the bead recordings served us as initial PSF estimate. In
figure 3.9, we have shown an xz-section of one of the bead recordings and the initial PSF estimate,
as an example for the PSF measurement (compare section 3.1.3.2).
The identical Drosophila S2 cell nucleus was recorded with a spinning disk confocal microscope
for comparison. The spinning disk recording was taken with a voxel size of 0.1 × 0.1µm2 in xy
direction and 0.2µm in z-direction. The preparations and recordings were done by Jan Padeken.
Since the PSF of the spinning disk microscope is very small, this data serves us as ground truth
for the widefield deconvolution. The two recordings were registered using affine registration from
the Matlab tool SPM3. The central slice and an xz-section of the spinning disk recording after
registration is shown in figure 4.8(a), the same views of the widefield recording are displayed in
figure 4.8(b). The SNR computed between the recordings from the different modalities is 0.9229.

3http://www.fil.ion.ucl.ac.uk/spm/software/. The registration was computed by my colleague Maja
Temerinac-Ott.
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4.9. Evaluation

(a) Simulated PSF (b) Simul. Bead Recording (c) Initial PSF Estimate

Figure 4.3.: Simulated PSF, bead recording and result after background subtraction (initial PSF
estimate for blind deconvolution). For all three data sets, the central xy and xz slices
are shown. The figures were made using a γ-correction with γ = 1/3 to make low
intensities visible.

4.9. Evaluation

The evaluation of deconvolution methods is intricate. Assuming the ground truth is given, quantita-
tive results can be reported in terms of different qualtiy or error measures, as there are for example:
the mean squared error (MSE), the root mean squared error (RMSE), the signal to noise ratio
(SNR), or the peak signal to noise ratio (PSNR). These methods build upon the MSE:

MSE =
1

N

N∑
i=1

(
GT(i)− estimate(i)

)2
. (4.45)

However, it is easy to see that the MSE of identical images with a high difference in only one
pixel might be higher than the MSE of two images that differ in many positions. Thus, numbers
resulting from these quality measures have to be handled carefully. A qualitative inspection of the
deconvolution results is indispensable. A further important fact one has to keep in mind is that all
these measures depend on the range of the data.
For our experimental evaluation, we choose to use the signal to noise ratio (SNR), computed on
datasets normalized by their mean value as

SNR = 10 log10

∑N
i=1

(
GT(i)− µ

)2∑N
i=1

(
GT(i)− c · estimate(i)

)2 , (4.46)
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with

c =

∑N
i=1 GT(i)∑N

i=1 estimate(i)
. (4.47)

where GT denotes the ground truth and µ is its mean value. The normalization by c accounts for
different scalings of the data [Kenig et al., 2010].
In [Kenig et al., 2010], the results are given in terms of root mean squared error (RMSE). For the
comparison of KFTV against the [Kenig et al., 2010], we thus also report the RMSE of our results,
computed as in [Kenig et al., 2010] according to

RMSE =

 1

N

N∑
i=1

(
GT(i)− c · estimate(i)

)2 1
2

. (4.48)

4.10. Experiments and Results

First, we want to evaluate the kernel intensity penalizer (KIP) together with possible regulariza-
tions for the specimen function in section 4.10.1. As a baseline, we first compute the deconvolution
of our test datasets using the commonly used specimen function regularizations Tikhonov-Miller
(TM), and Total Variation (TV) and, for comparison, the residual denoising (RD) technique. For
these baseline experiments, the deconvolution kernel is updated using RD without any further reg-
ularization term. The results of these experiments are compared to the results that can be achieved
using the kernel intensity penalty (KIP) for the regularization of the deconvolution kernel.
Since results with TV and TM regularization are expected to yield comparable results depending
on the properties of the recorded specimen, the kernel frequency Total Variation (KFTV) method
is only evaluated in conjuction with the TV regularization for the specimen function and the RD
update scheme. Additionally to the evaluation on our own test datasets, we evaluate KFTV on the
datasets used in [Kenig et al., 2010] for evaluation. The results of KFTV will be presented in 4.10.3.
For variational methods, the choice of appropriate weighting parameters is crucial. Unfortunately,
the different parameters for the specimen function and for deconvolution kernel regularization in-
fluence each other. For efficiency reasons, we nevertheless tested the parameters for the specimen
functions in the non-blind deconvolution setting, where we used the initial PSF estimate as decon-
volution kernel, and kept the optimal values fixed for the blind deconvolution setting without further
optimization.
We evaluated the different weightings λTV = 5 · 10−5, 10−4, 5 · 10−4, 0.001, 0.005, 0.01 for the
TV regularization. For both noise levels, λTV = 0.001 yielded the best results for the non-blind
deconvolution. For the TM regularization of the data term in non-blind deconvolution, we tested
λTM = 10−7, 5 · 10−7, 10−6, 5 · 10−6, 10−5, 5 · 10−5. The best results on SIM 1 were achieved with
λTM = 10−7 and λTV = 5 · 10−4. For SIM 2, λTM = 5 · 10−6 and λTV = 10−3 yielded the best
results. The parameters that performed best in the non-blind deconvolution were used in the blind
deconvolution setting.
Since the specimen function is not normalized, the regularization parameters for the reconstruction
of the deconvolution kernel have to be adapted to the range of the specimen function. To facilitate
the comparison of the results with kernel regularization, we weight the regularizer by the integral

of the objective function, i.e. by λKIP ·
∫

Ω
o(x) dx and λKFTV ·

∫
Ω
o(x) dx respectively.

72



4.10. Experiments and Results

4.10.1. Results with Kernel Intensity Penalty

KIP, was evaluated for the parameters λKIP = 6 and λKIP = 35 for the real and synthetic datasets.
We always computed 400 iterations to be sure that the energy converged. The resulting SNR of the
reconstructed data with and without KIP is plotted in figure 4.4.
All methods were improved by the new regularization term. The results on simulated datasets SIM 1
and SIM 2 can be seen in figure 4.6 (c)-(e) and figure 4.7 (c)-(e) respectively in orthogonal slice
views. The results on real data are displayed in figure 4.8(c), (d), and (e). In every case, the results
with kernel intensity penalization outperform the standard algorithm. Without the kernel penalizer,
spurious edges from out-of-focus planes are visible in SIM 1, that can be eliminated with our new
approach. Additionally, the contrast within the nucleus is much better with our method. Especially
when looking at the results for SIM 2, it can be seen that the noise is amplified if the kernel is not
regularized.

In terms of SNR, the results with the higher KIP weighting λKIP = 35 are better than the results with
the lower weighting λKIP = 6. Figure 4.5 shows the development of the SNR over the iterations for
the three datasets with the given parameters. Below the SNR, the development of the energy JMLEM
(equation (4.7)) is displayed. It is interesting to see that the SNR generally has a maximum after
15-25 iterations, before the energy has converged. Without regularization of the deconvolution ker-
nel, the SNR decreases afterwards, while the energy converges to a minimum. Sarder and Nehorai
[2006] have also noticed this effect. With a regularization of the deconvolution kernel, this effect
can be attenuated such that the methods become stable. For SIM 1, the SNR converges already with
λKIP = 6. When looking at the resulting data (figure 4.6), it can be seen that the main advantage
of the higher weighting lies in the upper and lower image regions, where the strongest blur has to
be removed. If the focus lies on the central slices however, one might prefer the result of the lower
KIP weighting. On the noisier dataset, we need a higher weighting λKIP. The methods are stable
with λKIP = 35, but still, the results in terms of SNR are quite far below the maximum for TM and
TV regularization. Therefore, we have tested the methods on SIM 2 with higher weightings λKIP.
The results in terms of SNR are given in table 4.1. With higher weightings λKIP the SNR increases
further for residual denoising but the TM and TV regularized schemes are not further improved. On
the real data, the SNR converges as for SIM 1 already with a weighting λKIP = 6.
One conclusion of these observations is that the weighting λKIP should be chosen in order to sta-
bilize the result. Since the OSL optimization scheme is not guaranteed to be stable for too high
weightings of the penalization, we refrain from choosing the highest possible value even though it
could yield a higher SNR.
For the simulated data, we achieved the best results without any statistical model on the data term
but with the RD technique. On the noisier dataset, the TV regularization worked better than the
TM regularization, whereas they performed equally on the dataset SIM 1 with little noise. On the
actual microscopic data, the SNR of the TM regularized results are a little better than the result of
RD but all three methods show comparable results in terms of SNR. The good result of the TM reg-
ularization may be a result of the fact that our ground truth is a spinning disk confocal microscope
recording. Usually, confocal recordings are blurred with a small PSF that can well be approximated
by a Gaussian (see section 3.1.3). In the xz-section in figure 4.8(a), it can be seen that the recorded
specimen is rather flat. However the high frequencies in z-direction have not been recovered by any
of the methods.
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(a) SIM 1 (b) SIM 2 (c) MIC

Figure 4.4.: Resulting SNR for blind MLEM deconvolution with and without KIP. KIP improves
the deconvolution result for all three specimen function regularization settings.

(a) SIM 1 (b) SIM 2 (c) MIC
Figure 4.5.: Development of the SNR (top row) and the energy (bottom row) of the reconstructed

data over the iterations for blind MLEM with λKIP = 6 and λKIP = 35.

Table 4.1.: SNR of the reconstructed data with blind MLEM deconvolution with KIP for higher
weightings λKIP.

λKIP RD TM TV

SIM 2 35 3.22309 2.35007 2.5793
SIM 2 50 3.27016 2.34216 2.5692
SIM 2 100 4.6812 2.2427 2.4471
MIC 35 2.67976 2.71775 2.7056
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(a) Ground Truth

(c) TV RD, SNR=2.156

(f) TV RD+KIP, λKIP = 6
SNR=3.102

(f) TV RD+KIP, λKIP = 35
SNR=3.248

(b) SIM 1

(d) TM RD, SNR=2.153

(g) TM RD+KIP, λKIP = 6
SNR=3.105

(g) TM RD+KIP, λKIP = 35
SNR=3.255

(e) RD RD, SNR=2.872

(e) RD RD+KIP, λKIP = 6
SNR=3.146

(e) RD RD+KIP, λKIP = 35
SNR=3.303

Figure 4.6.: KIP blind deconvolution results on SIM 1 displayed in three orthogonal views.
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(a) Ground Truth

(c) TV RD, SNR=1.726

(f) TV RD+KIP, λKIP = 6
SNR=2.254

(f) TV RD+KIP, λKIP = 35
SNR=2.579

(b) SIM 2

(d) TM RD, SNR=1.754

(g) TM RD+KIP, λKIP = 6
SNR=2.122

(g) TM RD+KIP, λKIP = 35
SNR=2.35

(e) RD RD, SNR=1.786

(e) RD RD+KIP, λKIP = 6
SNR=2.868

(e) RD RD+KIP, λKIP = 35
SNR=3.223

Figure 4.7.: KIP blind deconvolution results on SIM 2 displayed in three orthogonal views.
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SNR=2.097

λKIP = 6, SNR=2.323
(c) TV RD

SNR=2.107

λKIP = 6, SNR=2.335
(d) TM RD

SNR=2.08

λKIP = 6, SNR=2.303
(e) RD RD

Figure 4.8.: KIP blind deconvolution results on a Drosophila S2 cell nucleus recording. The result
is shown in two orthogonal views

Figure 4.9 shows the development of the SNR of the estimated deconvolution kernel compared
to the ground truth for the simulated data. Without regularization, the SNR drops below zero.
However, it is interesting to see, that the best SNR of the reconstructed PSF does not necessarily
correspond to the best reconstruction of the specimen function. This can be due to the fact that
the real PSF is cut off at some point since it does not have a finite support such that even a perfect
reconstruction of the PSF inside a small domain is maybe not the best deconvolution kernel. In
[Kenig et al., 2010], an interesting effect is reported in this context: in one of their two examples
for quantitative analysis, the deconvolution results achieved with their blind deconvolution method
are better in terms of root mean squared error (RMSE) than the results that could be achieved with
the original blurring kernel.
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(a) SIM 1 (b) SIM 2

Figure 4.9.: Development of the SNR of the reconstructed PSF over the iterations for blind MLEM
with KIP for the values λKIP = 6 and λKIP = 35.

4.10.2. Discussion

The proposed KIP method greatly improves the blind deconvolution results on real and synthetic
data. In contrast to other methods, no complex PSF model is needed. The SNR can be stabilized.
However when considering the deconvolution results in the xz-sections, one can see that there is still
room for improvement. While higher KIP weightings yield higher SNR values and slightly better
deconvolution results along the optical axis, the structures in the central layer visually appear clearer
with lower values, that are just strong enough to stabilize the result. Whether high weightings of
KIP are useful or not thus depends on the application.
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4.10.3. Results with KFTV

In terms of SNR, the results with kernel frequency mask (KF mask) with and without KFTV are
much better than the results with KIP and of course better than without regularization. The devel-
opment of the SNR of the reconstructed specimen function and the energy JMLEM (equation (4.7))
over the iterations is plotted in figure 4.10. We computed 1500 iterations until the SNR stabilized
for all data sets. The energy converges earlier. On all our datasets, the SNR with KFTV is higher
than only with KF mask, although the results on the toy datasets can only be improved by a little as
they are already quite good with KF mask. On SIM 2, the SNR without KFTV tends to drop again
after about 900 iterations while it is stable with a KFTV regularization and resdual denoising. On
the microscopic data set, the SNR with KFTV is significantly higher than with the kernel frequency
mask only. For all three data sets, the energy converges rapidly to a minimum that is in the same
range as it was before with KIP.

(a) SIM 1 (b) SIM 2 (b) MIC

Figure 4.10.: Development of the SNR (top row) and the energy (bottom row) of the reconstructed
data over the iterations for blind MLEM with the kernel frequency mask and KFTV
regularization.

After 1500 iterations, the SNR on the synthetic datasets is in the range of 8 while with KIP, the best
results we could achieve had an SNR of about 4.7. In figure 4.11 and 4.12, the deconvolved datasets
SIM 1 and SIM 2 are shown in three orthogonal views. While the deconvolution result in the central
layer is comparable to the best results with KIP (compare figure 4.6 and 4.7), the main advantage
of the frequency domain regularization seems to be in the deblurring along the optical axis, where
the results with kernel frequency mask and KFTV are much clearer. On the real microscopic data
set, the improvement is not in the same range of SNR as on the synthetic data. Nevertheless, the
deconvolved data is also much clearer in direction of the optical axis (compare figure 4.13).
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(a) Ground Truth

(c) RD KF mask, SNR=8.75428

(3) RD KFTV, λKFTV = 0.8
SNR=8.8155

(b) SIM 1

(d) TV KF mask, SNR=8.59922

(g) TV KFTV, λKFTV = 0.8
SNR=8.6112

Figure 4.11.: KFTV blind deconvolution results on SIM 1 displayed in three orthogonal views.
Especially in z-direction, the resulting data is much sharper than with KIP (compare
figure 4.6).

For a comparison to state-of-the-art methods that are using complex PSF models for blind decon-
volution, we additionally evaluated our method on the test data used in [Kenig et al., 2010]4. Kenig
et al. [2010] perform blind MLEM deconvolution with RD in the specimen function and in the ker-
nel update. In their work, the space of possible kernel functions is learned a priori. It is spanned
using kernel PCA computed on a synthetically generated library of PSFs. In every iteration, the cur-
rent kernel estimate is projected onto this space. The synthetic datasets used in [Kenig et al., 2010]
are 129× 129× 129 voxel volumes with a voxel size of 0.1µm3 that are blurred with synthetically
generated PSFs and corrupted by Poisson noise. The recorded specimen is a set of three tori with

4Thanks to Tal Kenig who kindly let us use his data for evaluation.
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(a) Ground Truth

(c) RD KF mask, SNR=7.46086

(3) RD KFTV, λKFTV = 0.9
SNR=7.7175

(b) SIM 2

(d) TV KF mask, SNR=7.392

(g) TV KFTV, λKFTV = 0.8
SNR=7.3924

Figure 4.12.: KFTV blind deconvolution results on SIM 2 displayed in three orthogonal views.
Especially in z-direction, the resulting data is much sharper than with KIP (compare
figure 4.7).

different size and intensities. This specimen is blurred with a symmetric and with an asymetric PSF.
All synthetic PSFs are generated using the method of [Stokseth, 1969]. The initialization is done
using a symmetric PSF support computed according to [Kenig, 2009]. The results are reported in
terms of root mean squared error (RMSE) and compared against [Hom et al., 2007].
On the real data Kenig et al. [2010] only show qualitative results. For the comparison to [Kenig
et al., 2010] and [Hom et al., 2007], we also use RD for the specimen function and the kernel update.
Our initialization is done similar to [Kenig et al., 2010] with the symmetric PSF support. First we
compare our results on the torus datasets from [Kenig et al., 2010] blurred with symmetric and an
asymmetric PSF. The results are displayed in figure 4.14. In terms of RMSE the result with KFTV
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SNR=2.383

λKFTV = 0.8, SNR=2.851
(c) RD

SNR=2.427

λKFTV = 0.8, SNR=2.8156
(d) TV

Figure 4.13.: KFTV blind deconvolution results on a Drosophila S2 cell nucleus recording. The
result is shown in two orthogonal views.

ranks better than the results with [Hom et al., 2007] and similar to [Kenig et al., 2010] on the dataset
blurred with the symmetric PSF. For the highly asymmetric data, we chose a high KFTV weighting
with λKFTV = 15. On the dataset blurred with the aberrated PSF, our algorithm algorithm can not
estimate the shift that results from the aberration. We always assume that the maximum of the PSF
is in the center. The RMSE value we report for the torus dataset with spherically aberrated PSF is
thus after correcting for this shift, which has been done manually. With this correction, our method
shows a better RMSE value for this second dataset than both other methods. Qualitative evaluation,
however, shows that the smallest, rightmost torus is not very well reconstructed by our method. The
lower part in z-direction is not preserved. This is better with both of the other methods that like

82



4.10. Experiments and Results

(a) Ground truth

w
ith

ou
ts

ph
er

ic
al

ab
er

ra
tio

n

(b) Blurred and
noisy data.

RMSE=35.81

(c) AIDA

RMSE=25.47

(d) kernel PCA

RMSE=19.30

(e) KFTV,
λKFTV=15

RMSE=20.09

w
ith

sp
he

ri
ca

la
be

rr
at

io
n

(f) Blurred and
noisy data.

RMSE=36.16

(g) AIDA

RMSE=31.23

(h) kernel PCA

RMSE=24.88

(i) KFTV,
λKFTV=15

RMSE=22.9

Figure 4.14.: Toy data used in [Kenig et al., 2010] and the deconvolution results with the different
methods AIDA [Hom et al., 2007], kernel PCA [Kenig et al., 2010], and our proposed
KFTV. Two orthogonal views are displayed: the xy-view (top row) and the xz-view
(bottom row). Sub-figures (a) - (d) and (f) - (h) and the respective RMSE values are
taken from [Kenig et al., 2010].

our method find stronger intensities in the central layer but preserves the topology of this smallest
structure also in z-direction in the spherically aberrated data.

For the microscopic recordings, we initialized the blind deconvolution with our measured PSF
(compare section 4.8.2). For these complex data, we reached convergence only after 2500 iterations.
The deconvolution results of our method, of AIDA [Hom et al., 2007], and the kernel PCA method
[Kenig et al., 2010] on the real data are displayed in figure 4.15. While with AIDA and kernel PCA,
some of the structures are suppressed, our deconvolution preserves most of the relevant structures
in the central plane. However, in the upper most example (dataset 1), some PSF artifacts are still
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visible after deconvolution in the xz-view in the upper and lower dataset regions. For dataset 2 and
dataset 3, this is not the case.

dataset 1

dataset 2

dataset 3
(a)

AIDA

AIDA

AIDA
(b)

kernel PCA

kernel PCA

kernel PCA
(c)

KFTV, λKFTV=0.8

KFTV, λKFTV=0.8

KFTV, λKFTV=0.8

(d)

Figure 4.15.: Microscopic datasets used in [Kenig et al., 2010] and the deconvolution results with
the different methods AIDA [Hom et al., 2007], kernel PCA [Kenig et al., 2010], and
our proposed KFTV. Two orthogonal views are displayed: the xy-view (top row) and
the xz-view (bottom row). Sub-figures (a) - (c) are taken from [Kenig et al., 2010].
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4.10.4. Discussion

On our own test data and on the test data provided by Tal Kenig, our proposed KFTV method with
kernel frequency mask shows competitive results. In contrast to other state-of-the-art methods, our
proposed algorithm does not need to learn the space of valid PSFs a priori. In our opinion, this is a
great advantage since learned PSF models can only be as good as the given training data. Given the
fact that widefield PSFs have no compact support and state-of-the-art PSF simulation methods are
nothing but approximations, such learned “PSF spaces” might even limit the deconvolution quality.
In our KFTV method, the deconvolution kernel is projected onto a subspace of possible solutions by
masking out frequencies that certainly have to be zero. As a result, we can be sure that the original
PSF is contained in the subspace of valid solutions. The mask only has to be computed once and can
be used for the deconvolution of images from widefield microscopy with very different recording
settings. On our real dataset as well as on the synthetic data provided by Tal Kenig, the KFTV
regularization greatly improves the results. Our impression is that with increasing asymmetry of
the specimen function, KFTV becomes more important. This, however, remains to be proved.

4.11. Conclusion

For widefield microscopic data, deconvolution potentially yields greatly improved data quality. We
have evaluated several state-of-the-art specimen function regularizations in the blind MLEM de-
convolution scheme on our specimen. The experiments show that the residual denoising technique
performs slightly better than standard regularization methods in the variational setting. We have
presented two regularizers for the reconstruction of the deconvolution kernel. Both regularization
terms are independent of a specific PSF model as this is the case for other state-of-the-art blind
deconvolution methods. We show that already the pure kernel intensity penalization regularization
stabilizes the blind deconvolution scheme such that it converges to a solution with high SNR. Even
better results are achieved with the kernel regularization in the frequency domain. With a kernel
frequency mask that only masks out frequencies that are certainly not inside the OTF support and
the KFTV regularization scheme that is derived in a variational framework, our solution performs
similar to state-of-the-art methods in terms of RMSE on synthetic data and showed convincing re-
sults on real widefield microscopic recordings without the need of a complex, priorly learned PSF
model.
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5. Active Surface Models for Volumetric
Microscopy

The segmentation of objects from volumetric microscopic images comes with some challenges
compared to the segmentation of natural images. Signal attenuations, noise, uneven staining, and
bleaching effects restrain the direct use of the recorded intensities for the segmentation. Even
though occlusions are not an issue when whole volumetric data is recorded, these same effects may
result in invisible object boundaries in whole image regions. Depending on the staining, the object
of interest also might not be entirely marked, for example, if a membrane staining has been recorded
and the object enclosed by this membrane is to be segmented. Last but not least, blur introduced
in the recording by the PSF always leaves an uncertainty about the real boundary position even for
human experts.
Generally, the use of gradient information instead of intensity information can help in these scenar-
ios, since gradients are at least invariant against additive signal changes.
If a threshold-based segmentation is possible, the gradients can be used to find an appropriate thresh-
old as done in [Morath et al., 2013] for the segmentation of different cells and cell nuclei from
spinning disk microscopic data and before in [Keuper, 2007] for the segmentation of the nuclei in
mouse embryonic fibroblast and human fibroblast cells. The intensity gradient of the recorded data
set I is denoted by ∇I , the gradient magnitude by ‖∇I‖. The optimal threshold τ for data set I
maximizes the gradient magnitude on the resulting contour:

max
τ

1∫
Ω
δ(I(x)− τ)dx

∫
Ω
δ(I(x)− τ)‖∇I‖(x)dx. (5.1)

δ is the Dirac function. The term δ(I(x) − τ) thus gives a contribution wherever the data I has
exactly the threshold value τ . This method can obviously only be applied if the recorded intensities
are higher inside the object than on the boundary. In [Morath et al., 2013] and [Keuper, 2007], we
have accounted for this by applying a Gaussian smoothing to the data such that the few points with
low intensity inside the nucleus were smoothed away.
Whenever threshold methods are not sufficient to produce good segmentations we need more elab-
orate models for the object surfaces.
In our case, these objects are either cells, cell nuclei or nucleoli. For all of these objects, we can
assume that they have a star-shaped surface, i.e. there exists a center c such that every line from c to
the surface lies completely inside the object. For the segmentation of these objects from volumet-
ric data, we have decided to use active surfaces. Then, we again had to choose between implicit,
non-parametric active surfaces and explicit, parametric active surfaces. We have decided to use
parametric active surface models for several reasons. First, the topology of the object we want to
segment is known a priori. The ability of implicit deformable models to change their topology is
therefore not desired. Second, since the objects of interest are fluorescently marked, it is usually
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possible to detect them and roughly estimate their size. Therefore, we can expect good initializa-
tions of the contours. Convex optimization techniques as they are available for implicit deformable
models are not required. Third, depending on the surface representation, the evolution of parametric
active surfaces can be computed rapidly even for large volumetric datasets.
Most of our contributions that will be presented in this chapter are, however, the data terms we have
developed, accounting for the challenges given in our volumetric biological data. These data terms
could in theory as well be used in an implicit active surface implementation in a similar way as
GVF is, for example, used in [Xu et al., 2000].
In the following, we will theoretically describe three-dimensional active surface models, and ex-
plain how the regularity of these models can be measured and optimized (section 5.1). The method
we are using for the initialization of the active surfaces is described in section 5.2. Our contribu-
tions in the field of data term design are presented in section 5.3. The first presented method is a
preprocessing step, combining the information from two recording channels in order to allow for
a good segmentation of the nucleoli. Then, we describe how the result of the object detection step
can be used to derive a prior for the objects’ boundaries [Keuper et al., 2009]. The third method
we propose is a modification of the standard GVF algorithm that accounts for the strong blur in our
data due to the PSF [Keuper et al., 2010b; Keuper, 2010]. The fourth presented method was de-
veloped in order to learn specific, new object boundary appearances by user-interaction, such that
these learned boundary appearances can be used to automatically segment large amounts of data
[Keuper et al., 2010a]. In section 5.4, we will present a new method for the dynamic adjustment of
the parameters steering the regularization of the surfaces [Keuper et al., 2010c].

5.1. Parametric Active Surface Models

By analogy to the two dimensional case (see section 2.3), a three-dimensional active surface can be
described as a function Γ : [0, 1]× [0, 1]→ Ω ⊆ R3 which is placed on a potentially multi-channel
dataset I : Ω → Rn. As in the two dimensional case (compare equation (2.28)), the active surface
energy consists of a data term and an internal energy term:

E(Γ) = Edata(Γ) + Eint(Γ). (5.2)

The data term seeks to drive Γ towards the object’s surface and the internal energy term usually has
the purpose of regularizing the shape of the active surface in terms of smoothness and continuity.
The adaption of the active surface to the underlying data takes place by minimizing this energy.
This can be done by gradient descent. The negative gradients of Edata(Γ) and Eint(Γ) can be
considered as data and internal forces Fdata and Fint respectively. In the following, we will briefly
sketch how the internal energy can be defined in three-dimensional space.

5.1.1. Internal Energy

In order to prevent the surface from stretching and bending too much, the continuity and curvature
energies have to be formulated for surfaces. The straightforward translation of the energies defined
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by Kass et al. [1988] to surfaces in three-dimensional space is (e.g. in [Mishra et al., 2011])

Eint(Γ) =
1
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where the contour Γ is partially derived with respect to the components s1 and s2 of s ∈ [0, 1] ×
[0, 1], and α and β are constant weighting factors for the continuity and curvature regularization
respectively. The minimization of this energy Eint(Γ) leads to an Euler-Lagrange equation with the
second and forth derivative of the contour, the elasticity and the rigidity force

Fela(s) := −
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∂s1
2
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, (5.4)

and
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4
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The Euler-Lagrange equation is then given by

αFela + βFrig = 0. (5.6)

Although this formulation often works fine in practice [Mishra et al., 2011], it theoretically has the
drawback that the energy (and its minimization) depends on the surface parameterization. This is
why it is often preferable to base the regularization on the local mean curvature. The local mean
curvature of a surface Γ is defined as H = −1

2div(n) = 1
2(κ1 +κ2), where div(.) is the divergence

operator, n is the surface unit normal and κ1 and κ2 are the principal curvatures 1. For continuity
and curvature regularization, the energy functional can be given as in [Hsu et al., 1992] by the
following integral over the surface area

Eint(Γ) =

∫
Γ

(α+ βH2(s) + γK(s)) ds, (5.7)

where α, β, and γ are constant weighting factors for the continuity and curvature, and K = κ1 · κ2

is the Gaussian curvature of the surface Γ. Since the Gaussian curvature of closed spherical surfaces
is a topological constant [Hsu et al., 1992] with∫

Γ
K(s) ds = 2πχ(Γ), (5.8)

where χ(Γ) is the Euler characteristic of Γ, it is sufficient to consider the following energy for the
regularization:

Eint(Γ) =

∫
Γ

(α+ βH2(s)) ds. (5.9)

1The principle curvatures of a surface point are the maximum and minimum values of the curvature at this point. They
correspond to the eigenvalues of the shape operator [Grenander and Miller, 2007].
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The Euler-Lagrange equation, the solution of which is minimizing this functional is highly non-
linear and given by [Xu and Zhang, 2006; Hsu et al., 1992]

∆H + 2H(H2 − (K − α/β)) = 0, (5.10)

where ∆ is the Laplace operator on Γ. Minimal surfaces, fulfilling the equation H = 0, are a
special class of surfaces solving also the above Euler-Lagrange equation. They can be found by
computing the mean curvature flow of a surface

∂Γ

∂t
(s) = H(s)n(s), (5.11)

where n(s) is the unit normal of Γ in s.

5.1.2. Surface Parameterization

The first step of the active surface implementation is the choice of an appropriate surface parameteri-
zation. This parameterization can be performed for example by defining a surface mesh [Baumgart,
1972; Mantyla, 1988; Delingette, 1999; Slabaugh and Unal, 2005] (these are also called polyhe-
dral surfaces), by using splines [Coons, 1974; Terzopoulos, 1986; Terzopoulos et al., 1987] (as an
extension of polyhedral surfaces to curved surfaces), or as functions on the sphere [Ballard and
Brown, 1981; Schudy and Ballard, 1978, 1979] (by longitudinal and latitudinal coordinates). The
longitudinal and latitudinal coordinates can also be connected in order to form e.g. a triangular
or quadrangular mesh. For parameterizations on the sphere, one can further distinguish between
spatial and frequency representations of the surfaces.
As we assume a roughly spherical shape of the objects to detect, it is intuitive to initialize the ac-
tive surface with a spherical mesh. In the following, two possibilities for a mesh specification with
spherical topology are described.

5.1.2.1. Parameterization in Euclidean Coordinates

In the ideal case, the surface sampling should be equidistant. However, equidistant sampling of the
sphere can only be done for a very limited number of sampling points (4, 6, 8, 12, and 20). More
nodes can not be equidistantly placed on a sphere such that approximations become necessary
[Cundy and Rollett, 1961]. It is a common choice to build up the surface parameterization based
on an icosahedron, the regular Platonic solid with 12 vertices. The nodes in the icosahedron are the
surface sample points controlling the shape and the edges define their neighborhood. Subdivisions
of an icosahedron still provide a nearly equidistant sampling with a higher resolution, leading to
a more accurate segmentation [Ahlberg, 1996; Mille et al., 2006]. The icosahedron subdivision is
also represented by nodes vi ∈ V and edges eij ∈ E defining a neighborhood system N (vi). In the
following, the position of vertex vi in R3 is denoted by xvi .

Figure 5.1.: The sampling of the spherical surface can be done equidistantly by using an icosahe-
dron. Icosahedron subdivisions yield a nearly equidistant sampling.

90



5.1. Parametric Active Surface Models

This parameterization allows for arbitrary shapes with spherical topology. Since the distances of the
nodes change during surface evolution, it is important to implement a shape regularization with this
parameterization. On the one hand, neighboring control points should not be torn apart, on the other
hand the surface should remain smooth (since smoothness can usually be assumed for surfaces of
biological objects).
However due to the data term, the surface may be stretched despite the regularization. In this case,
we need node insertion and node deletion operations.

5.1.2.2. Surface Resampling

To ensure that during the evolution of the active surface, the resolution of the mesh is always
high enough, splitting and merging operations are needed. For our work on the segmentation of
Drosophila S2 cell nuclei and nucleoli [Keuper et al., 2009], we implemented the following split-
ting and merging scheme: After each iteration, the length l of every edge is checked. Edges longer
than a threshold tu are split and a new vertex is inserted. This new vertex has to be connected to all
its neighboring vertices. If edges are shorter than threshold tl, they are deleted and the correspond-
ing vertices are merged. See figure 5.2 for an example.

Figure 5.2.: (left) If the length l > tu, the edge is split. (right) Edges for which l < tl are merged.

Different methods for the surface mesh optimization were for example proposed in [Hoppe et al.,
1993] and [Mishra et al., 2011].

5.1.2.3. Parameterization in Spherical Coordinates

For the segmentation of star-shaped objects, an easy way of parameterizing a shape is to describe
the Euclidean distance r of a surface point to the shape center c as a function on the sphere

S2 = {(θ, φ) ∈ R2|0 ≤ θ ≤ π, 0 ≤ φ < 2π}. (5.12)

The resulting parameterized surface is [Miller et al., 1994; Ballard and Brown, 1981]

Γ : S2 → R, (θ, φ)→ r(θ, φ). (5.13)

This corresponds to a representation in spherical coordinates (θ, φ, r(θ, φ)) with the latitude θ and
longitude φ and r(θ, φ) being the radius in direction (θ, φ). Active surfaces based on this pa-
rameterization have also been termed “normal active surfaces” [Miller et al., 1994; Grenander and
Miller, 2007]. The spherical parameterization is quite restrictive: only star-shaped objects can be
represented without loss. However, this is not limiting for our applications, since our cell and cell
nucleus datasets fulfill this property. A further important issue is the surface sampling. While the
icosahedron parameterization aims for providing an equidistant sampling of the surface, the equidis-
tant sampling of the latitudes and longitudes does not result in an equidistant surface sampling. The
result of an equidistant sampling of the sphere in longitudes φ and latitudes θ is displayed in figure
5.3. As a consequence, the sampling has to be chosen such that the sampling density at the equator
is high enough for representing the finest surface structures. If we want to compute the surface cur-
vature on the discrete grid, we additionally have to take care for the right scaling of the curvature
depending on the sampling point distances.
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Figure 5.3.: Radial parameterization of the sphere with equidistant sampling in longitudes and lat-
itudes. Close to the poles, the sampling points are closer to one another than at the
equator.

5.2. Initialization

Since parametric active surfaces can only be locally optimized, the initialization of the surface is
quite important. In order to get a satisfying segmentation result, the initial surface should not be
much smaller than the object but it should not be infinitely large either: most importantly, it should
not include more than one object. In this context, the initialization is mainly a detection task.
Since this work is focused on the handling of roundish objects like cells, cell nuclei or other sub-
cellular structures, the method used for the detection of these objects in the raw data is also adapted
to this kind of roundish objects.
Generally, the detection of spherical objects can be done with the generalized Hough transform for
spherical objects [Ballard and Brown, 1981] as presented in [Schulz et al., 2006]. The main idea is
to let each voxel vote for possible positions c of sphere centers with specific sphere radii r.
First, most datasets have to be smoothed for this purpose, in order to reduce noise. Then, one has
to select a weighting function that determines the contribution of each image voxel to the voting
scheme. This function can simply be determined using a threshold on the intensity values or on the
gradient magnitude depending on the nature of the recorded data. Then, all voxels with intensity
higher than the determined threshold would vote equally. Another possibility is to directly make
use of the image intensities or gradient magnitudes as voting functions. Then, voxels with high
intensity (or high gradient magnitude respectively) contribute stronger than others to the voting.
In [Schulz et al., 2006], the authors proposed to use the gradient direction to determine the position
of the votes. This turned out to make the voting process much more stable. Finally, the votes are
combined by integration. Formally, the four-dimensional voting space P of a function I : R3 → R
is computed as follows:

P (c, r) =

∫
R3

δε

(
c− r ∇(Gσ ∗ I)(x)

||∇(Gσ ∗ I)(x)||

)
||∇(Gσ ∗ I)(x)||dx, (5.14)

where Gσ is the 3D Gaussian function with isotropic standard deviation σ. δε is an indicator func-
tion giving contribution only if the argument is nearby zero and can also be considered as a truncated
Gaussian with very small standard deviation. The detection is then done by determining the local
maxima of the voting space P .
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Figure 5.4.: Used bins for the voting directions.

An improvement of this method has been proposed by [Ronneberger et al., 2008]. The authors show
that the voting becomes even more robust if the voting directions are also taken into account. Votes
from only one direction are not as clearly an indicator for an object as votes from all directions are.
Thus, in [Ronneberger et al., 2008] the vote directions for each center are binned. In practice, this
results in k voting spaces Pi for a quantization of the voting directions into k bins. The final voting
space P is then computed as the median over the Pi at every point (c, r).
The local maxima of the voting space indicate the centers c and the approximate radii r of the
detected objects. Given these values, we initialized our active surfaces with spheres around c with
radius r.

5.2.1. Evaluation

The cell detection was evaluated on the Drosophila S2 cell nucleus dataset described in section
3.2.1. For this dataset we used an isotropic Gaussian smoothing with σ = 2µm. Given the recorded
resolution, the resulting estimation for the radii r is therefore imprecise, but as these radii are only
used for initialization, these rough estimations are sufficient. For the voting, we choose to use all
voxels and weight the votes with the respective gradient magnitude values. A threshold would not
make sense, because the intensity variations of the nuclei within one dataset are too strong. The
voxel-wise gradient magnitude and direction is used to place the votes. The detection is then done
by determining the local maxima of the voting space P .
For the detection of the nuclei, we searched for spheres with diameters between 3.6 and 6.42µm.
For the detection of the nucleoli, we searched for spheres with diameters between 1.28 and 3.21µm.
The resulting voting space had a size of 50×640×640×22 and 50×640×640×15 respectively,
where 50 × 640 × 640 is the dataset size in voxels. The nucleus segmentation masks were used
for the detection of the nucleoli, such that we can ensure that every nucleolus lies inside a nucleus.
Only the Hough-votes within the nucleus were evaluated and exactly one nucleolus was searched
inside each nucleus, since for healthy cells, there should only be one nucleolus. We computed the
detection with and without the vote direction binning for comparison. For the direction binning, we
distinguished between six voting directions, all projected onto the xy-plane (see figure 5.4). As the
final voting result, we took the value of the third smallest bin, i.e. we require votes from four out
of six directions. Votes from below and above are not distinguished because the data is strongly
blurred in z-direction.

5.2.2. Results

Although a variety of deformations of the nuclei can be observed, a quite reliable detection of the
nuclei was possible. Nuclei clearly lying on the border of the captured dataset were left out of the
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Figure 5.5.: (left) Detection results of nuclei displayed in the maximum intensity projection (MIP)
of channel 0. (right) Detection results of nucleoli in the MIP of channel 1. We only
detected one nucleolus per cell nucleus.

evaluation.
With the basic method without vote binning, we correctly detected 437 cell nuclei out of 440,
3 nuclei have not been detected. There were 16 false positives: 8 nuclei were detected in the
background and 8 dead cells were erroneously detected as nuclei. Due to the relatively strong
smoothing, the estimated radii were too small for some of the nuclei (compare figure 5.5).
Correct nucleolus positions were found for all cells. However, despite the fact that this might not be
the norm for healthy cells, there are cells in the datasets containing more than one clearly defined
nucleolus. In these cases due to the design of the evaluation, one of the nucleoli was missed.
Detection results for an example dataset can be seen in figure 5.5. With the vote binning method,
the results could even be slightly improved. As without vote binning, 437 out of 440 nuclei were
detected but only 11 false positives were found: 6 on dead cells and 5 in background regions. As
before, for every correctly detected cell nucleus, we have correctly detected one nucleolus.
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5.3. Data Terms for the Segmentation of Cells and Sub-cellular
Structures

When implementing edge-based, parametric active surfaces, a standard choice for the data term in
the energy functional 5.2 is the gradient magnitude at the position of the surface, i.e. Edata(Γ) =∫

Γ
−‖(∇I)(Γ)‖2ds. The resulting data force field Fdata consists of the gradient vectors−∇‖∇I‖2.

This naive force field can be improved by computing the gradient vector flow (GVF) on the gradient
vectors (see section 2.3.3).
Especially when dealing with 3D microscopic data, one has to handle several challenges as there are
blurred object edges due to the PSF (see section 3.1.3) of the recording system as well as artifacts
caused by inhomogeneities in the fluorescent stains. Especially for widefield microscopic data, the
PSF strongly blurs the recording and causes artifacts.
In the following we present methods for the generation of data force fields that we have developed
to handle the different challenges in the segmentation of cells and sub-cellular structures, most
notably the cell nucleolus and nucleus, from volumetric fluorescence microscopy. These methods
are to a certain level specifically adapted to our data (see sections 3.2.1, 3.2.2, and 3.2.3). The
segmentation of the Drosophila S2 cells data turned out to be especially tricky. In these data, we
have recorded three channels. From these three channels, we want to segment two cell organelles,
the nucleus and the nucleolus. The final, biological task is to compute the colocalizations of the
protein pattern recorded in the third channel to these organelles 2. For this data, we are dealing with
a variety of problems inherent in the biological setting as well as with problems originating from
the widefield microscopy technique. The challenges given in this dataset have inspired most of the
proposed techniques.
Although this data qualitatively looks much nicer when deconvolution techniques are applied, we
have computed the segmentation on non-deconvolved data. Especially the information along the
z-axis of the deconvolved data is not reliable because of the missing cone in the frequency domain.
Deconvolution therefore produces artifacts in regions at the upper and lower nucleus and nucleolus
boundaries. As we want to be sure to reliably locate the recorded protein pattern, we preferred to
use the original data for all channels.

5.3.1. Channel Differential Structure

The segmentation of the nucleoli from the Drosophila S2 cell recordings appears to be an easy task
at first glance, since the fibrillarin staining recorded in channel 1 yields clear bright structures. How-
ever, there are some challenges due to the widefield PSF that causes severe blurring and artificial,
pointed structures in z-direction. Additionally, as mentioned in section 3.2.1, the true boundary has
to be expected somewhere in between the boundary of the bright region in channel 1 and the “hole”
in the nuclear staining recorded in channel 0 (compare figure 5.6). Basing the segmentation directly
on gradients or the intensity values of channel 1 leads to elongated shapes that can even seem to
protrude from the nucleus which, from a biological point of view, makes no sense. The method
we proposed in [Keuper et al., 2009] to alleviate this problem is based on the idea to combine the
information from the two recorded channels. The resulting method is called Channel Differential
Structure (CDS).
The CDS is inspired by the Color Differential Structure defined in [Geusebroek et al., 2003]. In
[Geusebroek et al., 2003], this Color Differential Structure is computed as the convolution of the

2The concrete biological application is unpublished in the biological field and will not be a topic within this thesis.
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Figure 5.6.: Three orthogonal views of the recording of a DAPI stained nucleus and GFP-stained
fibrillarin inside the nucleolus.

(a) channel 0 (b) channel 1 (c) channel 2
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)
Figure 5.7.: (a)-(c) Three recorded data channels. (d)-(e) Measures to express the relation between

recorded data channels. (f) The arctangent of the ratio between the channels corre-
sponds to the angle between adjacent side and hypotenuse in a right triangle.

spectral color information with a Gaussian derivative to detect gradients between complementary
colors.
For our task, not the perceptual color difference is important, which heavily depends on human
color perception, but the relation between recorded channels in a multi-channel data set I : Ω ⊆
R3 → Rn>0. When for example considering the recording in figure 5.7 (a)-(c), one can clearly
see that there is a strong correlation between the information of channel 0 and channel 1. In order
to perform a segmentation of the nucleolus, it is therefore useful to point out regions where the
two channels differ most, i.e. to compute some kind of differential of the two channels. Figure
5.7 (d) shows the difference between the two channels, that could directly be used to segment the
nucleolus. Nevertheless, we chose a different measure to express the relation between the two
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channels, namely the arctangent of their ratio, yielding a better representation of the nucleolus
(figure 5.7 (e)). Positions, where the ratio of the channels has large values are likely to correspond
to the nucleolus. The ratio of the intensities inside the nucleus are small, such that the boundaries of
nucleus and nucleolus can not be confounded. The arctangent of the ratio corresponds to the angle
θ in a right triangle (compare figure 5.7 (f)).
The CDS(I) of channel i+ 1 is finally computed as

CDS(I) = ∇

 2

π
arctan

(
Ii+1

Ii

) , (5.15)

where ∇ =
(

∂
∂x1

, ∂
∂x2

, ∂
∂x3

)
is the gradient operator and arctan

(
Ii+1

Ii

)
is scalar valued between 0

and π
2 since all measured intensities in I are ≥ 0.

For the segmentation of the nucleoli in [Keuper et al., 2009] in the Drosophila S2 cells, CDS(I) is
used instead of the gradient on channel 1∇Ich1 in order to compute Fdata with the standard GVF.

5.3.1.1. Active Surface Implementation

For the segmentation of the nucleoli, we chose the active surface parameterization based on a subdi-
vided icosahedron mesh (compare section 5.1.2.1). Thus, the initial mesh we used had 162 vertices
vi organized in a triangle mesh. The icosahedron mesh was chosen, because it can represent ar-
bitrary shapes with spherical topology. While we are quite certain that the nucleolus surfaces can
in theory be well represented by star-shaped surfaces, we are not certain that we can find the right
center point from which all surface points can be reached in the detection step for every nucleolus.

Regularization Since the computation of the principal curvatures on an arbitrary mesh is intri-
cate, we base the approximation of the curvatures on the weighted first and second derivatives of the
surface, which corresponds to minimizing the classical elasticity and rigidity energies [Kass et al.,
1988] given in equation (5.3). The Euler-Lagrange equation for the active surface energy (equation
(5.2)) is then given by

αFela︸ ︷︷ ︸
minimizes the surface area

+ βFrig︸ ︷︷ ︸
minimizes the total curvature

−∇Edata = 0, (5.16)

where the internal forces Fela and Frig prevent the surface from stretching and bending too much.
Since Fela minimizes the control point distances, it also has the sometimes undesired effect of
shrinking the surface. To avoid shrinking effects, we allow Fela only to pull the surface vertices
vi on a sphere around the object’s center c with radius ‖Γ(s) − c‖ = ‖xvi − c‖ (see figure 5.8
for a two-dimensional visualization). A similar projection method for Fela has been proposed in
[Ahlberg et al., 2000].

The computation of the internal forces of the active surface have to be adapted for the three-
dimensional mesh implementation. Since we want to preserve the equidistant sampling, the ap-
proximation proposed in [Ahlberg, 1996] for arbitrary polyhedral surfaces can be written as

Fela(vi) =
1

c2

 ∑
vj∈N(vi)

xvj − xvi
|N (vi)|

 (5.17)
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Figure 5.8.: The elasticity force that acts on a vertex vi (red dot) is projected onto a sphere with
center c at point xvi + Fela.

for the elasticity force, where N (vi) is the set of all neighbors of vertex vi and c is the average
distance between neighboring vertices and

c =
1

|V|
∑
vi∈V

∑
vj∈N (vi)

‖xvj − xvi‖
|N (vi)|

, (5.18)

where |V| is the cardinality of the set of vertices. The rigidity force corresponding to the fourth
derivative can by analogy be approximated as

Frig(vi) =
1

c4

1

|N (vi)|(|N (vj)| − 1)

∑
vj∈N (vi)

∑
vk∈N (vj)

k 6=i

(4xvj − xvk − 3xvi). (5.19)

Slightly different implementations for curvature forces, that are only taking into account direct
neighbors of vi, have for example been proposed in [Zhang and Braun, 1997; Mille et al., 2006].
The surface points were initialized on a sphere around the automatically detected nucleoli with
1.5 times the estimated radius. The GVF on the three-dimensional gradient field was computed as
described in appendix E. The weighting factors for internal energy term and data term were set to
α = 0.1, β = 2 and γ = 0.5.

5.3.1.2. Results

Some example results are shown in figure 5.9. It can be seen that the segmentation is good in the
central xy-slices, and the elongated, pointed parts in z-direction are left out of the segmentation
which is probably correct. Unfortunately, there is no ground truth available for this data which
makes it hard to quantitatively judge the quality of the segmentation.

5.3.2. Detection-based Radial Prior for Cell Nucleus Segmentation

For the segmentation of the Drosophila S2 cell nuclei, we want to make use of the information we
have gained in the detection step. This is necessary, because although all the chromatin inside the
Drosophila S2 cell nuclei has been stained, the recorded nucleus intensities show strong inhomo-
geneities. The bright spots correspond to dense chromatin, low intensity regions are for example
found in the nucleolus position, where there is no chromatin. If the nucleolus lies on the nucleus
boundary, this leads to non-closed boundaries in the recording. This and the fact that there are typ-
ically touching cells in the dataset make the segmentation of the nuclei challenging. Figure 5.10(a)
shows an xy-section of an example nucleus recording.
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(b) Segmentation results

Figure 5.9.: arctan
(
Ich1
Ich0

)
computed for the dataset from figure 5.6 and four example results for

the nucleolus segmentation with CDS.

(a) Drosophila S2 cell nuclei. (b) The same slice with the initial active surface grid.

Figure 5.10.: The cell nuclei stained in DAPI. Brighter regions are caused by denser chromatin. In
the location of the nucleoli, no signal is recorded in this channel, thus causing a hole.

We assume the nuclei to have a star-shaped surface, i.e. there exists a point c such that each line
segment connecting c to the object’s boundary lies completely within the shape and we further
assume that we have found a valid center c in the detection step. As proposed in [Ronneberger
et al., 2008] for the segmentation of pollen grains from two-dimensional recordings, we used
a projection of the dataset gradients onto radial vectors pointing away from the detected center
∇Iradial(x) =

〈
∇I(x) , x−c

‖x−c‖

〉
, thus reducing the influence of gradient vectors pointing in other

directions. Additionally, as done in [Ronneberger et al., 2008], vectors originating from darker
inner structures and thus pointing outwards were set to zero length. The resulting gradient image
contains by far less gradients corresponding to structures other than the nucleus, but the vectors set
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(a) (b) (c) (d)

Figure 5.11.: (a) xy-slice from the original dataset (b) xy-slice from the gradient magnitude of the
data with the estimated center and radius (c) xy-slice from the magnitude of the pro-
jected gradients s

(
|∇Iradial

)
, (d) xy-slice from the magnitudes of the gradient vector

flow RGP GVF(I) = ‖GVF(A)‖.

to zero length still cause problems in the next step.
Instead of applying the Canny edge detector as done in [Ronneberger et al., 2008], we directly use
the resulting gradient magnitude as edge information. We compute the gradients of this edge image
and, to get rid of the gradients caused by the zero-magnitude regions, we use the radial projection
of these gradients. This results in a vector valued function A : Ω→ R3 with

A(x) =

〈
∇s
(
∇Iradial

)
(x) ,

x− c

‖x− c‖

〉
· x− c

‖x− c‖
, (5.20)

where 〈. , .〉 is the scalar product and s(x) is defined as

s(x) =

x, if x > 0

0, otherwise.
(5.21)

The data force field was finally found as the weighted sum of the GVF computed on A and the
radially projected gradients, pulling the surface outside the object.

Fdata = −γGVF(A) + η∇Iradial, (5.22)

where γ and η are constant weighting factors. The second term of Fdata counteracts the shrinking
effect of the internal active surface forces. If the internal forces are implemented without shrinking
bias, for example with the projection of the internal forces onto the tangent plane (see section
5.3.1.1), η can be set to 0. In our original implementation used in [Keuper et al., 2009] however, the
internal forces had a shrinking bias such that we used η = 0.7 in the original setting. The different
steps leading to Fdata are shown in figure 5.11 for an example cell nucleus in the central xy-section.
The data force field based on radial gradient projections (RGP GVF) has some major advantages
compared to standard gradient based force fields. On the one hand, the projection onto the radial
vectors promotes stellar shapes, on the other hand, these projections and the deletion of gradient
vectors pointing in the wrong direction has the effect that the capture range of the resulting force
field is much larger. This is important, because of the touching cells in the dataset.

5.3.2.1. Evaluation

Since we do not have any ground truth labeling for the Drosophila S2 cell nuclei, we evaluated the
new data force field (RGP GVF) on a synthetic dataset in order to produce quantitative results. On
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Figure 5.12.: An example of the synthetic data used for quantitative evaluation. In the ground truth
data, each nucleus has a unique label that is indicated by the gray level.

the real microscopic recordings, we can only show examples of the segmentation results to give an
impression of the segmentation quality.
The synthetic dataset was produced using the CytoPacq toolbox [Svoboda et al., 2009, 2007]3. With
this toolbox, we have simulated volumetric specimen, HeLa cell nuclei similar to the one used in
sections 4.7.1 and 4.7.2 for deconvolution. In order to produce a segmentation scenario similar to
the Drosophila S2 cell nucleus recordings, we simulated 19 recordings of eight cell nuclei randomly
positioned in 20×70×70µm3 volumes, yielding 152 nuclei altogether. For the recording simulation,
we used the optics simulation toolbox from CytoPacq with the ideal widefield PSF without spherical
aberration downloaded from 4. An example of our simulated recordings together with the original
specimen mask that we will use as ground truth is given in figure 5.12 in three orthogonal views.

We segment these synthetic cell nucleus recordings using active surfaces with control points on a
icosahedron subdivision grid with 162 initial vertices vi, that were positioned on a sphere around
the cell nuclei with an automatically estimated radius using the detection as described in section
5.2. The evolution is directly performed in the spatial domain as described in section 5.3.1.1.
Since we also project the internal forces onto the tangent plane, the active surfaces do not show
a shrinking bias. We prefer this implementation as it releases us from adapting the additional
parameter η.The method is evaluated for slight variations of the weighting parameters α, β, and
γ that weight the stretching, bending, and data consistency of the surface respectively. To make
sure that we are getting comparable results, the data force fields GVF and the proposed RGP GVF
were both normalized by the maximal vector length. In both cases, the GVF was computed with
µ = 0.15. The results are compared to the spherical initialization and to results that can be achieved
with active surfaces using standard GVF force fields. Additionally, we report results we achieved
with convex region based level sets [Chan et al., 2006] as described in section (2.3.6). The results

3The specimen and recording simulation toolbox is available for download under http://cbia.fi.muni.cz/
projects/cytopacq-a-simulation-toolbox_2.html.

4http://bigwww.epfl.ch/deconvolution/?p=bead.
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are given in terms of voxel precision, recall, and accuracy

precision =
tp

tp + fp

recall =
tp

tp + fn

accuracy =
tp

tp + fp + fn
,

where tp, fp, and fn are the true positives, false positives and false negatives respectively. As we
want to correctly locate protein patterns relative to the segmentation mask, the accuracy is the most
important measure.
Since the image of a point is strongly elongated in z-direction due to the imaging technique, it re-
mains doubtful if the original mask of the specimen is a good measure for the segmentation quality
in the upper and lower image regions. Based on the image intensities, a slightly elongated segmen-
tation visually would appear more plausible.
Since giving a correct measure for the segmentation quality in the upper and lower image regions is
not straightforward, we remain with the pixel accuracy compared to the original specimen mask as
a lower bound and focus more on recall than on precision for the evaluation on the whole volume.
We additionally report the segmentation accuracy for the central xy-section of each cell, where the
original specimen mask can without any doubt be used as Gold Standard.
The segmentation of the Drosophila S2 cell nuclei was done exactly the same way as the segmen-
tation of the synthetic data. The initial active surface grid laid over one of the nuclei is shown in
figure 5.10(b). Our results with RGP GVF on the real data will be compared to the results that
can be achieved with an active surface implementation using a classical GVF force field and to a
standard state-of-the-art method: the user-guided level set implementation ITK-SNAP [Yushkevich
et al., 2006]. For the active surface segmentation, we manually tested some weighting parameter
sets for three example nuclei and then used the best parameters for the segmentation of all the nu-
clei. Finally, we used α = β = 0.2, and γ = 0.7 as for the synthetic data, but the method turned
out to be very robust against small parameter variations. With those parameters, satisfying results
could be achieved for the segmentation of all nuclei and nucleoli of the dataset. Some randomly
chosen example results can be seen in figure 5.15.
The standard GVF force field was computed directly from the image gradients as GVF(∇‖∇I‖).
The ITK-SNAP segmentation implements two algorithms: 3D geodesic active contours, where the
internal forces are based on the gradient magnitude in the dataset, and a region competition method,
based on voxel probability maps, which are estimated by manually adjusted intensity thresholds.

5.3.2.2. Results

For the synthetic data, the overall precision, recall, and accuracy are given in table 5.1. The re-
sults on the central xy-sections can be seen in table 5.2. The accuracy of the proposed force field
is significantly higher than the accuracy that could be achieved with standard GVF. It can also be
observed that the method is not very susceptible to the parameter variations for the active surfaces.
Although the diffused gradient fields from both methods GVF and RGP GVF are in the same range,
the result with GVF is best if the GVF force field has least influence on the active surface evolu-
tion. On the whole volume, the GVF performs worse than the baseline where we directly take the
spherical initialization as segmentation.
As we expected, region based level sets can not cope very well with our nucleus segmentation
problem because of the unreliability of the measured pixel intensities. The results are given in figure
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Table 5.1.: Segmentation results on the synthetic dataset evaluated in the whole volume.

weights precision recall accuracy
Sphere 82.13% 80.70% 66.13%
GVF α = β = 0.2, γ = 0.5 97.47% 60.01% 58.65%
GVF α = β = 0.2, γ = 0.7 98.07% 52.22% 51.35%
GVF α = β = 0.3, γ = 0.8 98.28% 52.13% 51.39%

RGP GVF α = β = 0.2, γ = 0.5 73.63% 95.51% 71.31%
RGP GVF α = β = 0.2, γ = 0.7 73.63% 96.02% 71.44%
RGP GVF α = β = 0.3, γ = 0.8 73.64% 95.85% 71.35%
Level Set automatically determined µ1 and µ2 43.23% 95.73% 42.38%

Convex Level Set µ1 = 0, µ2 = 0.7 65.54% 76.66% 53.94%

Table 5.2.: Segmentation results on the synthetic dataset evaluated in the central xy-section.

weights precision recall accuracy
Sphere 93.38% 83.95% 78.07%
GVF α = β = 0.2, γ = 0.5 99.22% 84.73% 84.15%
GVF α = β = 0.2, γ = 0.7 99.22% 79.15% 78.64%
GVF α = β = 0.3, γ = 0.8 99.19% 78.55% 78.03%

RGP GVF α = β = 0.2, γ = 0.5 98.13% 94.52% 92.83%
RGP GVF α = β = 0.2, γ = 0.7 98.14% 94.83% 93.13%
RGP GVF α = β = 0.3, γ = 0.8 98.25% 94.47% 92.88%
Level Set automatically determined µ1 and µ2 91.31% 92.21% 84.20%

Convex Level Set µ1 = 0, µ2 = 0.7 97.5% 69.47% 67.52%

(a) (b)

Figure 5.13.: (a) Accuracy of the convex level set implementation on the whole synthetic data, de-
pending on the chosen mean value µ2. The lower mean value µ1 was set to zero. (b)
Resulting precision-recall curve for the same parameters.
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Figure 5.14.: (a) Accuracy of the convex level set implementation evaluated only on the central xy-
slice of the cells on the synthetic data, depending on the chosen mean value µ2. The
lower mean value µ1 was set to zero. (b) Resulting precision-recall curve for the same
parameters.

5.13 and figure 5.14. We have computed the segmentation on the whole synthetic recordings without
the nucleus detection step. The intensities were normalized between zero and one. Depending on
the chosen mean values for foreground and background, we either miss large parts of the nuclei or
overestimate their shape (see figure 5.13). Since the segmentation heavily depends on the chosen
mean values, we also tried to automatically estimate appropriate mean values by estimating them in
every iteration from the current segmentation. For this experiment, the means were initialized with
µ1 = 0 and µ2 = 1. The resulting precision, recall , and accuracy are given in table 5.1 and 5.2.
On the real Drosophila dataset, we compared our results to ITK-SNAP. For the methods imple-
mented in ITK-SNAP, it was not possible to find weighting parameters that worked for the whole
dataset. For four example cells, we manually adapted the ITK-SNAP parameters for each nucleus
as well as possible, but even with this manual adaptation of the parameters to each cell we could not
get good results for all of the cells. The 3D geodesic active contours did not work at all, because
of the blurring in z-direction. It was not possible to find parameters that prevented the contour
from running out of the object in the upper and lower dataset regions before filling the nucleus’
volume in the center, where there are in fact stronger gradients. For the region competition method,
the adjustable parameters are: Gaussian smoothing of the data, lower intensity threshold, upper
intensity threshold, the initialization and the number of iterations. Event though we adjusted these
parameters for every cell individually, the segmentation also grows slightly out of the nucleus in the
upper and lower dataset regions. For a comparison of the standard GVF and the region competition
method to our method, see figure 5.15. Although the region competition method from ITK-SNAP
in most cases yields acceptable results if the manual thresholds are carefully adjusted, our method
worked best for all of the nuclei. However, slight elongation of the surface due to the blurring by
the PSF can still be observed.

5.3.2.3. Discussion

We have presented a method for the generation of data force fields for shapes with stellar topology.
Based on the result of the automatic nucleus detection, we can eliminate misleading gradients from
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Figure 5.15.: (top row) Orthogonal views of the segmentation results of four nuclei. The red con-
tours mark the segmentation result with the standard GVF force field whereas the
proposed segmentation with RGP GVF is marked in green. It can be clearly seen that
with GVF the contours underestimate the object in z-direction and tend to be attracted
to neighboring cell nuclei and inner nuclear structures. This is not the case for our
segmentation. (bottom row) Segmentation results for the same nuclei segmented with
our method (green), and the region competition method from ITK-SNAP (red). The
red masks are quite good, but elongated in z-direction, which is caused by the blurring
in the dataset. In the last example, the mask leaves out a part of the nucleus where
probably the nucleolus is located.

inner cell nucleus structures and neighboring cell nuclei. The resulting active surfaces outperform
the surfaces based on standard GVF force fields and are quite robust to parameter changes. In
contrast to the region-based segmentation with ITK-SNAP, where the parameters had to be manually
adjusted for every nucleus, our method yields satisfying results with one fixed parameter set. A
remaining challenge is, however, given by slight elongation of the resulting surfaces due to the PSF
of the recording system.

5.3.3. Mean Shift Gradient Vector Flow

In section 5.3.2, we described our novel data force fields for the segmentation of DAPI-stained nu-
clei in a Drosophila S2 cell line. This method indeed leads to good contours but still, segmentation
artifacts can be observed. One of the major problems is that the resulting active surfaces seem to be
elongated and subject to PSF artifacts compared to the expected round shape. See figure 5.16 for
an example of the data in two orthogonal views and the PSF of the used microscopy setting in the
xz-view. In 5.3.2, we used GVF to smooth the projected gradient field before adapting the active
surfaces. This leads to some desired effects like a large capture range for the active surface model
as well as smooth gradient fields. On the other hand, the weak but important gradients in upper and
lower image regions are smoothed away by the classical GVF.
To get rid of the artifacts caused by the dataset blurring, we have developed a vector diffusion
method that not only preserves strong image gradients but also preserves weak gradients if they are
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(a) Drosophila S2 nucleus in two orthogonal
views

(b) The resulting segmentation with PSF arti-
facts.

Figure 5.16.: Two orthogonal views of a segmented cell nucleus. The pointed elongation of the
segmentation in z-direction is a PSF artifact.

dense i.e. if all gradients in a neighborhood have similar direction and length [Keuper et al., 2010b;
Keuper, 2010]. This method is the result of combining the basic GVF with the mean shift procedure
[Cheng, 1995; Comaniciu and Meer, 2002]. In the classic GVF energy functional, the regulariza-
tion term ensures that strong gradients (i.e. gradients with large magnitude) are not altered. When
introducing the mean shift criterion into the energy optimization, we also ensure, that gradients
are pulled towards their density modes. As a consequence, large gradients originating from small
structures are preserved but do not diffuse as strongly as in GVF, i.e. have less impact on the overall
force field. On the other hand, if in a certain region there are many weak gradient vectors pointing
in the same direction, these valuable gradients will not be altered by larger neighboring gradients
(as it would happen in GVF), but all gradients in the same neighborhood will converge to the mean
direction and length.

5.3.3.1. Mean Shift on Gradient Vectors

The fundamentals of the mean shift procedure have been presented in section 2.4.2. In [Comaniciu
and Meer, 2002], it is shown how the mean shift procedure can be employed as a discontinuity
preserving image filter. This is done by interpreting the image as a two-dimensional lattice of p-
dimensional vectors (p = 1 in the gray level case, p = 3 for color images). The lattice then forms
the spatial domain, the color information forms the range domain of a d = p+2 dimensional feature
vector in the joint spatial-range domain. The mean shift is performed using a multivariate kernel

Kbs,br(x) =
C

b2sb
2
r

k

(∥∥∥∥xs

bs

∥∥∥∥2
)
k

(∥∥∥∥xr

br

∥∥∥∥2
)
, (5.23)

defined as a product of two radially symmetric kernels with the common profile k(x). xs is the
spatial part, xr the range part of the feature vector. The Euclidean metric allows the use of a single
bandwidth parameter in each domain, bs and br respectively. These bandwidth parameters control
the size of the kernel and thus determine the resolution of the density mode detection. C is the
corresponding normalization constant.
An extension of the algorithm presented in [Comaniciu and Meer, 2002] to the three-dimensional
space is straightforward. In the case of a three-dimensional vector field ∇M : Ω ⊆ R3 → R3,
where M is a 3D scalar field (the edge map), the mean shift is computed on the d = 3 + 3 dimen-
sional feature vector, where the first three components contain the spatial information, the last three
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dimensions contain the corresponding vector information.

Kbs,br(x) =
C

b3sb
3
r

k

(∥∥∥∥xs

bs

∥∥∥∥2
)
k

(∥∥∥∥xr

br

∥∥∥∥2
)
, (5.24)

As in the two-dimensional case, the Epanechnikov kernel (compare equation 2.81) performs satis-
factorily.
When applying this edge preserving mean shift filter to gradient vector fields, the result is quite
similar to what we know from 2D color images. Depending on the chosen spatial and range band-
width parameters, the discontinuities at the dataset gradients are preserved and the vectors converge
to equal length and direction in the neighborhood defined by the spatial bandwidth parameter.
See figure 5.17 for a toy example. The 2D toy data depicted in figure 5.17 (a)(120 × 120 pixels)
is designed to simulate the blurred recordings of spherical objects with three undesired spots (spot
1-3) that should influence the overall force field as little as possible. The edge image in figure 5.17
(b) is the magnitude of the smoothed gradients of the toy data and the gradient field is displayed
in figure 5.17 (c). The colors indicate the vector direction. In figure 5.17 (d), the GVF field (300
iterations with µ = 0.15) of the toy data is displayed. In figure 5.17 (e) we have displayed the result
of applying the 3D mean shift filter to our toy example (with parameters bs = 6, br = 0.4). Be-
cause of the round shape of the object, the gradient vectors converge to the mean direction in their
neighborhood, i.e. all vectors are pointing towards the edges. The result is depending on the filter
bandwidth. Vectors with ‖vi − vj‖ ≤ br converge to equal length if they are spatially close to one
another. Maxima in the gradient magnitude are not preserved. Below the actual gradient image in
figure 5.17 (e), we have plotted the profile of the original gradient field (blue) and the mean shifted
field (red) along the red line in figure 5.17 (a).

5.3.3.2. Mean Shift GVF

With the GVF, an isotropic vector diffusion is performed. The regularization only depends on the
vector length disregarding the significance of the vectors in their local neighborhood. In regions,
where the gradients are generally weaker, the Laplace term dominates equation 2.36 and a strong
smoothing is performed. In our example of the microscopic recordings of cell nuclei, this is not
always desirable. First, we do not want to promote strong gradients, if they are originating from
small structures. Second, in the strongly blurred upper and lower dataset regions, we want to keep
the gradients pointing towards the cell nuclei even though they are weak.
Generally, we want large gradients originating from small structures to be preserved but not to
diffuse as strongly as in GVF, i.e. to have less impact on the overall force field. Then again, if in
a certain region many weak gradient vectors point into the same direction, these valuable gradients
shall not be altered by larger neighboring gradients (as it would happen in GVF), but all gradients
in the same neighborhood shall converge to their mean direction and length. This is why we are
using the advantages of the mean shift filtering method and the GVF simultaneously, performing a
minimization of the GVF energy functional from section 2.3.3, equation (2.36) and a maximization
of the kernel density estimate f̂b,K(v) at the same time, which we call mean shift gradient vector
flow (MSGVF).
Note that the density estimate is depending on two bandwidth parameters bs and br with b :=(
bs, br

)T for the spatial and range domain respectively. We thus want to find a vector field v that
makes the best compromise between optimizing

min
v

∫
Ω⊆R3

µ
(∥∥∇ (v)

∥∥2
)

+
∥∥∇M∥∥2 ∥∥v −∇M∥∥2

dx (5.25)
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and
max

v

∫
Ω⊆R3

f̂b,K(v)dx. (5.26)

This means, that we are diffusing large vectors and at the same time pulling the vectors towards
their density maxima. This second objective, the kernel density maximization, leads in fact to a
discontinuity preserving filtering. Equation 5.25 and 5.26 are optimized by alternating the gradient
descent for the optimization of equation (5.25) and the gradient ascent for the optimization of (5.26):

v̄k = vk + µ∇2vk −
(
vk −∇M

)∥∥∇M∥∥2

vk+1 = mb,G(v̄k)−
(
v̄k
)
, (5.27)

where mb,G(v(x)) is the mean shift of the vector v(x) with kernel G and bandwidths b defined
as in section 2.4.2. Unlike for GVF, the optimization can not be done for each channel separately,
because mb,G(v) is depending on all channels.
An alternative, theoretically more appealing approach incorporating the kernel density into the GVF
framework is to formulate a new energy functional

E(v) =

∫
R3

µ
(∥∥∇ (v)

∥∥2
)

+
∥∥∇M∥∥2 ∥∥v −∇M∥∥2 − νf̂b,K(v)dx, (5.28)

similar to the original GVF functional with one additional term penalizing low kernel density es-
timates with a constant weighting ν. This energy functional is minimized by the following Euler-
Lagrange equation:

µ∇2(v)−
(
v −∇M

)
‖∇M‖2 + νf̂b,G(v) ·mb,G(v) = 0. (5.29)

This yields the following iteration scheme

vk+1(x) =µ∇2vk(x)−
(
vk(x)−∇M(x)

)
‖∇M(x)‖2+

νf̂b,G

(
vk(x)

)
·mb,G

(
vk(x)

)
, (5.30)

which is in fact quite similar to the update scheme given in equation (5.27). The difference to
(5.27) is that here we are using the mean shift computed from the previous iteration instead of
computing it from the current vector field and weight it by the current kernel density and a constant
weighting factor ν. We will refer to this second method as density maximization gradient vector
flow (DMGVF).
The result of the MSGVF and DMGVF can be seen in figure 5.17 (f) and (g), for 100 iterations with
µ = 0.15, bs = 6 and br = 0.2, and ν = 2 for DMGVF. As when applying GVF in figure 5.17 (d),
the discontinuities are preserved and long gradients corresponding to object edges are unaltered.
As opposed to GVF, with MSGVF, gradients resulting from smaller objects have less impact on the
overall result. This can be seen when looking at the profile in figure 5.17 (f). The small spot (spot
1) inside the object does not change the vector direction at all.
For a visualization of the vector directions, also compare the streamline plots in figure 5.18. When
looking at the spot outside the object (spot 3) one can observe that strong gradients are caused by
this structure, that are preserved by all three methods. Only the diffusion behavior is different. In
the case of MSGVF, the zero crossing, indicating the change of vector direction, is shifted towards
the small spot. Thus the capture range for our large object is larger and, even though we have
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computed less iterations than for GVF, the magnitude of the vectors outside the object are larger.
With DMGVF, the differences to GVF are only marginal. As with MSGVF, spot 1 inside the object
has less impact on the force field but the larger capture range around spot 3 can not be observed.
The exact results with DMGVF depend on the chosen weighting ν. In order to be able to compare
the results to MSGVF, we kept the weighting reasonably small with ν = 2. In MSGVF, the mean
shift step is always weighted by one.

5.3.3.3. Evaluation and Results

Both methods MSGVF and DMGVF have first been evaluated on the synthetic dataset described in
section 5.3.2.1. We have computed the vector diffusion with both methods on the radially projected
gradient field proposed in section 5.3.2 with the parameters µ = 0.15, bs = 2 and br = 0.02,
and ν = 1 for DMGVF. In [Keuper et al., 2009], the last step of the RGP GVF data force field
generation is applying GVF to the vector field. For the segmentation, we only replace this last step
by the proposed MSGVF and DMGVF method. Otherwise, the segmentation was done with the
same active surface setting as in section 5.3.2.1. The quantitative results are given in tables 5.3
and 5.4. Since the artifacts we are looking for have a quite large effect on the shape but a rather
small effect on the volume, the quantitative results show only a small improvement on the overall
accuracy. As we already expected from the toy data, MSGVF yields slightly better results than

(a) toy data (b) edge map (c) gradient vectors

GV
mean shift

(d) GVF (e) Mean Shift filter (f) Mean Shift GVF (g) DMGVF

Figure 5.17.: The different vector diffusion and filter methods on toy data. The colors indicate the
vector direction. Below the gradient field, the profile of the gradient fields along the
red line in (a) is plotted for comparison.
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(a) Streamline plot of the GVF field in
the ROI.

(b) Streamline plot of the MSGVF field
in the ROI.

Figure 5.18.: Especially when looking at the small spot outside the large object (spot 3), one can
see that it has strong impact on the vector field, and this impact is significantly larger,
when applying GVF (a) than when applying MSGVF (b). Thus, if we want to segment
the main object, our initial surface must be closer to the object boundary with GVF
than with MSGVF. Also, when applying MSGVF, spot 1 has no impact on the vector
direction at all and even the capture range of spot 2 is less strong. So, both spots will
not significantly alter the segmentation result.

Table 5.3.: Segmentation results on the synthetic dataset evaluated in the whole volume. The active
surfaces have been computed with α = β = 0.2 and γ = 0.7.

precision recall accuracy
RGP GVF 73.63% 96.02% 71.44%
MSGVF 75.43% 96.03% 73.13%
DMGVF 74.11% 95.98% 71.87%

DMGVF.
This is why we have applied the new MSGVF method to generate force fields for the segmentation
of Drosophila S2 cell nuclei. To allow for comparison with the previous method, all further steps
of the active surface procedure are the same as in 5.3.2.
To measure the susceptibility of the segmentation surface to artifacts, we are locally approximating
the surface by spheres and estimate their radii (see figure 5.19(a)). For the fitting, we use the fact that
each two triangles in the surface mesh uniquely define a sphere by their normal vectors and centers
of gravity. At the best, most radii should be similar to the radius of the cells that is somewhere near
2µm. The more artifacts we have in a surface, the more very small radii can be found. As we expect
to find these artifacts in the lower dataset regions, we compute the measure of the lower 20% of the
segmentation mask and compare it to the 20% in the center (see figure 5.19(b)).
The result of the evaluation can be seen in figure 5.20. The results show that the surfaces still are
more strongly curved in the lower regions than in the center. Though, compared to GVF, the new
method works clearly better. For GVF, the ratio of the number of triangles forming an angle in a
reasonable range (radii of 1 − 3µm) and those forming too small angles (radii < 1µm) is at 0.72,
for MSGVF it is at 0.92. This can also be read from the slope of the curves in figure 5.20 (b). For
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(a) Sphere fitting in the
surface mesh.

(b) Compared surface re-
gions.

(c) overlay with a real
dataset.

Figure 5.19.: Illustration of the surface evaluation method. Each two triangles in the surface mesh
uniquely define a sphere by their normal vectors and centers of gravity.

Table 5.4.: Segmentation results on the synthetic dataset evaluated in the central xy-section. The
active surfaces have been computed with α = β = 0.2 and γ = 0.7.

precision recall accuracy
RGP GVF 98.14% 94.83% 93.13%
MSGVF 98.16% 94.89% 93.22%
DMGVF 98.18% 94.80% 93.13%

(a) Histogram of the radii in the center. (b) Radii in the lower 20% of the surface.

Figure 5.20.: Radius distribution of the spheres fitted in the triangle mesh.

GVF, the slope is much steeper than for MSGVF. Furthermore, the curves in figure 5.20 (b) show
that the number of triangles in the lower dataset regions is drastically increased with GVF, which
is evidence for more degenerate surfaces in this region. Having a closer look at the data (see figure
5.21 and 5.22, the red contour has been computed with GVF the green one with MSGVF), one can
clearly see that in the central z-slices, the segmentation is very similar. Only in the more difficult
lower regions, the result found by MSGVF is smoother and shows fewer artifacts. Additionally, one
can see that most of the resulting surfaces are less elongated than with GVF. This results from the
fact that in MSGVF, the vectors in the lower dataset regions that are pointing towards the surface

111



5. Active Surface Models for Volumetric Microscopy

are generally better preserved. Sometimes, when applying GVF, this information is completely lost.
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Figure 5.21.: Comparison between the segmentation using Mean Shift GVF and standard GVF on
the radially projected gradients for six of the nuclei. The arrows mark positions where
the contour with standard GVF becomes too pointed. The results are displayed in
three orthogonal views

5.3.3.4. Discussion

The proposed MSGVF method improved the segmentation results for the Drosophila S2 cell nuclei
by reducing PSF artifacts. The remaining slight elongation of the segmentation is not undesired
since we want to be sure to correctly locate the also blurred protein pattern relative to the seg-
mentation mask. A remaining challenge is the segmentation of cells with specially strong inhomo-
geneities where the segmentation is still not perfect. The MSGVF method, however, is not limited
to the segmentation scenario with active surfaces. For example in [Chlap, 2010], MSGVF was used
to improve the stability of detected landmark candidates in recordings of Zebrafish embryos.

5.3.4. Semi-Automatic Edge Filtering

In the previous sections, we have presented data force fields that allow for the fully automatic seg-
mentation of fluorescently stained cell nuclei from microscopic recordings. However, depending on
the specific application as well as on the imaging technique, the desired object boundary can have
very different appearances. In the same dataset, e.g. of a plant cell, the user could be looking for
either outer (the cell wall) or inner borders (plasmalemma), or intracellular compartments (as the
nucleus or chloroplasts).
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Figure 5.22.: More segmentation results with Mean Shift GVF (green) and RGP GVF (red) for
comparison. The scale bars all indicate a length of 5µm. The results are displayed in
three orthogonal views as in figure 5.21.

For every new problem setting, the used method needs to be adapted and special prior knowledge
about the application has to be included. This knowledge usually can comprehend the texture of the
object and the appearance of the object’s boundary. This information can be learned from ground
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truth data as for example done in [Cootes et al., 2001], if a sufficient amount of labeled data is
available. The acquisition of ground truth segmentations is a very tedious step in 3D image analysis
settings if it is feasible at all. One or more experts have to draw correct object boundaries in every
single slice of every training volume. In some cases, however, the correct boundary might not be
visible in one or several consequent slices.
In [Keuper et al., 2010a], we proposed a semi-supervised segmentation method. In this approach,
expert knowledge for only a small number of training edge pixels is used to generate full segmenta-
tion masks. Thus it combines the advantages of expert guidance with convenient accomplishment.
A user guided tool for the segmentation of medical data has for example also been presented in
[Vehkomäki et al., 1997]. There, the authors propose a twofold strategy: they create a graph de-
scription of contour fragments with a tessellation of the image plane. The actual segmentation is
formulated as a path optimization, where the user has to manually select control points on the con-
tour. The user guided level set implementation in ITK-SNAP [Yushkevich et al., 2006] allows the
user, similarly to our method, to define the edge map before starting a level set segmentation. The
edge map is defined by a threshold either on the data itself or on the gradients. Thus, the method
works satisfactorily only if the edge information is homogeneous over the whole dataset.
In contrast, the presented segmentation method allows for changing appearances of the boundary.
The user input is used to design an edge filter for the entire database based on a previous appearance
based clustering of boundary candidates. Thanks to this clustering step, the needed user interaction
is limited to very simple, quick and intuitive operations.
Since we are working on biological cell data, we have adapted the presented implementation to the
segmentation of star-shaped objects. The evaluation was performed on 3D confocal recordings of
developing plant cells.

5.3.4.1. Workflow

The general workflow of the presented method is displayed in figure 5.23. We assume that in the
given database of recorded objects, the object detection step is already solved and for every object,
the estimated position of the center c is given. For spherical objects, this detection step can for
example be performed as described in section 5.2. Given this set of objects, the first step is to
randomly choose a sample dataset. In this dataset, we find candidate positions where edge profiles
are extracted. These edge profiles are used as features and are grouped into different clusters.
The processing up to this step will be presented in detail in section 5.3.4.2. The result of the
clustering is mapped into the original dataset: edges belonging to the same cluster are displayed in
the same color. The next and most important step is the user interaction. From the displayed edge
distributions presented in a 3D slice viewer, the user can decide which edges lie on the desired object
contour. This information is used to design a filter for the specified edges, which is applied to the
entire database. The generation of the filter is described in section 5.3.4.3. The filter response is used
to perform a parametric 3D active surface segmentation using the frequency space representation
described in section 5.3.4.4. The user can now verify the resulting segmentations and, if it is not
sufficiently good for all datasets, choose the next training sample. The edge appearances in this new
sample are used to refine the filter and accordingly, to refine the segmentation.

5.3.4.2. Profile Extraction and Grouping

In most applications, the user is interested in laying a boundary on certain positions with high
gradient magnitude, i.e. image edges. In positions where the information is lacking, the user
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Figure 5.23.: Schematic overview over the whole workflow.

usually wants a smooth interpolation of the boundary. As candidate positions at which the profiles
will be extracted, we thus choose points with high gradient magnitude by a threshold. To avoid
finding too many candidates and to ensure that we are looking at the most important positions in the
sample, we perform a non maximum suppression in gradient direction and take all the remaining
maxima in gradient magnitude as candidates. At these positions, gray value profiles are extracted
in radial direction from the center. This makes sense because we are assuming that the objects
are star-shaped (i.e. there exists a point c such that each line segment connecting c to the object’s
boundary lies completely within the shape). When looking at more general shapes with spherical
topology, one should extract profiles that are normal to the surface at this position, instead. For the
extraction of the profiles, two parameters can be adjusted: the step size of the profile and its length.
These have to be chosen such that the desired edge appearance can be captured and resolved.
We want to use these profiles as features to describe the appearance at the respective position. For
microscopic data we are expecting strong variations in the absolute gray values even within the
same recording due to absorption. To make our features robust against these variations, we use the
derivative of the profile gray values, which is invariant against a gray level offset. The continuous
profile derivative dprof is a function of the radial length l ∈ R and the position x. With respect to
the center c, dprof (x, l) is given by

dprof (x, l) =
d
dl
I

(
x + l · x− c

‖x− c‖

)
, (5.31)

where I is the sample dataset. Compare figure 5.24 for a visualization.
The discrete profile vector px is given by

px(i) = dprof

(
x, λ ·

(
i− L

2

))
, (5.32)

where 0 ≤ i < L ∈ N is the position on the profile, L is the profile length and λ is the step-size. In
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Figure 5.24.: The profile derivative dprof is a function of the radial length l ∈ R and the position
x where it is extracted. Profile derivatives are extracted in radial direction from the
object center.

order to be also invariant against multiplicative gray value changes, we normalize the features by
the maximum absolute value.

p̄x(i) =
px(i)

max
j

(
∣∣px(j)

∣∣) (5.33)

The p̄x are clustered using K-means clustering (see e.g. [Xu and Wunsch, 2008]). This basic clus-
tering method is suitable for our purpose, because it directly measures the similarity between the
profiles and discriminates as soon as the euclidean distance is too large. The number of clusters
scales with the number of extracted profiles. In our implementation, there are on average 4000
profiles in one cluster.

5.3.4.3. User Specified Filtering

Once the profiles are grouped into different clusters Cj , the user has to decide which of the clusters
are relevant for the actual application. Therefore, the data must be presented such that it is easy to
distinguish between relevant and irrelevant clusters. For every cluster, we generate a 3D overlay
plot in which all the points belonging to this cluster are marked in the original 3D sample data. The
user can view this overlay and decide, whether the marked points lie on the desired boundary or
not. This information is used to generate a Gaussian probability density function (PDF) for every
chosen cluster, with

fCj (p̄) =
1

(2π)l/2|ΣCj |1/2
· e−

1
2

(p̄−µCj
)TΣ−1

Cj
(p̄−µCj

)
, (5.34)

where ΣCj is the covariance matrix of all profiles p̄Cj in the chosen cluster Cj , |ΣCj | denotes its
determinant, and µCj the vectorial expected value of cluster Cj . With these PDFs, the edge filter
is already defined and can be applied to all objects in the database. In the filtering step, we have
to extract the profile p̄x at every position x in the dataset. For these profiles, we compute the
Mahalanobis distance

DM(p̄x,Cj) =

√(
p̄x − µCj

)T
Σ−1

Cj

(
p̄x − µCj

)
(5.35)

to every chosen cluster. The filter response is then given by

A(x) = min
Cj

(
DM(p̄x,Cj)

)
. (5.36)
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A has low values, where the distance to the closest cluster center is small, i.e., where the profiles
are similar to those belonging to the selected clusters. In order to have high responses at these posi-
tions, we compute Ā = 1−A/max(A). Ā is used to generate the data force field for the parametric
active surfaces.
The filter response Ā is usually well representing all positions where the edges are similar to those
chosen by the user in the sample data. Due to the profile normalization, we can even handle linear
gray scale variations. On the other hand, the normalization also causes some spot-like filter re-
sponses in the background (compare figure 5.25(d)). Accounting for the fact that we are searching
for object surfaces, i.e. locally planar structures, we can get rid of these wrong filter responses sim-
ply by applying the steerable filter for plane detection described in [Aguet et al., 2005] 5. The filter
response is used as edge map (EM). On the gradients of the edge map, we compute the standard
GVF to get a smooth data force field. With this data force field, an active surface can be adapted to
the data.
When the segmentation process with the active surface is finished on the whole database, the user
can interact again. If the segmentation is not sufficient for all datasets, the user chooses a new sam-
ple and runs through steps 5.3.4.2 and 5.3.4.3. The new appearance clusters are added to the model
and all wrongly segmented datasets of the previous iteration are segmented using this new model.

5.3.4.4. Active Surface Representation

For the cell segmentation, we have chosen the surface parameterization in spherical coordinates.
The surfaces of our single, developing plant cells are star-shaped and the cell centers can easily be
found such that this parameterization appears to be adequate. Functions on the sphere S2, i.e. func-
tions parameterized by longitudinal and latitudinal coordinates, can be represented in the frequency
domain using (truncated) spherical harmonic expansions

f(θ, φ) =

B∑
l=0

l∑
m=−l

f̂ml Y
m
l (θ, φ), (5.37)

where

Y m
l (θ, φ) =

√
(2l + 1)(l −m)!

4π(l +m)!
Pml (cos θ)eımφ (5.38)

with ı being the imaginary unit, and the f̂ml are the spherical harmonic coefficients with degree l and
order m, B is the maximal bandwidth, where |m| ≤ l ≤ B. The Pml are the associated Legendre
polynomials defined as

Pml (x) = (−1)m(1− x2)m/2
dm

dxm
(
Pl(x)

)
, (5.39)

where the Pl(x) are Legendre polynomials. The recursive computation of the associated Legendre
polynolmials is described in appendix D.1. For example, frequency domain parameterizations of
parametric active surfaces have been used in [Miller et al., 1994; Khairy and Howard, 2008; Kele-
men et al., 1999]. They have the advantage that they do not only yield smooth surfaces due to the
representation by smooth basis functions, but also provide a parametric shape description that can
be useful for further evaluation.
Star-shaped surfaces described by the Euclidean distance r from its center c to the surface points

5We used the C++ implementation of the algorithm from the ArrayToolbox library by Thorsten Schmidt.
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that are parameterized as functions on the sphere with longitudinal and latitudinal coordinates can
directly be represented in the spherical harmonic domain

Γ(θ, φ) = r(θ, φ) =

B∑
l=0

l∑
m=−l

r̂ml Y
m
l (θ, φ), (5.40)

where the r̂ml are the spherical harmonic coefficients with degree l and order m, yielding a shape
representation by a vector of expansion coefficients

Γ̂ = (r̂0
0, r̂
−1
1 , r̂0

1, r̂
1
1, . . . , r̂

l
l)
T , (5.41)

with

r̂ml =

∫ 2π

0

∫ π

0
r(θ, φ)Y m

l
∗(θ, φ) sin θ dθdφ, (5.42)

where Y m
l
∗ is the complex conjugate of Y m

l . For a perfectly spherical shape with r(θ, φ) = const.
it follows r̂ml = 0 for all l,m 6= 0.
If the surface sampling is equidistant, the vector of the L2 norms of the spherical harmonic coef-
ficients r̂ml is a rotation invariant shape descriptor [Kazhdan et al., 2003; Kazhdan, 2004]. Since
the phase information is entirely lost, this shape descriptor is not complete, which means that the
original shape can not be entirely recovered from the descriptor.
While the above representation is limited to star-shaped objects, spherical harmonics representation
can also be used for the representation of arbitrary surfaces with spherical topology. This represen-
tation was used for example in [Khairy and Howard, 2008] to perform a parametric deconvolution
of 3D images and in [Kelemen et al., 1999] to learn statistics for Hippocampus segmentation. While
initialization and regularization are quite easy for star-shaped surfaces, these are critical issues for
arbitrary shapes with spherical topology because this parameterization tends to artificially introduce
sharp edges even at low bandwidth values (compare [Khairy and Howard, 2008]). This is why in
[Kelemen et al., 1999], an icosahedron subdivision representation of the surface in the spatial do-
main is used additionally to the frequency domain representation in order to perform the surface
refinement. More details on the representation of shapes with arbitrary topology with spherical har-
monic basis functions are given in appendix D.2.

Regularization The radial parameterization with spherical coordinates has an advantage con-
cerning the regularization of the surface. In most cases, no explicit smoothness constraint is needed,
because the regularization can be done implicitly by limiting the bandwidth of the spherical har-
monic expansion.
However, in some cases it might be useful to use a smoothness prior together with a high expansion
bandwidth even with the radial parameterization. It might for example occur that an object has
strongly curved regions on the surface that we want to capture. Still there might be other regions
with no edge information at all, where we want to complete the surface with the smallest possible
surface area. The smoothness of the surface is established by mean curvature flow. Let us denote
the local mean curvature computed on the radially parameterized surface by H̃ . The mean curvature
flow then reads

∂Γ

∂t
= H̃n, (5.43)

with n being the surface normal. Because of the radial parameterization, this can be simplified to

∂r

∂t
= H̃. (5.44)
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With the local mean curvature computed on the radial surface parameterization, mean curvature
flow does not have the undesired shrinking effect, since H̃ = 0 on a sphere of arbitrary size.
The spherical harmonic domain representation of the surface allows for an exact analytical compu-
tation of the surface normals and accordingly the surface curvature that is to be minimized. This
way, we do not have to approximate forces acting on the surface but can compute them directly. In
the following paragraph, we give formulas for the computation of the surface normals and curvature
that are needed for the computation of the mean curvature flow.

Surface Curvature Computation The derivatives of the radially parameterized surface can
be computed analytically as

∂r(θ, φ)

∂θ
=

B∑
l=0

l∑
m=−l

r̂ml
∂Y m

l (θ, φ)

∂θ
and

∂r(θ, φ)

∂φ
=

B∑
l=0

l∑
m=−l

r̂ml
∂Y m

l (θ, φ)

∂φ
. (5.45)

The resulting derivative vectors of the radially parameterized 3D surface are

∂Γ(θ, φ)

∂θ
=


1
0

∂r(θ, φ)

∂θ

 and
∂Γ(θ, φ)

∂φ
=


0
1

∂r(θ, φ)

∂φ

 . (5.46)

The computation of the derivatives of the Spherical Harmonic basis functions is given in appendix
D.1. The surface normal n(θ, φ) is computed as

n(θ, φ) =

∂Γ(θ, φ)

∂θ
× ∂Γ(θ, φ)

∂φ∥∥∥∥∥∂Γ(θ, φ)

∂θ
× ∂Γ(θ, φ)

∂φ

∥∥∥∥∥
, (5.47)

where × denotes the cross-product of two vectors. With the surface derivatives, the normal and
derivatives of the normal, the first (E,F,G) and second (L,M,N) fundamental forms can be
computed. The first fundamental forms are given by

E = 1 +

∣∣∣∣∣∂r(θ, φ)

∂θ

∣∣∣∣∣
2

, F =

〈
∂Γ(θ, φ)

∂θ
,
∂Γ(θ, φ)

∂φ

〉
and

G = 1 +

∣∣∣∣∣∂r(θ, φ)

∂φ

∣∣∣∣∣
2

.

(5.48)

The second fundamental forms can be computed as

L = −

〈
∂Γ(θ, φ)

∂θ
,
∂n(θ, φ)

∂θ

〉

M =
1

2

〈∂Γ(θ, φ)

∂θ
,
∂n(θ, φ)

∂φ

〉
+

〈
∂Γ(θ, φ)

∂φ
,
∂n(θ, φ)

∂θ

〉
N = −

〈
∂Γ(θ, φ)

∂φ
,
∂n(θ, φ)

∂φ

〉
.

(5.49)
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The local mean curvature is then given by

H =
EN +GL+ 2FM

2(EG− F 2)
, (5.50)

and the Gaussian curvature is computed as

K =
LN −M2

EG− F 2
. (5.51)

Active Surface Evolution As we are initializing the active surface as a sphere, Γ(θ, φ) =
const. at the beginning. For every iteration, we project the forces that act on the surface onto their
radial components, i.e.

F̄data(θ, φ) =
〈
Fdata(c + S(θ, φ) · r(θ, φ)), r(θ, φ)

〉
· r(θ, φ), (5.52)

where r(θ, φ) is the radial unit vector in direction (θ, φ) and c is the object’s center. Then we com-
pute their spherical harmonic expansion. The actual surface update can be performed in spherical
harmonic domain. To get the new surface positions in the spatial domain, we then need to perform
an inverse Spherical Harmonic transform. The spherical harmonic transform can be computed very
efficiently using S2kit 6.

5.3.4.5. Evaluation

The evaluation was performed using the three sets of 3D CLSM recordings of living tobacco leaf
protoplasts described in section 3.2.3. The whole segmentation process was performed on slightly
smoothed data, we applied a Gaussian smoothing with σ = 0.28µm. For the user specified bound-
ary filtering step, we had to specify certain parameters. The chosen profile length is 8 at a step-size
of 0.56µm which is the double voxel size in xy-direction. The steerable filter, which was used
for filtering out spot-like filter responses in the background, also has a parameter σs that specifies
the thickness of the planes it searches for. We have set σs to 0.56µm. The active surfaces were
initialized with the estimated radius r from the detection step. The bandwidth was limited to 16
bands. For the cells with stained Cyt, we have displayed the first training sample and the results of
the different steps of the presented framework in figure 5.25 in two orthogonal views. The resulting
surface is shown in figure 5.26 for one of the cells in a volume rendering.

5.3.4.6. Results

To evaluate our method, we applied the segmentation to all 187 cells in our database. For each
of the three patterns, one cell was randomly chosen as first training cell. The segmentation results
for all cells were visually inspected in a 3D slice viewer by two experts, who gave label 1 if the
segmentation was correct, and label 0 if not. For those cells that were not correctly segmented after
the first iteration, a second training step was performed: one of the cells with label 0 was chosen
for each pattern as training sample. Altogether, we performed three iterations. The results can be

6S2kit is a freely available collection of C routines which compute the discrete Spherical Harmonic transforms of
functions defined on the sphere. It is a light version of the SpharmonicKit and is developed at Dartmouth College
by S. Moore, D. Healy, D. Rockmore and P. Kostelec. It is available at www.cs.dartmouth.edu/~geelong/
sphere/.
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Figure 5.25.: (a) Sample with Cyt staining. (b) The clustering result from the K-means clustering
with six clusters. Inner and outer boundaries lie, as expected, in different clusters. One
can clearly see, that the absorption in z-direction leads to less candidates for edges and
thus less training examples for the edge appearance in the lower z-regions. (c) The
two clusters colored in green were chosen as relevant. (d) The filter response Ā. (e)
The used edge map (after the application of the steerable filter). (f) The segmentation
result.

Table 5.5.: Results of our method after 1, 2 and 3 iterations.

Experiment # of cells Iteration 1 Iteration 2 Iteration 3
Cytoplasm 55 85.5% 94.6% 94.6%
Golgi 86 86.1% 88.4% 96.5%
ER 46 91.3% 95.7% 97.8%

seen in table 5.5. Most of the cells were already correctly segmented after the first iteration. Some
results can be seen in figure 5.27.
For further evaluation, we compared the segmentation carried out with our method to the results
that could be achieved with the ITK segmentation tool ITK-SNAP [Yushkevich et al., 2006] based
on 3D geodesic active contours. The internal forces are based on the gradient magnitude in the
dataset. The preprocessing as well as the active contour parameters have to be manually adjusted
for each dataset, which is why we performed this segmentation only for three datasets. The ITK-
SNAP preprocessing parameters are: the scale of the Gaussian blurring σ, which we set to 0.56µm,
the edge contrast κ, which we set to 0.1 and the edge mapping exponent, which we set to 1.6. For
the geodesic active surfaces, some parameters have to be adjusted as well. Here, we could not use
the same parameters for all three cells. We manually initialized the contours from outside, because
the internal structures of the cells made an initialization from inside impossible. The balloon force
was set to a value between −0.7 and −0.9, the curvature force, that ranges from 0 (detailed) to 1
(spherical) was set to 0.8 and the advection force, that pushes the boundary back as it tries to cross
edges, was set to 4.0. Additionally, the iteration has to be stopped manually. We needed between
461 and 791 steps to get the results displayed in figure 5.28. As can be seen, this segmentation tool
can, despite all manual interaction, not handle the heterogeneous boundary and the absorption in
z-direction.
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Figure 5.26.: Volume rendering of the two data channels of a recording showing three protoplast
cells. The smallest cell between the two large cells does not have any chloroplasts yet,
which is why only the protein pattern (red) is visible. The protein pattern has been
used to produce the segmentation on one of the cells, here plotted as a surface mesh.

5.3.4.7. Discussion

Our new semi-supervised segmentation method for volumetric datasets can handle heterogeneous
edge appearances. In our framework, edge models are learned from user input, while the user
interaction is limited to very simple and intuitive operations and no further low-level parameters
have to be adjusted. Although current 3D confocal recordings of single plant cells pose numerous
challenges, such as inhomogeneous object boundaries, strong gray-value attenuations and noise, the
segmentation of the datasets using the proposed method resulted in a highly reliable identification
of cell boundaries.
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Figure 5.27.: Segmentation results in three orthogonal views. We have displayed two examples for
every stained pattern.

Figure 5.28.: Segmentation results with ITK-SNAP for the same cells as in figure 5.27, second row.

5.4. Weighting Parameter Adjustment

In the active surface energy functional, we always have weighting factors for the single energy
terms. These parameters weight the forces pulling the surface during the surface evolution:

Γk+1 = Γk + νFint + γFdata, (5.53)

where ν and γ are the weighting parameters. In our implementation, Fint can usually be decom-
posed to elasticity and rigidity forces Fint = αFela + βFrig that are themselves weighted by α and
β. In the remainder of this section, we will assume that the relation between α and β can be kept
constant such that we can find an appropriate ν and define Fint = ν

(
α
βFela + Frig

)
. In our own

implementation, αβ = 1.
The choice of the weighting parameters that steer the relation between the internal active surface
energy and the energy from the data term are crucial for the resulting segmentation quality, and in
most cases the same weights do not work for different data sets. When for example looking at the
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example slice from a DAPI stained Arabidopsis Thaliana root tip dataset shown in figure 5.29(a)
the importance of the right choice of the weighting becomes obvious. Even though we are using
the RGP GVF force field with large capture range, the surface can easily be “irritated” for example
by the mitochondria visible in the data. The influence of the parameter choice on the segmentation
result is shown in figure 5.29(b)-(e).
An automatic adjustment of these weighting parameters is thus desirable. In microscopic recordings
of biological specimen, it is also often the case that the contour of the object we want to segment is
not fully visible because of bad contrast. absorption, scattering, or staining artifacts. For example
when imaging cell nuclei with DAPI staining, the nucleoli inside the nuclei are not stained and
cause holes in the visible nucleus boundaries, whereas regions of dense chromatin result in very
bright image regions and thus hamper a good segmentation. This is why we want our weight ad-
justment method to locally adapt the weighting parameters for every surface point separately - thus
promoting smooth surfaces where the data is deficient.
In most cases when segmentation is done in biological data, we are searching for certain boundary
properties, e.g. edge profiles, texture, etc., which are in most cases homogeneous over the whole
object surface. This assumption can therefore build the basis for the parameter adjustment. In [Keu-
per et al., 2010c], we have proposed a method for the automatic and dynamic adaption of weighting
parameters using exactly this fact. According to the underlying boundary homogeneity assumption,
the external data driven active surface forces should be strongly weighted if a boundary estimate
looks similar to the rest of the boundary. If a boundary estimate looks much different from the rest
of the boundary, the data is considered deficient and high weights should be assigned to the internal
active surface forces. One high level parameter still needs to be adjusted in advance. In order to
be able to model the object boundary, we need to know approximately how much of the boundary
information in the dataset is deficient. Thus we are expressing the classical low level weighting pa-
rameters ν and γ from the surface evolution forces in equation (5.53) by one high level parameter,
which is the ratio of the object boundary that is certainly visible in the recording. Based on this
knowledge, the weights are adjusted individually and dynamically for every surface node during
the evolution of the active surface.
The main difference to the active appearance models as e.g. presented in [Cootes et al., 2001],
where the relationship between model parameter displacements and residual errors is learned in a
training step, is that for our method no prior knowledge about the concrete boundary appearance
is included and no training has to be done. In [Allili and Ziou, 2008], a dynamic combination of
boundary and region information for 2D segmentation problems is presented, which is, like our
approach, based on probability maximization. Unlike in our method, the dynamic weighting is
there included into a level set framework and used to combine region and edge information in 2D
color images. The internal forces are not dynamically regulated. In [Sarti et al., 2000], a level set
segmentation algorithm handling missing edges is presented, that is based on gradient flow. Unlike
our algorithm, this method relies on a user-defined initial guess.

5.4.1. Dynamic Weight Adjustment

Since our method will be evaluated on two datasets of cell nucleus recordings, we assume in the
following that the objects are star-shaped. Therefore, we are considering the gray value profiles
rxi ∈ Rl of the surface vertices vi in radial direction, where l is the number of sampling points
on the profile. As for the profile gradients in the previous section, the boundary profiles along the
model surface normals can be taken instead, for the segmentation of arbitrary shapes with spherical
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(a) 3D CLSM recording of
DAPI stained Arabidopsis
thaliana root tip cell nuclei
in xy-view.

(b) Force field RGP GVF

(d) ν = 0.5, γ = 0.5

(c) ν = 0.9, γ = 0.1

(e) ν = 0.1, γ = 0.9

Figure 5.29.: Raw data of the Arabidopsis thaliana root tip and the data force field and segmentation
results with fixed parameters in two orthogonal views. The influence of the choice of
the weighting parameters ν and γ can be seen in (b)-(e).

topology. In every iteration, we compare the possibly new profiles given external forces only to the
profiles of the previous step. This is done to encourage the surface to move according to external
forces whenever the resulting position fits into the average of the profiles. If a new vertex profile is
similar to the other profiles, the underlying data contains valuable information and thus the external
forces shall have high weights. If a new vertex profile is not similar to the other profiles, the
underlying data is considered to be deficient. In these cases, we want to promote smooth, sphere-
like model surfaces and thus assign high weights to the internal forces. This main idea is formalized
as described in the following.
To model the vertex similarities we have chosen a unimodal multivariate normal distribution over
the vertex profiles. Note that this is different from the multimodal profile appearances we have
learned in section 5.3.4.3 from user input. While we allowed for multimodal boundary appearances
for the edge filtering method, we have to exclude this case here, where the profiles are evaluated
fully automatically. The probability density function (PDF) is given by

f(rxi) =
1

(2π)l/2|Σ|1/2
· e−

1
2

(rxi−µr)TΣ−1(rxi−µr), (5.54)

where Σ is the covariance matrix of all |V| profiles rxi and µr is the vector-valued expected value.
Considering the joint distribution is necessary because of the high correlation of the gray values
on the profiles. The PDF f allows to compute the probability of a profile P (rxi). The vertices lie
on valid data with the probability P (B), which is the only high level parameter we use. Since we
assume that the majority of vertices, e.g. 80%, lie on valid data, we compute a second PDF gf (rxi)
to describe the appearance of the 80% of the profiles r̄xi that are most probable according to f , i.e.
that describe valid boundary information:

gf (rxi) =
1

(2π)l/2|Σ̄|1/2
· e−

1
2

(rxi−µr̄)T Σ̄−1(rxi−µr̄), (5.55)

where Σ̄ is the covariance matrix of the P (B) · |V|most probable profiles r̄xi according to f and µr̄

is the respective expected value. With gf , we can compute the conditional probability of a profile rxi
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Figure 5.30.: |Σ| during active surface evolution for one of the Drosophila S2 cell nuclei.

given the fact that it contains valid boundary information p(rxi |B), and thus with Bayes Theorem
the conditional probability of a profile rxi to contain boundary information given its appearance:

p(B|rxi) =
p(rxi |B) · P (B)

P (rxi)
. (5.56)

For every vertex vi, we compute its new position xext
i given external forces only and the according

profile rxext
i

. Then, we compute p(B|rxext
i

).
The weights νi and γi that are assigned to vertex vi in one iteration step are finally computed as:

νi = 1− p(B|rxext
i

), γi = p(B|rxext
i

), (5.57)

to ensure high weights for the external forces if rxext
i

fits well to the majority of the profiles, and to
assign low weights for the external forces if the profile does not. In most cases, we do not really
want νi to be 0, i.e. we want at least “some” smoothness. Thus we are adding a small ε to the νi.
During the evolution of the model, the determinant of the covariance matrix |Σ| contains the in-

formation about the profile similarities. Once the model is attracted to the object boundaries, |Σ|
is small, whereas if the surface lies on heterogeneous regions, |Σ| is large. This is why we are
taking |Σ| normalized by the maximum of its current value and its previous values as an addi-
tional convergence criterion, i.e. the evolution stops at step t, if the surface does not change or if

|Σ|t
max(|Σ|1,...,t) ≤ 0.3. The normalization has to be done because |Σ| is maximal if the surface lies on
heterogeneous data, e.g. is partially converged. If the surface is initialized in the background, one
might start with a very low |Σ| (see figure 5.30). The value 0.3 is chosen manually.
In our implementation, we compute the profile for each vertex over ten sampling points in radial di-
rection from the object center. The resulting covariance matrices Σ and Σ̄ are thus 10×10 matrices.

5.4.2. Evaluation and Results

The method was first tested on toy examples (see fig. 5.31) and then evaluated on our synthetic cell
nucleus data (compare section 5.3.2.1) and two different types of real cell nucleus recordings: on
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GVF(∇‖∇I‖)

RGP GVF(I)

GVF(∇‖∇I‖)

RGP GVF(I)

toy data Fdata ν = 0.2
γ = 0.8

dynamic
weighting

Figure 5.31.: Results for the toy examples with the standard GVF force field and RGP GVF.

the Drosophila S2 cell nucleus dataset described in section 3.2.1 and on a dataset of a DAPI stained
Arabidopsis thaliana root tip recorded with a CLSM (see section 3.2.2). The toy examples are de-
signed to represent the problems that are present in the biological datasets. The first toy example
is a sphere with a spherical hole, which should be ignored whenever encountered in our biolog-
ical data, because it would probably correspond to a nucleolus. The second example is a sphere
with a three times brighter sphere inside, corresponding to a spot of dense chromatin, which should
not influence the segmentation neither. We have added Gaussian noise to the two examples. With
the dynamic weighting of the active surface forces, these toy examples have been well segmented,
which, with fixed parameters, could not be done. For comparison, we have segmented the toy data
with a standard force field GVF(∇‖∇I‖) and the improved RGP GVF force field from section
5.3.2. With the dynamic weighting parameters, the active surface finds the correct contour.
Our synthetic dataset of cell nuclei is quite homogeneous in the chromatin distribution. The as-

sumption that there is deficient boundary information does therefore not hold. However, when
segmenting these data with standard GVF data force fields computed directly on the image edges,
the surfaces are attracted to boundaries of neighboring cell nuclei. With the dynamic weighting
parameters, the influence of these neighboring nucleus boundaries should diminish. The quantita-
tive results are shown in table 5.6 and 5.7. As expected, the results with GVF showed the largest
improvement. In the evaluation on the whole volume, the accuracy even grows beyond the accuracy
of the MSGVF segmentation. However, the recall is still quite low which means that we still have
an undersegmentation in z-direction. The results on the central xy-section show that the resulting
accuracy is still below the accuracy that can be achieved with RGP GVF and MSGVF. However, the
additional information on the boundary appearance yields a strong improvement. While the other
methods had already previously some information on the sought surface appearance, the informa-
tion gain for the GVF computed on the standard force field is potentially very high with the new,
proposed weighting algorithm.

On our real data, the dynamic weighting parameters as well yield improvements. Due to the strong
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Table 5.6.: Segmentation results on the synthetic dataset evaluated in the whole volume.

weights precision recall accuracy
GVF ν = 0.2, γ = 0.5 97.47% 60.01% 58.65%
GVF dynamic weights P (B) = 0.6 92.95% 81.82% 76.51%
GVF dynamic weights P (B) = 0.7 93.90% 78.17% 73.87%

RGP GVF ν = 0.2, γ = 0.7 73.63% 96.02% 71.44%
RGP GVF dynamic weights P (B) = 0.6 73.81% 95.57% 71.49%
RGP GVF dynamic weights P (B) = 0.7 73.92% 95.55% 71.44%
MSGVF ν = 0.2, γ = 0.7 75.43% 96.03% 73.13%
MSGVF dynamic weights P (B) = 0.6 75.77% 95.60% 73.21%
MSGVF dynamic weights P (B) = 0.7 75.70% 95.60% 73.13%

Table 5.7.: Segmentation results on the synthetic dataset evaluated in the central xy-section.

weights precision recall accuracy
GVF ν = 0.2, γ = 0.5 99.22% 84.73% 84.15%
GVF dynamic weights P (B) = 0.6 98.80% 90.83% 89.81%
GVF dynamic weights P (B) = 0.7 98.89% 89.70% 88.78%

RGP GVF ν = 0.2, γ = 0.7 98.14% 94.83% 93.13%
RGP GVF dynamic weights P (B) = 0.6 98.47% 94.13% 92.75%
RGP GVF dynamic weights P (B) = 0.7 98.46% 94.0% 92.61%
MSGVF ν = 0.2, γ = 0.7 98.16% 94.89% 93.22%
MSGVF dynamic weights P (B) = 0.6 98.47% 94.12% 92.75%
MSGVF dynamic weights P (B) = 0.7 98.48% 94.02% 92.66%

blurring in z-direction it is hard to judge the segmentation of the Drosophila S2 cell nuclei in the
lower regions, but the overall result seems reasonable for most of the nuclei. We assumed a prior
probability of an intact boundary if P (B) = 0.8. See figure 5.32 for some examples. On the left,
you can see an overview of a dataset, on the right, the segmentation results for four example cells
in orthogonal views.

In figure 5.33, the segmentation results of the proposed dynamic weighting are displayed in direct
comparison to the segmentation with fixed parameters. For the fixed parameters, we heuristically
choose ν = 0.3 and γ = 0.8 which shows good results as long as there are not too many bright
chromatin spots in the data. The new contours fit the nucleus shape much better whereas the con-
tours with fixed parameters are easily influenced by bright chromatin spots.

For the Arabidopsis thaliana nuclei we initialized the surfaces from outside, with spheres with 1.5
times the radius 7. The segmentation of the Arabidopsis thaliana nuclei is more difficult because
of the dense tissue. The nuclei often touch one another and cell organelles touch the boundaries.
Also, the more central the nuclei lie inside the root, the more difficult is the segmentation with
our homogeneity based parameter weighting: as can be seen in figure 5.34, the nucleus boundaries
become less and less homogeneous on the inner layers. Furthermore, the nuclei are much more

7The nucleolus centers and radii have been manually annotated by Thorsten Schmidt.
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Figure 5.32.: Segmentation results for the Drosophila S2 cell nuclei.

Figure 5.33.: Segmentation results of eight cells in three orthogonal views. The white bar indicates
as above the length of 5µm. The contours found with fixed parameters are drawn
in red, contours found with the proposed dynamic parameter estimation are drawn in
green. The red contours are attracted to the bright chromatin spots if the spots are
located near the boundary.

elongated and the nucleoli potentially “split the chromatin in two halves”. Despite these facts, most
of the nuclei could be properly segmented, see figure 5.34 for an example slice, plotted in three
orthogonal views. The colors correspond to the cell layer in the root.

5.4.3. Discussion

We have presented a probability based method to automatically adjust active surface parameters
during the surface adaption process. The weighting parameters are regulated dynamically for each
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Figure 5.34.: Segmentation results for Arabidopsis thaliana root tip nuclei. The colors indicate the
different layers of the root from outside to inside: root cap (violet), epidermis(cyan),
cortex (green), endodermis (yellow), pericycle (red).

individual vertex based on its appearance - without the input of any prior knowledge. This way, we
can avoid tedious parameter adjustment and allow for good segmentation results even in deficient
data. For our noisy, biological datasets, the method has some major advantages compared to stan-
dard active surfaces with constant weighting parameters all over the surface: first, regions where
the boundary information is missing can be closed smoothly, and second, gradients that originate
from bright inner regions of the nuclei can be ignored, such that the correct boundary can be found.
The presented method however relies on the assumption that the contour is homogeneous in all po-
sitions where it is not deficient. Generally, an extension of the method to bi-, or multi-modal edge
appearance distributions does not seem to be impossible. However, in this case it is not obvious
how the desired edge appearances should be selected without user interaction.

5.5. Conclusion

Active surface models are a means to accurately segment cell nuclei and single cells from volumet-
ric datasets. We have presented methods for the generation of data force fields that incorporate to
a certain extent knowledge about the underlying objects. However, the included information is of
quite general nature: we use the fact that the objects have closed surfaces with spherical topology
and are star-shaped. Furthermore, we use information from the imaging techique which is that,
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caused by the blurring, not only strong gradients but also weak gradients with a high local con-
sistency contain valuable boundary information. The proposed data force fields lead to accurate
segmentations that work robustly in our blurred and noisy datasets and outperform state-of-the-art
methods like standard GVF active surfaces, level sets, and the region competition method from
ITK-SNAP.
In order to learn appropriate data force fields for the segmentation of new microscopic data, we
have presented a semi-supervised method that allows to generate specialized data force fields for
cell segmentation with only few user interactions. The filters learned for the generation of these
force fields can be iteratively refined until all object boundary appearances in a certain dataset are
covered.
Although we have evaluated these data force field with parametric active surfaces, their application
is per se not limited to parametric active surfaces but they can be equally useful in a geodesic level
set framework.
Thanks to our proposed method for the active surface weighting parameter adjustment, these factors
can be dynamically and automatically determined such that only one high level parameter needs to
be set instead of two low level parameters as in the traditional active surface setting. The method
automatically learns the boundary appearance of the object boundary if it can be described by a
single Gaussian normal distribution. This additional information greatly improves the segmenta-
tion result if the image of the object boundary is deficient whereas the results remain comparable to
fixed parameter settings if the boundary information is not lossy.
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Segmentation

In this chapter, we present a multi-label segmentation algorithm based on a hierarchical Markov
Random Field that we have proposed in [Keuper et al., 2011]. In the proposed method, the segmen-
tation and classification task are handled simultaneously as an image-based multi-label problem.
The hierarchical Markov Random Field (HMRF) is built upon a hierarchy of image regions. Thus
topological knowledge is introduced into the segmentation and classification algorithm. This topo-
logical knowledge is important for many segmentation applications since objects often can not be
recognized by their local features. The general idea of using small image regions also leads to a
speed-up compared to a pixel-based segmentation, while texture and intensity information inside the
regions is preserved. Furthermore, this bears the advantage that a merging of segments by semantic
cues becomes much easier. The regions are generated with the method of [Arbeláez et al., 2011,
2009] that we have described in section 2.4.1. The local evidences inside the HMRF are learned
using Support Vector Machines (SVM) [Vapnik, 1998]. Thus, we only need a relatively small set
of training samples. As in [Mičušík and Pajdla, 2007], we are formulating the segmentation as a
MAX-SUM problem for which there exist efficient solvers based on linear programming [Werner,
2007] (see section 2.2.6). An exact MAP solution cannot be found as the problem is NP-hard.
We apply our method to the automatic segmentation of mast cells and the segmentation and clas-
sification of their cell organelles from 2D electron microscopic recordings. Our data set has been
presented in section 3.4. Cell region segmentation from EM recordings is an ongoing research topic
(e.g. [Chang et al., 2009]). The different labels we want to assign are background, cytoplasm, nu-
cleus, mitochondria, and vesicles. The data set has been manually annotated by experts with these
labels. The expert labeling for the example dataset is given in figure 6.1(d). As can be seen, a sim-
ple thresholding is not sufficient for the segmentation, because e.g. the vesicles (blue) can have the
same gray value as the background (black), while parts of the nucleus (red) have the same intensity
as the cytoplasm (yellow). Mitochondria (cyan) can also easily be confused with the nucleus or
vesicles. Given these challenges, it is also evident that we need topological knowledge about the
possible label constellations (e.g. The nucleus is enclosed by cytoplasm).

6.0.1. Related Work

MRFs and Conditional Random Fields (CRF) have been widely used for image segmentation in
natural images [Mičušík and Pajdla, 2007; D’Elia et al., 2003; Plath et al., 2009]. In [Mičušík
and Pajdla, 2007], the MAX-SUM solver is used to solve classical multi-label MRFs on image re-
gions while seeds are automatically generated using texture and color cues. In [Plath et al., 2009]
and [Reynolds and Murphy, 2007], tree-structured multi-class CRFs are presented that, like our
method, couple local and global information. [Plath et al., 2009] also use SVMs to learn local ev-
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idences. Unlike our method the local segments in [Plath et al., 2009] and [Reynolds and Murphy,
2007] are only dependent on the higher hierarchies whereas no mutual dependency is modeled.
This is also the case for [D’Elia et al., 2003], where a tree-structured MRF is presented for binary
segmentation tasks. In [Shotton et al., 2008], a semantic image categorization and segmentation
algorithm is presented that is based on ensembles of decision trees. The idea of semantic texton
forests might be interesting for our task as well, as e.g. the vesicles rather form a semantic class.

6.0.2. Method Outline

In our proposed method, we tackle the problem of segmenting multiple semantic classes by learning
the different local and global appearances of the structures with the SVM. The information is then
combined in a hierarchical MRF. Our segmentation consists of the following steps:

1. With an unsupervised edge based segmentation method, we hierarchically subdivide the im-
age into regions.

2. For all regions, we compute Gabor texture features using a Gabor Filter bank.

3. Two-class SVM classifications are performed for all pairs of labels.

4. From the SVM decision values, we compute multi-class probabilities for all regions.

5. A HMRF is built depending on the region hierarchy and solved using the MAX-SUM-solver.

6.1. Region Hierarchy Generation

The regions are generated using gPb-OWT-UCM, the method proposed in Arbeláez et al. [2011,
2009] (compare section 2.4.1 for a detailed description). The result of this method are closed, non-
selfintersecting regions that are hierarchically ordered according to the underlying gradients in the
image. The finest regions are in the 0-level of the hierarchy, the coarsest in the top-most level L. For
our data, small organelles like the mitochondria are only segmented at the lowest level of hierarchy.
We therefore use all of the segmented regions as superpixels. In some cases, the local information
of the superpixels and their direct neighbors is not sufficient to even manually predict their labels.
Thus, larger regions at a higher level in the hierarchy have to be used in order to introduce global
knowledge into the superpixel classification. This higher level is chosen with a fixed threshold at
the center of the hierarchy, i.e. at L/2. In the remainder of this section, the regions segmented at
finest level will be referred to as superpixels or low level regions, those segmented at the coarser
level will be called high level regions. The result of the hierarchical region generation on our data
is shown in figure 6.1(b).

6.2. Region Learning

6.2.1. Feature Computation

On all high level and low level regions, we compute a set of features based on a Gabor filter bank
with complex filters

gλ,θ(x, y) = exp

(
−x
′2 + y′2

2σ2

)
· exp

(
ı2π

x′

λ

)
(6.1)
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(a) Raw Data (b) UCM

(c) Overlay with all superpixels (d) The chosen hierarchy levels. The superpixel
level is colored in blue, high level boundaries
are marked in red.

(e) Ground truth annotation

Figure 6.1.: An example dataset and the region hierarchy built upon it.
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Table 6.1.: Pixel class distribution in the regions.
high level ratio of pixels from class

region label 1 2 3 4 5

1′ 97.6% 2.3% 0% 0% 0%
2′ 8.3% 74.8% 0.8% 1% 15%
3′ 0.3% 2.5% 97.2% 0% 0%

x′ = x cos θ + y sin θ

y′ = −x cos θ + y sin θ.

Altogether, we use 20 different filters with five different frequencies λ (from 23.2nm to 69.6nm)
and an angular resolution of 45◦ i.e. four different angles θ. The mean energy of the filter responses
inside the regions is finally used as feature vectors. Additionally, we append the mean intensity
and the mean gray value variance inside the regions to the feature vectors. These feature vectors
allow us to learn region classifiers that would permit to directly predict the class membership of
each region independently. However, the spatial dependencies between the superpixels contain
important information, which is why we base our segmentation on a MRF.

6.2.2. SVM Classification with Probabilistic Output

In order to learn the local evidences, we use a Support Vector Machine (SVM)1. In fact, we are
training two-class SVMs with RBF kernels for all K2 pairs of labels.
The training data is generated from the manual annotations in the training set. At the finest scale,
each training superpixel is assigned the label (from 1 − 5) of the majority of its pixels. This is
valid because we assume that each superpixel belongs to exactly one class. At the coarser scale,
this is more difficult. Here, we also identify the majority vote of all pixels inside a region, but the
regions are mostly composed of pixels from several different classes. Most notably, the regions
mainly consisting of cytoplasm also contain parts of the nucleus, mitochondria and vesicles. On
the other hand, none of the training regions mainly consisted of mitochondria or vesicles because
these organelles are small and can only be discriminated at a very fine level of hierarchy. In order
to handle these facts, we learn the distribution of classes inside the high level regions and assign
new labels 1′, 2′ and 3′. The pixel label distribution inside these high level region labels is shown
in table 6.1. For all pairs of these new labels, we also train two-class SVMs. The decision values
of the SVMs give us information about each two-class problem. For the recombination of these
two-class decision values into multi-class probabilities, the second method described in [Wu et al.,
2004] is used yielding a probability p`ivi for every region vi and label `i 2. The SVM solution for our
segmentation task would be to assign to every superpixel vi the most probable label `i according
to this probability. We are instead using these probabilities as data term in our HMRF (see section
6.3.1) and compare our results to the pure SVM classification.

1We used the C++ SVM implementation from http://lmb/resources/opensource/libsvmtl.en.html.
2C++ code for the computation of these probabilities has been provided by Olaf Ronneberger.
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6.3. Hierarchical Graph Construction

6.3. Hierarchical Graph Construction

In our implementation, the graph G = (V, E) is constructed such that there exists a node vi ∈ V for
every image region at the two different region levels (high level regions and superpixels). The edges
E represent the mutual dependencies between the nodes and therefore connect each two neighboring
nodes at one level. By the nature of our region generation, each superpixel, belongs to exactly one
high level region. In our graph, they are therefore connected to exactly this node in the higher
level. Figure 6.2 shows a scheme of the hierarchical graphical structure used. As all five classes are

Figure 6.2.: Hierarchical graph structure.

present in all the images, the number of labels K is constant at the superpixel level and set to five.
Every node can be assigned one of the five different labels.
For this graph, we want to find the labeling ` maximizing the energy

U(`|w) =
∑
vi∈V

wi(`i) +
∑

vi,vj∈V
wij(`i, `j), (6.2)

where the unary and binary potentials in w are probabilistic terms depending on the region features.

6.3.1. Probabilistic Data Term

The data terms are the unary graph potentials in our hierarchical MRF. These data terms are built
upon the probabilistic output of the SVM classification, i.e., we use the SVM to learn the local
evidences (see section 6.2.2).
When performing the classification as stated in section 6.2.2, we get a probability p`ivi for every node
vi and label `i. The data term wi(`i) of the graph G is encoding the quality of assigning the label `i
to node vi. We thus set

wi(`i) = p`ivi . (6.3)

6.3.2. Edge Term

In literature (e.g. [Mičušík and Pajdla, 2007]), the edge term is mainly used in order to introduce
smoothness into the segmentation result. In our case, this is different, because specially the small
cell organelles are spread throughout the cell. A strong smoothness constraint would hamper a
good classification of these organelles. Furthermore, the cell surfaces are not even and thus the
cytoplasm segmentation would neither profit from a smoothness term. On the other hand, we can
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see that some classes are always grouped together while they never get into contact with others.
Cell organelles for example hardly ever touch the background, while the nucleus has most common
surfaces with the cytoplasm. We define the average adjacency ratio matrix AR as the symmetric
matrix containing the average number of boundary pixels between class `i and class `j normalized
by the total number of boundary pixels for all classes. The AR on the superpixel level is given in
equation (6.4) for one example training dataset

AR =


0.241 0.118 0 0 0.008
0.118 0.278 0.010 0.006 0.037

0 0.010 0.087 0 0
0 0.006 0 0.001 0

0.008 0.037 0 0 0.049

 . (6.4)

We base our edge term wij(`i, `j) on this adjacency ratio in our training data and set

wij(`i, `j) =
2 ·AR(`i, `j)∑

`k

AR(`i, `k) +
∑
`k

AR(`k, `j)
(6.5)

for all vi and vj on the superpixel level. Between the high level regions, the AR and wij(`i, `j) are
computed accordingly.
Between the two levels of hierarchy, we also have to set the edge qualities according to figure 6.2.
Here, we base our choice on the learned distributions in the classes 1′, 2′, and 3′ (see table 6.1).
The edge between the high level node v̄i and the low level node vj is set to the corresponding class
distribution entry d ¯̀

i,`j
,

w ¯̀
i,`j

( ¯̀
i, `j) = d ¯̀

i,`j
. (6.6)

6.4. Experiments

Our data consists of 27 Transmission Electron Microscopic recordings from Mast Cells, more
specifically BMMC (bone marrow-derived mast cells) (compare section 3.4). The data has been
manually annotated by experts, who distinguished between five classes: background, cytoplasm,
nucleus, mitochondria and other vesicles. This last class is the least homogeneous as it contains
many different cell organelles as lysosomes, the Golgi apparatus, the endoplasmic reticulum, etc.
and was therefore hard to classify for the SVM. On average, the UCM yielded 1642 superpixels per
image. The average number of high level regions was 43.
We trained RBF-Kernel SVMs for each two-class one versus one classification problem. The cost
values were adapted with a gridsearch on one of the training images. The code of the MAX-SUM
solver was downloaded from 3.
We have divided our data into three independent sets of images (each containing 9 images). The
algorithm was evaluated with a three-fold cross-validation. The results were compared with those
we could achieve by directly using the SVM classification (as described in section 6.2.2), as well
as those we could achieve by using a simple MRF without hierarchy. For this, we built a MRF only
containing the lower level of our region hierarchy. All further parameters of the MRF were chosen
identically to our HMRF.

3http://cmp.felk.cvut.cz/cmp/software/maxsum/.
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6.5. Results

Table 6.2.: Segmentation accuracy.
accuracy in class overall acc.

background cytoplasm nucleus mitochondria other vesicles
HMRF 87.3% 61.7% 31.8% 8.1% 10.9% 65.4%
MRF 83.5% 58.6% 21.9% 10.8% 14.9% 61.5%
SVM 85.2% 57.3% 22.2% 9.5% 17.6% 60.5%

Table 6.3.: Precision and Recall of the HMRF method.

background cytoplasm nucleus mitochondria other vesicles
precision 93.3% 67.4% 55.5% 22.7% 69.3%

recall 93.3% 89.1% 40.4% 18.2% 11.9%

6.5. Results

As a performance measure, we use the segmentation accuracy of all classes (including background).
The accuracy is computed by

accuracy =
tp

tp + fp + fn
, (6.7)

where tp, fp, and fn are the true positives, false positives and false negatives respectively. The
segmentation accuracies per class are given in table 6.2. Additionally, we compute the overall seg-
mentation accuracy for all classes. This might be interesting, as the classes are very different in size.
Thus, at visual inspection, a segmentation result with low accuracy in the cytoplasm class appears
much less reasonable than a low accuracy in the mitochondria class. In the overall segmentation
accuracy, we observe an improvement from 61.5% with a simple MRF to 65.42% with our HMRF
segmentation. The strongest improvement can be observed in the segmentation of background,
cytoplsm and nucleus regions. For these larger regions, the higher level in the hierarchy contains
important information.
Actually, the accuracy is reasonably high for the classes background and cytoplasm. This is im-
portant because those are the largest classes and from the biological point of view, the delineation
between cell and background is crucial. In the smaller classes mitochondria and other vesicles, the
accuracy is quite low. In order to quantify what this means, we are looking at the precision and
recall

precision =
tp

tp + fp
recall =

tp

tp + fn

of the superpixel classification (see table 6.3). Here, we can see that for the vesicles the precision
is quite high while the recall is low. This means that whenever our algorithm classifies a region as
vesicle, it is probably right, whereas many true vesicles are not recognized. On the other hand, the
precision for the cytoplasm class is lower than its recall. This indicates that regions belonging to
different classes (in our case to cell organelles), have been wrongly classified as cytoplasm.
When looking at the class-wise accuracy, the SVM segmentation result seems to be already pretty
good. However, when looking at the actual segmentation masks (see figure 6.3 and 6.4), one can
see that the HMRF approach leads to less cluttered regions than both the other methods (SVM and
MRF), which is favorable for the organelle segmentation task. Especially in the SVM classification,
cell organelles as vesicles or mitochondria are detected outside the cytoplasm or on the microvilli
(the tail-like extensions of the cells) which, from a biological point of view, makes no sense. With
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6. Hierarchical Models for Image Segmentation

our hierarchical method this was not the case. Thanks to the global knowledge introduced by the
hierarchy, specially the cell nuclei have been much better segmented, which, when looking at a
small region only, is indeed really difficult.

6.6. Conclusion

The presented multi-label segmentation algorithm is based on a hierarchical graphical model. We
could show that our method outperforms the local region classification by SVMs as well as classical
MRFs regarding the overall classification accuracy. Compared to classical MRFs, the region con-
sistency reached with our method is much higher thanks to the topological knowledge introduced
by the region hierarchy. In the presented method, we only use a fixed two-level hierarchy. While
high level information on the nucleus can be included in the hierarchical MRF in the current set-
ting, higher-level information on small structures like mitochondria can so far not be used. In future
work, we are therefore hoping to be able to extend this method to deeper hierarchies. A further im-
provement of the segmentation quality could probably be achieved by choosing more discriminative
features to describe the superpixels and high-level regions, such that the initial SVM classification
is improved.
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Figure 6.3.: Results of the three different methods on our data. Black corresponds to the label
background, yellow to cytoplasm, red to nucleus, cyan to mitochondria and blue to
vesicles. The results of our method, displayed in the last row, are the most consistent.
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Figure 6.4.: Results of the three different methods on our data. Black corresponds to the label
background, yellow to cytoplasm, red to nucleus, cyan to mitochondria and blue to
vesicles. The results of our method, displayed in the last row, are the most consistent.
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7. Conclusion

The segmentation of the recorded specimen from microscopic recordings is a difficult task that bears
many challenges due to recording noise, blurring, bleaching and signal attenuation effects and in-
homogeneities in the fluorescence staining. Due to these issues, segmentation methods that are to
be considered state-of-the-art in natural image segmentation can mostly not be applied. Modified
or new methods are needed that can cope with the challenges imposed by the imaging techniques.

Blurring effects present in the data due to the Point Spread Function of the recording system can
be attenuated by deconvolution techniques. In chapter 4, we have presented two new methods for
the deconvolution of conventional fluorescence microscopic data. The first presented method is a
regularization of the deblurring kernel for the blind MLEM deconvolution scheme that does not
need any recording system specific prior knowledge and nevertheless stabilizes the deconvolution
scheme, such that not only the energy but also the SNR converges. The second presented approach,
the frequency domain TV regularization of the deconvolution kernel, uses image-frequency-based
prior knowledge for the regularization of the deconvolution kernel. With this prior, we achieve a
qualitative enhancement of the deconvolution results as well as an improvement compared to state-
of-the-art deconvolution methods in terms of RMSE. These results confirm our assumption that the
direct manipulation of the frequency domain properties of the deconvolution kernel is beneficial for
the deconvolution of widefield microscopic data.
With this maxim, several interesting aspects remain to be investigated. For example, how do spher-
ical aberrations influence the phase of the Object Transfer Function? And how can the phase be
regularized without the detour via the spatial domain? In [Holmes, 1992] for example, the rota-
tional symmetry of the PSF around the optical axis is established by averaging over the rotation of
the deconvolution kernel in the spatial domain whereas a description of the rotational symmetry by
the phase information in the frequency domain could have favorable effects.

Due to the spatial frequencies lost during the recording process, information along the optical axis
is not reliable even after deconvolution of the datasets. Therefore, our segmentation algorithms
work on undeconvolved data. The manual evaluation of volumetric fluorescence microscopic data
as well as the generation of ground truth annotations is very tedious. The methods we have pre-
sented for the segmentation of volumetric data are therefore either fully automatic or they rely on
only very sparse labeling of selected data points. In contrast to other methods for the segmentation
in volumetric, microscopic recordings [Sommer et al., 2011; Fehr et al., 2005; Ronneberger et al.,
2005; Kaster et al., 2011], that compute segmentations by point-wise classification the recorded
volume, we aim for segmenting the whole object by estimating its boundary position. A combi-
nation of the two approaches would be conceivable, where object regions are first identified by a
voxel-wise classification. The classification result could serve as additional, region-based data term
in our methods, that, so far, only rely on boundary information.
In order to handle the challenges given in volumetric fluorescence microscopic recordings and to
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7. Conclusion

produce robust segmentations, we have presented several methods based on three-dimensional ac-
tive surface models. The Channel Differential Structure allows for the combination of two recorded
channels to build a data term appropriate for the nucleolus segmentation. For star-shaped objects,
the object detection result can be used to produce improved data force fields for the segmentation.
Artifacts in the segmentation that are due to the strong blurring along the optical axis can be al-
leviated by the proposed Mean Shift Gradient Vector Flow method. In order to learn new object
appearances from minimal user input, we have presented a method to generate specific edge filters
from pre-clustered edge appearance candidates.
In standard active surfaces, the relation between regularization and data confidence has to be fixed
in advance. In microscopic recordings, however, we commonly observe a strongly varying image
quality within one volumetric dataset. Object boundaries might be imaged with a strong contrast in
one part of the image, and might be strongly blurred in another image region. Therefore, we have
presented a method for the automatic and dynamic adjustment of the weighting of regularization
terms during the segmentation process. With this method, we can cope with data deficiencies and
enforce smooth object boundaries where the recorded information is lossy. The surface is driven
towards the correct boundary wherever the recorded boundary information is sound.
With these methods, we can accurately and robustly segment protoplast cells and cell nuclei from
different cell types. The automatic segmentations of Drosophila S2 cell nuclei and nucleoli can be
used to investigate protein localizations. Statistical evaluations of these data can now be computed
in a reasonable amount of time, whereas a manual analysis of the data would be very cumbersome
and time-consuming.

For the simultaneous segmentation and classification of electron microscopic recordings into re-
gions belonging to different object classes, we have presented a method based on hierarchical
Markov Random Fields. The proposed hierarchical Markov Random Fields allow for the learn-
ing of topological knowledge from ground truth annotations. With this approach, segmentation
results could be greatly improved compared to a conventional Markov Random Field approach.
The topological knowledge introduces a higher consistency especially for the larger objects as cy-
toplasm and nucleus.
In future work, we will try to investigate the usage of deeper hierarchical structures such that not
only the classes of large objects benefit from the learned topological knowledge. Furthermore, the
inclusion of shape information is an important issue that will be a topic of future research.
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A. Deriving MLEM Deconvolution

In order to minimize the energy functional

JMLEM(s, h) =

∫
x∈Ω

(s ∗ h)(x)− o(x) · log(s ∗ h)(x)dx (A.1)

with respect to the specimen function s, we have to find critical points of the partial derivative
∂
∂ε
JMLEM(s+ εs̄, h)|ε→0 = 0.

∂

∂ε
JMLEM(s+ εs̄, h) =

∫
x∈Ω

∂

∂ε

(
((s+ εs̄) ∗ h)(x)− o(x) · log((s+ εs̄) ∗ h)(x)

)
dx

=

∫
x∈Ω

(s̄ ∗ h)(x)− o(x) · 1(
(s+ εs̄) ∗ h

)
(x)

(s̄ ∗ h)(x)dx

ε→0
=

∫
x∈Ω

(s̄ ∗ h)(x)− o(x)(
s ∗ h

)
(x)

(s̄ ∗ h)(x)dx

=

∫
x∈Ω

s̄(x)(1 ∗ hm)(x)− s̄(x)

(
o

s ∗ h
∗ hm

)
(x)dx,

(A.2)

because for any function a : Ω→ R,
∫

x∈Ω
a(x) · (h ∗ s̄)(x)dx =

∫
x∈Ω

(a ∗ h∗)(x) · s̄(x)dx, where

h∗ is the adjoint of h and equals the mirrored function hm. 1 denotes the constant one-function.
The resulting Euler-Lagrange equation is∫

y∈Ω
hm(y)dy −

(
o

s ∗ h
∗ hm

)
(x) = 0. (A.3)

The partial derivative
∂

∂ε
JMLEM(s, h + εh̄)|ε→0 for the minimization of JMLEM(s, h) with respect

to h can be found accordingly.

∂

∂ε
JMLEM(s, h+ εh̄) =

∫
x∈Ω

∂

∂ε

(
(s ∗ (h+ εh̄))(x)− o(x) · log(s ∗ (h+ εh̄))(x)

)
dx

=

∫
x∈Ω

(s ∗ h̄)(x)− o(x) · 1(
s ∗ (h+ εh̄)

)
(x)

(s ∗ h̄)(x)dx

ε→0
=

∫
x∈Ω

(s ∗ h̄)(x)− o(x)(
s ∗ h

)
(x)

(s ∗ h̄)(x)dx

=

∫
x∈Ω

h̄(x)(1 ∗ sm)(x)− h̄(x)

(
o

s ∗ h
∗ sm

)
(x)dx,

(A.4)
where sm is the mirrored specimen function s. The resulting Euler-Lagrange equation is∫

y∈Ω
sm(y)dy −

(
o

s ∗ h
∗ sm

)
(x) = 0. (A.5)
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B. Discrete 3D Tikhonov-Miller and TV
Regularization

B.1. Tikhonov-Miller Regularizer

In order to minimize the Tikhoniv-Miller regularization term

JTM = λTM

∫
x∈Ω
|∇s(x)|2dx (B.1)

we need to find a discrete implementation for the derivative

∂

∂s
JTM = −2λTM∆s(x), (B.2)

where ∆s = ∂2s
∂x21

+ ∂2s
∂x22

+ ∂2s
∂x23

. We implemented B.2 by using forward and backward differences as

∆s(u, v, w) = ∆x1
− ∆x1

+ s(u, v, w) + ∆x2
− ∆x2

+ s(u, v, w) + ∆x3
− ∆x3

+ s(u, v, w), (B.3)

where the forward and backward differences are defined as

∆x1
+ s(u, v, w) = 1

hx1

(
s(u+ 1, v, w)− s(u, v, w)

)
∆x1
− s(u, v, w) = 1

hx1

(
s(u, v, w)− s(u− 1, v, w)

)
∆x2

+ s(u, v, w) = 1
hx2

(
s(u, v + 1, w)− s(u, v, w)

)
∆x2
− s(u, v, w) = 1

hx2

(
s(u, v, w)− s(u, v − 1, w)

)
∆x3

+ s(u, v, w) = 1
hx3

(
s(u, v, w + 1)− s(u, v, w)

)
∆x3
− s(u, v, w) = 1

hx3

(
s(u, v, w)− s(u, v, w − 1)

)
.

(B.4)

We assume mirrored boundary pixel values which means that the derivatives evaluate to zero at the
image boundaries.

B.2. Total Variation Regularizer

For the minimization of the TV regularization term

JTV = λTV

∫
x∈Ω
|∇s(x)|dx (B.5)

we need to find a discrete implementation for the derivative

∂

∂s
JTV = −λTVdiv

(
∇s(x)

|∇s(x)|

)
, (B.6)
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where div(s) = ∂s
∂x1

+ ∂s
∂x2

+ ∂s
∂x3

. For the computation of the divergence term div
(
∇s(x)
|∇s(x)|

)
, we

use the numerically stable scheme presented in [Rudin et al., 1992]:

div
(
∇s(x)
|∇s(x)|

)
= 1

hx1
∆x1
−

∆
x1
+ s(x)√

ε+
(

∆
x1
+ s(x)

)2
+m

(
∆
x2
+ s(x),∆

x2
− s(x)

)2
+m

(
∆
x3
+ s(x),∆

x3
− s(x)

)2
+ 1

hx2
∆x2
−

∆
x2
+ s(x)√

ε+
(

∆
x2
+ s(x)

)2
+m

(
∆
x3
+ s(x),∆

x3
− s(x)

)2
+m

(
∆
x1
+ s(x),∆

x1
− s(x)

)2
+ 1

hx3
∆x3
−

∆
x3
+ s(x)√

ε+
(

∆
x3
+ s(x)

)2
+m

(
∆
x1
+ s(x),∆

x1
− s(x)

)2
+m

(
∆
x2
+ s(x),∆

x2
− s(x)

)2 ,
(B.7)

with the function m(a, b) defined as

m(a, b) =
signa+ signb

2
min(|a|, |b|). (B.8)

The added ε in the denominator of equation B.7 renders the function robust as the gradient magni-
tude approaches zero. In our implementation, we have chosen ε = 0.1. Again, we assume mirrored
boundary pixel values such that the derivatives evaluate to zero at the image boundaries.
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C. Deriving the TV regularization of the
frequency space magnitudes

The energy formulated in section 4.7.2 for the frequency regularized blind deconvolution is

JKFTV(s, h) = JMLEM(s, h) + λKFTV

∫ ∥∥∥∇|F(h)|(ξ)
∥∥∥dξ. (C.1)

The minimization of this functional is done using the calculus of variations. Since the Fourier
transform is linear, a variation in the spatial domain is equivalent to a variation in the Fourier
domain. ∫ ∥∥∥∇|F(h+ εg)|(ξ)

∥∥∥dξ =

∫ ∥∥∥∇|F(h) + εF(g)|(ξ)
∥∥∥dξ (C.2)

The gradient of the kernel regularization term
∫ ∥∥∥∇|F(h)|(ξ)

∥∥∥dξ can thus be computed as

∂

∂ε

∣∣∣∣∣
ε→0

∫ ∥∥∥∇|F(h) + εF(g)|(ξ)
∥∥∥dξ. (C.3)

For the computation of the gradient of the TV regularization of the OTF magnitudes, we use the
following fact. Given two square-integrable functions A : R → C : ξ 7→ A(ξ) and B : R → C.
Then ∫

R
A
d

dξ
B dξ = −

∫
R

d

dξ
AB dξ. (C.4)

We rewrite the functions as Fourier integrals:∫
R
A
d

dξ
B dξ =

∫
R

∫
R
a(x1)e−iξx1dx1 ·

d

dξ

∫
R
b(x2)e−iξx2dx2 dξ (C.5)

=

∫
R

∫
R
a(x1)e−iξx1dx1 ·

∫
R

(−ix2) · b(x2)e−iξx2dx2 dξ︸ ︷︷ ︸
6=0 iff x2=−x1

(C.6)

= −
∫
R

∫
R

(−ix1)a(x1)e−iξx1dx1 ·
∫
R
b(x2)e−iξx2dx2 dξ (C.7)

= −
∫
R

d

dξ

∫
R
a(x1)e−iξx1dx1 ·

∫
R
b(x2)e−iξx2dx2 dξ (C.8)

= −
∫
R

d

dξ
AB dξ . (C.9)

This generalizes to n-dimensional functions, as∫
Rn
A∇B dξ = −

∫
Rn
∇AB dξ . (C.10)
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C. Deriving the TV regularization of the frequency space magnitudes

The energy formulated in section 4.7.2 for the frequency regularized blind deconvolution is

JKFTV(s, h) = JMLEM(s, h) + λh

∫
R3

∥∥∥∇|F(h)|(ξ)
∥∥∥dξ. (C.11)

The minimization of this functional is done using the calculus of variations. Since the Fourier
transform is linear, a variation in the spatial domain is equivalent to a variation in the Fourier
domain. ∫

R3

∥∥∥∇|F(h+ εg)|(ξ)
∥∥∥dξ =

∫
R3

∥∥∥∇|F(h) + εF(g)|(ξ)
∥∥∥dξ (C.12)

The gradient of the kernel regularization term
∫
R3

∥∥∥∇|F(h)|(ξ)
∥∥∥dξ can thus be computed as

∂

∂ε

∣∣∣∣∣
ε→0

∫
R3

∥∥∥∇|F(h) + εF(g)|(ξ)
∥∥∥dξ. (C.13)

∂

∂ε

∫
R3

∥∥∥∇|F(h) + εF(g)|
∥∥∥dξ

=
∂

∂ε

∫
R3

√(
∇|F(h) + εF(g)|

)2
dξ

=

∫
R3

1

2

1√(
∇|F(h) + εF(g)|

)2 · ∇|F(h) + εF(g)|

·∇

(
F(h)F(g)∗ + F(h)∗F(g) + εF(g)F(g)∗

|F(h) + εF(g)|

)
dξ (C.14)

which is, by setting ε = 0 and applying the product rule

ε=0
=

∫
R3

1

2

∇|F(h)|∥∥∥∇|F(h)|
∥∥∥ ·(

∇F(h)∗

|F(h)|
· F(g) +

F(h)∗

|F(h)|
· ∇F(g) +∇ F(h)

|F(h)|
· F(g)∗ +

F(h)

|F(h)|
· ∇F(g)∗

)
dξ

=
1

2


∫
R3

∇|F(h)|∥∥∥∇|F(h)|
∥∥∥ · ∇F(h)∗

|F(h)|
· F(g)dξ +

∫
R3

∇|F(h)|∥∥∥∇|F(h)|
∥∥∥ · F(h)∗

|F(h)|
· ∇F(g)dξ

︸ ︷︷ ︸
(A)

+

∫
R3

∇|F(h)|∥∥∥∇|F(h)|
∥∥∥ · ∇ F(h)

|F(h)|
· F(g)∗dξ +

∫
R3

∇|F(h)|∥∥∥∇|F(h)|
∥∥∥ · F(h)

|F(h)|
· ∇F(g)∗dξ

︸ ︷︷ ︸
(B)


.

(C.15)
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Using equation (C.4), (A) equals

∫
R3

∇|F(h)|∥∥∥∇|F(h)|
∥∥∥ · ∇F(h)∗

|F(h)|
· F(g)dξ −

∫
R3

div

 ∇|F(h)|∥∥∥∇|F(h)|
∥∥∥ · F(h)∗

|F(h)|

 · F(g)dξ

=

∫
R3

∇|F(h)|∥∥∥∇|F(h)|
∥∥∥ · ∇F(h)∗

|F(h)|
· F(g)dξ

−
∫
R3

div

 ∇|F(h)|∥∥∥∇|F(h)|
∥∥∥
 · F(h)∗

|F(h)|
+
∇|F(h)|∥∥∥∇|F(h)|

∥∥∥ · ∇F(h)∗

|F(h)|

 · F(g)dξ

= −
∫
R3

div

 ∇|F(h)|∥∥∥∇|F(h)|
∥∥∥
 · F(h)∗

|F(h)|
· F(g)dξ, (C.16)

where div(x) denotes the divergence of vector x. Now, we can use Parseval’s theorem and get

−
∫
R3

div

 ∇|F(h)|∥∥∥∇|F(h)|
∥∥∥
 · F(h)∗

|F(h)|
· F(g)dξ = −

∫
R3

F−1

div

 ∇|F(h)|∥∥∥∇|F(h)|
∥∥∥
 · F(h)

|F(h)|


∗

· g dx,

(C.17)

which is, because div
(
∇|F(h)|
‖∇|F(h)|‖

)
is symmetric and F−1

(
div
(
∇|F(h)|
‖∇|F(h)|‖

))
is real valued, equal

to

−
∫
R3

F−1

div

 ∇|F(h)|∥∥∥∇|F(h)|
∥∥∥
 · F(h)

|F(h)|

 · g dx. (C.18)

Now, we compute the same for (B). Because of (C.4),

(B) =

∫
R3

∇|F(h)|∥∥∥∇|F(h)|
∥∥∥ · ∇ F(h)

|F(h)|
· F(g)∗dξ −

∫
R3

div

 ∇|F(h)|∥∥∥∇|F(h)|
∥∥∥ · F(h)

|F(h)|

 · F(g)∗dξ

=

∫
R3

∇|F(h)|∥∥∥∇|F(h)|
∥∥∥ · ∇ F(h)

|F(h)|
· F(g)∗dξ

−
∫
R3

div

 ∇|F(h)|∥∥∥∇|F(h)|
∥∥∥
 · F(h)

|F(h)|
+
∇|F(h)|∥∥∥∇|F(h)|

∥∥∥ · ∇ F(h)

|F(h)|

 · F(g)∗dξ

= −
∫
R3

div

 ∇|F(h)|∥∥∥∇|F(h)|
∥∥∥
 · F(h)

|F(h)|
· F(g)∗dξ.

(C.19)
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C. Deriving the TV regularization of the frequency space magnitudes

We can again use Parseval’s theorem and get

−
∫
R3

div

 ∇|F(h)|∥∥∥∇|F(h)|
∥∥∥
 · F(h)

|F(h)|
· F(g)∗dξ = −

∫
R3

F−1

div

 ∇|F(h)|∥∥∥∇|F(h)|
∥∥∥
 · F(h)

|F(h)|

 · g dx.
(C.20)

Now, we can put (A) and (B) together to

(C.15) = −
∫
R3

F−1

div

 ∇|F(h)|∥∥∥∇|F(h)|
∥∥∥
 · F(h)

|F(h)|

 · g dx. (C.21)

According to the fundamental lemma of calculus of variations, the functional JKFTV(s, h) is mini-
mized by the Euler Lagrange equation:

∫
Ω
s(y)dy −

sm ∗( o

(h ∗ s)

)− λKFTVF−1

div
∇|F(h)|∥∥∥∇|F(h)|

∥∥∥ · F(h)

|F(h)|︸ ︷︷ ︸
eı·arg(F(h))

 = 0. (C.22)

The resulting multiplicative update scheme for the deconvolution kernel is:

ĥk+1 =

ĥk ·
(
sm ∗ o

(ĥk∗s)

)
∫

Ω
s(y)dy − λKFTVF−1

div

 ∇|F(ĥk)|∥∥∥∇|F(ĥk)|
∥∥∥
 · eı·arg(F(ĥk))


. (C.23)

The numerical scheme is formulated like in spatial domain (compare appendix B.2).
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D. Spherical Harmonics Representation for
Active Surfaces

D.1. Spherical Harmonic Basis Functions and their Derivatives

The derivative of the spherical harmonic basis functions

Y m
l (θ, φ) =

√
(2l + 1)(l −m)!

4π(l +m)!
Pml (cos θ)eımφ (D.1)

are given by
∂Y m

l (θ, φ)

∂θ
=

√
(2l + 1)(l −m)!

4π(l +m)!

(
− 1

−1 + cos2 θ

)
·(

(−1− l) · cos θ · Pml (cos θ)+

(1−m+ l) · Pml+1(cos θ) · sin θ
)
eımφ

(D.2)

and
∂Y m

l (θ, φ)

∂φ
=

√
(2l + 1)(l −m)!

4π(l +m)!
Pml (cos θ) · j ·m · eımφ. (D.3)

The associated Legendre polynomials can be computed recursively as for example given in [Khairy
and Howard, 2008] using the relations:

P ll (cos θ) =
(2l)!

l!

(
1

2
sin θ

)l
(D.4)

for l ∈ N and

(l +m)(l −m+ 1)Pm−1
l (cos θ) = 2m cot θPml (cos θ)− Pm+1

l (cos θ), (D.5)

with Pml (cos θ) = 0 for m > l.

D.2. Representing Shapes with Spherical Topology

Arbitrary shapes with spherical topology can be represented in the spherical harmonics domain. A
method for a bijective mapping of a tesselated surface onto a sphere was proposed by [Brechbühler
et al., 1995]. This way, every three-tuple of coordinates can be assigned a pair of angles such that:

Γ(θ, φ) =

x(θ, φ)
y(θ, φ)
z(θ, φ)

 , (D.6)
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D. Spherical Harmonics Representation for Active Surfaces

thus laying a latitude-longitude grid over the shape. The so parameterized shape can be represented
by three vectors of spherical harmonic expansion coefficients X̂ , Ŷ and Ẑ, where

X̂ = {x̂0
0, x̂
−1
1 , x̂0

1, x̂
1
1, . . . , x̂

l
l}, (D.7)

with

x̂ml =

∫ 2π

0

∫ π

0
x(θ, φ)Y m

l
∗(θ, φ) sin θ dθdφ, (D.8)

where Y m
l
∗ is the complex conjugate of Y m

l . The vectors of coefficients Ŷ and Ẑ are defined
accordingly. As for the spherical harmonic representation of star-shaped surfaces, a rotation in-
variant shape descriptor can be generated by the L2 norms of the coefficient vectors for each band
[Kazhdan, 2004]:

D =


√(

x̂0
0

)2
+
(
ŷ0

0

)2
+
(
ẑ0

0

)2
, . . . ,

√(
x̂ll

)2
+
(
ŷll

)2
+
(
ẑll

)2

 . (D.9)

D.2.1. Regularization

In the following, we give formulas for the analytical computation of the surface normals and curva-
ture that are needed for the computation of the mean curvature flow ∂Γ

∂t = Hn.
For the computation of the surface normals, we need the derivatives of the surface which can be
computed as [Khairy and Howard, 2008]

∂Γ(θ, φ)

∂θ
=



B∑
l=0

l∑
m=−l

x̂ml
∂Y m

l (θ, φ)

∂θ

B∑
l=0

l∑
m=−l

ŷml
∂Y m

l (θ, φ)

∂θ

B∑
l=0

l∑
m=−l

ẑml
∂Y m

l (θ, φ)

∂θ


and

∂Γ(θ, φ)

∂φ
=



B∑
l=0

l∑
m=−l

x̂ml
∂Y m

l (θ, φ)

∂φ

B∑
l=0

l∑
m=−l

ŷml
∂Y m

l (θ, φ)

∂φ

B∑
l=0

l∑
m=−l

ẑml
∂Y m

l (θ, φ)

∂φ


.

(D.10)
From the surface derivatives, the surface normal n(θ, φ) is computed according to equation (5.47).
With the surface derivatives, the normal and derivatives of the normal, the first (E,F,G) and second
(L,M,N) fundamental forms can be computed. The first fundamental forms are given by

E =

∥∥∥∥∥∂Γ(θ, φ)

∂θ

∥∥∥∥∥
2

F =

〈
∂Γ(θ, φ)

∂θ
,
∂Γ(θ, φ)

∂φ

〉

G =

∥∥∥∥∥∂Γ(θ, φ)

∂φ

∥∥∥∥∥
2

,

(D.11)

the second fundamental can be computed according to equation (5.49).
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E. Fast Gradient Vector Flow Computation

The two dimensional gradient vector flow (see section 2.3.3) can easily be extended to three or more
dimensions. In 3D we search for a vector field v : Ω ⊆ R3 → R3,v(x) =

(
u(x), v(x), w(x)

)T
that minimizes the energy functional

EGVF(v) =

∫
Ω
µ(‖∇v‖2) + ‖∇M‖2‖v −∇M‖2dx, (E.1)

for a three dimensional edge map M . The energy is minimized by the solution of the following
Euler-Lagrange equations:

µ∇2u−

(
u− ∂M

∂x1

)(∂M
∂x1

)2

+

(
∂M

∂x2

)2

+

(
∂M

∂x3

)2
 = 0

µ∇2v −

(
v − ∂M

∂x2

)(∂M
∂x1

)2

+

(
∂M

∂x2

)2

+

(
∂M

∂x3

)2
 = 0

µ∇2w −

(
w − ∂M

∂x3

)(∂M
∂x1

)2

+

(
∂M

∂x2

)2

+

(
∂M

∂x3

)2
 = 0. (E.2)

The solution can be found by gradient descent.In order to accelerate the computation of the GVF,
it can be implemented with a Gauss-Seidel method or the even faster successive over-relaxation
(SOR) [Press et al., 1992]:

un+1(x) = (1− ω)un(x) + ω

∑
y∈N (x),

y1≤x1∧y2≤x2∧y3≤x3

un+1(y) +
∑

y∈N (x),
y1>x1∨y2>x2∨y3>x3

un(y) + b

1

µ

(∂M
∂x1

(x)

)2

+

(
∂M

∂x2
(x)

)2

+

(
∂M

∂x3
(x)

)2
+

∑
y∈N (x)

1

,

(E.3)
where

b =
1

µ

∂M

∂x1
(x)

(∂M
∂x1

(x)

)2

+

(
∂M

∂x2
(x)

)2

+

(
∂M

∂x3
(x)

)2
 . (E.4)

ω ∈ (0, 2) is the relaxation parameter. The update for vn+1 and wn+1 is computed accordingly.
For ω = 1, this equals the Gauss-Seidel method, whereas faster convergence can be expected for
ω > 1. In [Han et al., 2007], the authors propose an even faster multigrid GVF method. However,
in our own implementation we used the SOR implementation as it was fast enough and produced
reliable results.
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