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Abstract. Comparison of different object instances is hard due to the
large intra-class variability. Part of this variability is due to viewpoint and
pose, another due to subcategories and texture. The variability due to
mild viewpoint changes, can be normalized out by aligning the samples.
In contrast to the classical Procrustes distance, we propose distances
based on non-rigid alignment and show that this increases performance
in nearest neighbor tasks. We also investigate which matching costs and
which optimization techniques are most appropriate in this context.

1 Introduction

A large part of the variability among images of an object class is due to viewpoint
and pose. While large differences in viewpoint and pose render the images very
different and leave little hope to compare them directly, object samples taken
from approximately the same viewpoint share many common features. Descrip-
tors that are invariant to small local deformations, such as HOG, have been the
basis for establishing matches between such samples. But is the concept of grids
of histograms sufficient?

In this paper, we show that a non-rigid alignment procedure on top of HOG
improves the similarity of different object instances from the same class and seen
in the same pose; see Fig. 1. This is particularly true if the deformation cost for
the alignment is part of the distance.

Alignment procedures have been heavily used in the scope of matching faces.
Since (frontal) faces are mostly planar, most face alignment methods focus on
rigid or affine alignments, see for instance [7]. For general object classes with more
variation, non-rigid alignment is more appropriate, as we show in this paper.
Non-rigid alignment has been used also for face alignment [17] but required
additional supervision by training fiducial detectors.

Unsupervised non-rigid alignment between object instances, as considered in
this paper, is a hard problem, both with regard to the matching cost and with
regard to the optimization. On the side of the matching cost, we build upon
the idea of whitened HOG features as recently proposed in [6] in the scope of
clustering and detection. Moreover, we find that a combination of the l1 norm
and the dot product behaves better than these norms alone.
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Fig. 1. Illustration and motivation of alignment based distances. (a) Optimum align-
ment energies. (b) Two cats with different poses to be aligned with the reference cat;
color code for the deformation fields. (c) cat1 and cat2 after alignment with the refer-
ence. (d) Overlay of the images before and after alignment. (e) Overlay of the gradient
images before and after alignment. (f) Estimated deformation fields. Samples that are
similar enough to be aligned well yield low energies, whereas samples that cannot be
aligned properly yield higher energies.

On the side of optimization, we investigate a set of efficient discrete opti-
mization methods. Matching of different instances has been studied before, e.g.,
in Berg et al. [1], who solved the corresponding NP-hard optimization problem
with a linear programming relaxation. Due to the computational complexity of
this approximation, only correspondences of very sparse sets of feature points
can be computed. In the context of label transfer between different scenes, SIFT
flow [11] has been based on an optimization with belief propagation [15]. Apart
from belief propagation, we investigate two other methods: fast primal-dual [8,
9], and α-expansion with non-submodular binary cost functions, so-called fusion
moves [10]. We compare the energies obtained with these three techniques, as
well as the computation times.

We demonstrate the effect of non-rigid alignment on the distances between
instances on four datasets, one on cars, two on cats and one on horses. We
aim to find the visually most similar examples relative to a reference image.
Each dataset consists of the references and the corresponding ground truth sets
of the most similar nearest neighbors. We evaluate various distances with and
without alignment. Furthermore, we compare against the scores obtained with an
exemplar SVM [12] and with a rigid alignment. The results show that distances
based on non-rigid alignment match the annotation much better than distances
on raw HOG, whitened HOG features, rigid alignment, or a HOG based exemplar
SVM.

2 Non-rigid alignment

For each pair of examples we would like to compute the deformation field that
optimally aligns one example with the other. This is much more difficult than,
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e.g., optical flow estimation, since there is variation besides the sought deforma-
tion, and we do not yet know which features are reliable for matching. We build
upon the HOG [3] and the whitened HOG (WHO) descriptor [6]. The WHO de-
scriptor is advantageous as it tends to give more weight to features that are most
relevant for the present object class. This feature weighting is potentially also
useful for alignment. Indeed, our experiments show an improved performance if
the alignment takes into account whitened HOG features.

Unfortunately, the whitening requires inversion of the covariance matrix.
Only feature vectors with less than 10000 dimensions can be handled in rea-
sonable time, which corresponds to HOG representations with 16 × 16 blocks.
For finer representations (using more but smaller cells), we must return to the
classical HOG representation without whitening. As a consequence, we run a
coarse alignment on WHO features and use the resulting deformation field as a
soft constraint when optimizing the refined alignment based on HOG. The cost
function consists of the matching costs ED, which aim for maximum feature
overlap, and a regularization term EP that penalizes strong deformations:

E(u) = ED(u) + λEP (u). (1)

This cost function is minimized with respect of the deformation field u. The
regularization parameter λ allows to emphasize either the deformation cost or
the matching cost. We empirically determined λ = 1.0 in case of WHO features
and λ = 0.2 for HOG features.

2.1 Matching cost

As matching cost we use a combination of the l1-norm and the dot product. The
advantage of the l1-norm is its robustness, but at images where we have slightly
different features, it can prefer to match a weak feature to the background rather
than to the most similar feature; see Fig. 2. On the other hand, the dot product
tries to match as many features as possible, but it does not penalize unaligned
features. This leads to blurring effects. The combination prefers alignment of the
closest features while enforcing one-to-one assignments:

ED(u) =
∑
x

|F2(x + u(x))− F1(x)|1 − 〈F2(x + u(x)), F1(x)〉 (2)

where F (x) denotes the feature vector at position x (the respective cell of the
HOG descriptor).

2.2 Deformation cost

For measuring the deformation cost, we use the total variation

EP (u) =
∑

x,y∈N (x)

|u(x)− u(y)|1 , (3)

where N (x) denotes the 4-connected neighborhood of x. The total variation
regularization prefers piecewise constant deformation fields.
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Fig. 2. Top row: Two bikes and the overlay of their gradients. Center row: Three
different matching costs. Bottom row: Resulting alignments. Left: With the l1 norm,
weak gradients are preferably matched to the background. Middle: With the dot
product, smearing effects occur because matching to the background does not induce
any cost. Right: The combination leads to the best alignment.

2.3 Refinement on a finer grid of HOG cells

To exploit both the feature weighting of the WHO features and the higher accu-
racy of HOG with smaller cells, the initial alignment is obtained by minimizing
Eq. 1 based on WHO features. The resulting deformation field uWHO serves as
a soft constraint in the successive dense alignment on a finer grid of HOG cells.
At this fine level, we minimize:

E(u) =
∑
x

β δ(x) |uWHO − u|1 + ED(u) + λEP (u)

δ(x) =

{
1, If uWHO defined at x

0, otherwise

(4)

The function δ(x) indicates the grid positions where the coarse deformation field
uWHO is available. The scaling factor β = 0.03 that regulates the influence of
the initial alignment was determined empirically.

2.4 Energy minimization

For the purpose of pairwise comparison, the optimization of the above energies
must be fast on one hand, but also sufficiently reliable on the other hand. We
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Fig. 3. Top row: Five images, for which we compare the energy minimization tech-
niques. Second row: Images in HOG-feature space. In the left column we compare
the behavior of the MRF-solvers when changing the number of nodes. In the middle we
change the number of labels. The same set of labels is used everywhere, thus the binary
subproblems are submodular. In the right column, the label set varies spatially based
on the best k displacements. Thus the binary subproblems are no longer submodular.
Third row: For submodular binary problems, Fast PD and QPBO perform best. In
the non-submodular case, BP and QPBO perform best. Bottom row: Run times of
the different approaches depending on the number of grid points and labels. Fast PD
and QPBO are much faster than BP.

consider three multi-label MRF solvers: loopy belief propagation, Fast PD [8,
9] and α-expansion [2] with QPBO [13]. The Fast PD algorithm solves a se-
quence of intermediate binary problems with min-cuts. The binary solution is
only guaranteed to be optimal, if the binary problem is submodular. Also the
α-expansion with QPBO solves a sequence of binary problems, which is done by
so-called fusion moves [10]. In contrast to min-cuts, QPBO can solve a larger
class of binary problems, the set of pseudo-boolean functions, which includes the
submodular problems as a subset. Loopy belief propagation directly optimizes
the multi-label problem, but there is neither any guarantee of optimality nor of
convergence.

For the experiment in Fig. 3 we aligned five airplane images in HOG space
and investigate the behavior of the three approximate optimization techniques,
when changing the number of nodes, the number of labels and when we violate
the submodularity property. If the labels correspond to the same displacement
vectors everywhere, the binary subproblems are all submodular, because assign-
ing the same label induces zero cost, while assigning another label induces higher
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cost. In this case, α-expansion with QPBO and Fast PD minimize the energy
equally well. Fast PD scales a little better with the number of grid points, QPBO
scales better with the number of labels. With an adaptive set of displacement
vectors, submodularity is lost and Fast PD does not minimize the energy any-
more. Loopy belief propagation is unreliable, due to the missing convergence
property, and very slow as the number of grid points or labels increases. The
energies in Eq. 1 and 4 use a spatially fixed label set, but due to the better
scaling with the number of labels, we used α-expansion with QPBO to compute
the non-rigid alignment.

3 Distances based on alignment

A variety of distances can be defined based on the alignment of the previous
section. As Fig. 1 indicates, the energy can be used directly as a distance measure.
For this direct approach, there are three possibilities that we evaluated: the
energy of Eq. 1 using HOG features (EHOG) or WHO features (EWHO), and the
refinement based approach in Eq. 4 (Ecombi) that uses both features.

Alternatively, distances can be defined based on the aligned features using
the normalized dot product:

d(F1, F2) =
〈F1, F2〉

‖F1‖2 · ‖F2‖2
, (5)

F1, F2 are the HOG or WHO descriptors on the aligned images. The global nor-
malization prevents images with rich gradients to be favored over those with
less structure. To this distance we can add the deformation cost λEP , which
provides valuable information on how much the second image needed to be dis-
torted to match the first one. Again, there are three possibilities how to compute
the alignment (based on HOG, on WHO, or the combination of both). All these
distances are evaluated in the next section.

4 Experiments

4.1 Dataset

We compared various distances between object instances in a simple experiment,
where we find for a certain reference image the nearest neighbors according to
this distance. To allow for a quantitative evaluation, we considered four datasets,
3D cars from [14], our own cat dataset, Pascal VOC cats [5] and Pascal VOC
horses [4]. The 3D cars dataset consists of 10 different cars shown from 8 differ-
ent viewing angles, and is typically used for viewpoint classification1. For each

1 It is important to note that our experiment is not about viewpoint classification. We
do not employ a training set to learn the best features to distinguish viewpoints. We
are rather interested in an unsupervised definition of distances between examples
that resemble human perception and test these distances in a nearest neighbor task.
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viewing angle we picked one car as a reference and used the other 9 as ground
truth set of nearest neighbors. Our cat dataset consists of 120 cats from Flickr
provided by [16], we chose references representing the poses: portrait, walking
left, walking front, sitting frontal, sitting left, sitting right and lying right. We
manually defined a ground truth set of nearest neighbors for each of these poses.
There are some images that do not fit to any of the references. In the same style
we added annotation to the two Pascal VOC sets. The 200 cats from Pascal
VOC 2006 show a great diversity, consequently we chose the three most frequent
patterns (portrait, lying cat, sitting cat) as references together with their sets of
nearest neighbors. Among the 724 horses from Pascal VOC 2007, the reference
images represent horses from: front, left, right, left-front, right-front, jumping
over the fence left and right, begging left and right. On the VOC images, we
used the bounding box annotation to clip the image accordingly.

For the evaluation we compute precision and recall, where precision is the
percentage of correct nearest neighbors and recall is the percentage of retrieved
nearest neighbors. Comparison of samples to the reference based on the evaluated
distance yields a ranked list, from which we computed a precision-recall curve.
We report the average precision as the area under the precision-recall curve.

4.2 Results

In Table 1, we compare the different distances defined in Section 3. The raw en-
ergies do not perform well as they lack global normalization introduced in Eq. 5.
On average the alignment helps improve performance for the different features.
It works best on cars and horses and does not improve on cats. This is because
cats are particularly hard to align due to their large variability, e.g., various tex-
tures and large pose variation. The rigidness of the cars makes them the easiest
case. Horses also come with non-rigid deformations, but their appearance is not
as diverse as that of cats. Fig. 4 shows some qualitative results.

In Table 2 we verified if a simple rigid alignment can achieve a similar perfor-
mance as a non-rigid alignment. Apart from the alignment model, the definition
of the distances is equivalent. For simplicity, we evaluated only the HOG based
alignment. The result confirms the need of a non-rigid alignment in case of non-
planar objects (unlike faces). Even for cars, distances benefit from a non-rigid
alignment.

Moreover, we compared to the score returned by the exemplar SVM (ESVM)
[12]. In this approach one reference instance is taken as the only positive example
and a linear SVM is trained to separate it from a large set of negative samples.
This approach benefits from the SVM figuring out the relevant features that
distinguish the positive sample from random samples. We used the reference
images of the above datasets as exemplars and used the scores on the other
images as similarity measure to pick the nearest neighbors. The result shows
that the exemplar SVM is not useful for the purpose of distances. The linear
decision function of the SVM lacks expressive power. It is interesting to note
that a kernelized version of ESVM with an RBF kernel would be build upon a
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Table 1. Comparison of various distances with and without non-rigid alignment in
terms of average precision (AP). The distances in the left block use the energies di-
rectly, the two blocks in the middle use HOG and WHO features, before and after the
alignment. Methods with +λEP make use of the deformation cost computed during
the alignment. In the last two blocks HOG and WHO were both used for alignment,
which yields the best results.
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Cars 30.39 30.4 31.74 30.79 44.94 43.57 28.09 30.05 30.45 39.42 30.05 46.01 33.8
Cats own 13.6 13.78 13.81 31.18 31.97 32.23 33.04 30.66 30.99 32.93 30.66 33.41 32.29

Cats Pascal 6.55 6.61 6.56 33.16 31.81 31.05 31.32 30.97 31.24 27.82 27.42 32.58 33.17
Horse Pascal 4.32 4.31 4.22 29.49 36.47 37.38 33.34 35.43 36.42 36.87 35.43 38.83 33.8

Mean 13.72 13.78 14.08 31.16 36.3 36.1 31.45 31.78 32.28 34.26 30.89 37.71 33.27

Table 2. Performance of ESVM [12], the rigid alignment and non-rigid aligned HOG-
features. The non-rigid alignment consistently shows better AP.

Cars Cats own Cats Pascal Horse Pascal Mean

ESVM [12] 24.07 16.83 10.68 19.08 17.67

rigid alignment 41.25 27.76 27.05 29.77 31.46

HOG aligned 44.94 31.97 31.81 36.47 36.3

distance between the reference and negative samples, which takes us back to the
definition of appropriate distances.

5 Conclusions

We have suggested distances between different object instances based on non-
rigid alignment. We showed in a nearest neighbor experiment that distances
based on non-rigid alignment perform better than distances based on an rigid
alignment or no alignment at all. Moreover, thanks to an efficient optimization,
non-rigid alignments can be computed also on larger datasets in reasonable time.
Pairwise distances appear in many learning problems, such as clustering or kernel
based classifiers. Hence, we believe that alignment based distances can have a
positive effect in several applications.
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Fig. 4. Qualitative comparison between distance measures on non-aligned (HOG) and
aligned (HOG combi+λEP ) images. The left column shows the reference image, the
most similar images are ordered from left to right. For each reference image, we show
the 9 most similar images with respect to non-aligned HOG features and aligned HOG
features. The first example is from the car database [14], the second is from our own
cat dataset, the third shows cats from Pascal VOC 2006 [5]. The remaining examples
are from Pascal VOC 2007 [4]. In general, the samples found with the alignment based
distance are more meaningful.
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