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Abstract

Trust region is a well-known general iterative approach
to optimization which offers many advantages over stan-
dard gradient descent techniques. In particular, it allows
more accurate nonlinear approximation models. In each it-
eration this approach computes a global optimum of a suit-
able approximation model within a fixed radius around the
current solution, a.k.a. trust region. In general, this ap-
proach can be used only when some efficient constrained
optimization algorithm is available for the selected non-
linear (more accurate) approximation model.

In this paper we propose a Fast Trust Region (FTR) ap-
proach for optimization of segmentation energies with non-
linear regional terms, which are known to be challenging
for existing algorithms. These energies include, but are not
limited to, KL divergence and Bhattacharyya distance be-
tween the observed and the target appearance distributions,
volume constraint on segment size, and shape prior con-
straint in a form of L2 distance from target shape moments.
Our method is 1-2 orders of magnitude faster than the ex-
isting state-of-the-art methods while converging to compa-
rable or better solutions.

1. Introduction
In the recent years there is a general trend in computer

vision towards using complex non-linear energies with
higher-order regional terms for the task of image segmen-
tation, co-segmentation and stereo [10, 7, 14, 2, 1, 11, 8].
In image segmentation such energies are particularly useful
when there is a prior knowledge of the appearance model or
the shape of an object being segmented.

In this paper we focus on segmentation energies that
have the following form:

min
S∈Ω

E(S) = R(S) +Q(S), (1)

where S is a binary segmentation, R(S) is a non-
linear regional function, and Q(S) is a standard length-

based smoothness term, e.g. quadratic submodular pseudo-
boolean or continuous TV-based functional.

One straightforward approach to minimizing such ener-
gies could be based on gradient descent. In the context of
level-set techniques the corresponding linear approximation
model for E(S) combines a first-order Taylor term for R(S)
with the standard curvature-flow term for Q(S). Linear
approximation model may work reasonably well for sim-
ple quadratic regional terms, e.g. area constraint R(S) =
(|S| − V )2 in [2]. However, it is well known that robust
implementation of gradients descent for more complex re-
gional constraints requires tiny time steps yielding slow run-
ning times and sensitivity to initialization [7, 1]. Signifi-
cantly better optimization and speed are often achieved by
methods specifically designed for particular regional con-
straints, e.g. see [1, 15, 16].

In this paper we propose a fast algorithm for minimizing
general high-order energies like (1) based on more accurate
non-linear approximation models and a general trust region
framework for iterative optimization. We still compute a
first-order approximation U0(S) for the regional term R(S).
However, we keep the exact quadratic pseudo-boolean (or
TV-based) representation of Q(S) instead of its linear (cur-
vature flow) approximation. At each iteration we use non-
linear approximation model

Ẽ(S) = U0(S) +Q(S)

similar to those in [10, 14, 8]. Unlike [10, 14] we globally
optimize such approximation models within a trust region
||S − S0||L2 ≤ d, which is a ball of certain radius d around
current solution S0. The most closely related method is
the exact line-search approach in [8]. At each iteration,
they use a parametric max-flow technique to exhaustively
explore solutions for all values of d and find the solution
with the largest decrease of the original energy E(S). We
would like to point out that in general, the number of dis-
tinct solutions on the line in [8] can be exponential and we
demonstrate that such exhaustive search is often too slow in
practice.



Inspired by standard backtracking and trust-region
frameworks [3, 17], at each step we find S∗ minimizing
approximation model Ẽ(S) within ball ||S − S0|| ≤ d
of fixed radius d and adaptively adjust d for the next it-
eration depending on the current approximation quality
|E(S∗) − Ẽ(S∗)|. As in [6, 8] we use a Lagrangian for-
mulation for the trust-region sub-problem. One of our con-
tributions is a derivation of a simple analytic relationship
between radius d and Lagrange multiplier λ. This allows
us to translate the standard adaptive scheme controlling the
trust region radius d into an efficient adaptive scheme for the
Lagrange multiplier λ. Consequently, we can use this fast
scheme to replace the exhaustive search over λ in [8]. We
demonstrate that our approach is not only faster by several
orders of magnitude, but, surprisingly, also finds solutions
as good as those obtained by the exhaustive line search [8].

The rest of the paper is as follows. Sec.2 reviews the trust
region framework. Sec.3 details on the proposed Fast Trust
Region approach to segmentation. Experimental results are
presented in Sec.4 and our conclusions are given in Sec.5.

2. Overview of Trust Region Framework
Trust region is a general iterative optimization frame-

work that in some sense is dual to the gradient descent, see
Fig.1. While gradient descent fixes the direction of the step
and then chooses the step size, trust region fixes the step
size and then computes the optimal descent direction, as
described below. At each iteration, an approximate model
of the energy is constructed near the current solution. The
model is only “trusted” within some small ball around the
current solution, a.k.a. “trust region”. The global minimum
of the approximate model within the trust region gives a new
solution. This procedure is called trust region sub-problem.
The size of the trust region is adjusted for the next iteration
based on the quality of the current approximation.

Variants of trust region approach differ in the kind of ap-
proximate model used, optimizer for the trust-region sub-
problem, and a merit function to decide on the acceptance
of the candidate solution and adjustment of the next trust
region size. For a detailed review of trust region methods
see [17]. One interesting example of the general trust re-
gion framework is well-known Levenberg–Marquardt algo-
rithm, which is commonly used in multi-view geometry to
minimize non-linear re-projection errors [9].

Inspired by the ideas in [6, 8], we propose a trust region
approach for minimizing high-order segmentation energies
E(S) in (1). The general idea outlined in Algorithm 1 is
consistent with the standard trust region practices [3, 17].
Given current solution S0, energy E(S) is approximated by

Ẽ(S) = U0(S) +Q(S), (2)

where U0(S) is the first order Taylor approximation of
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Figure 1. Trust region iteration S0 → S∗. Approximation Ẽ(S)
for energy E(S) is constructed near S0. Solution S∗ is obtained
by minimizing Ẽ within a ball of radius d where the approximation
is “trusted”. The step size d is adjusted for the next iterations
depending on the approximation quality observed at S∗. The blue
line shows the spectrum of possible trust region steps (moves).
Small d gives steps aligned with gradient descent direction, while
large d would give step S̃ similar to Newton’s approach.

the non-linear term R(S) near S0. The trust region sub-
problem is then solved by minimizing Ẽ within a ball of
given radius d (line 6)

S∗ = argmin
||S−S0||<d

Ẽ(S). (3)

Once a candidate solution S∗ is obtained, the quality of
the approximation is measured using the ratio between the
actual and predicted reduction in energy. Based on this ra-
tio, current solution S0 is updated in line 10 and the trust
region size d is adjusted in line 12. It is common to set the
parameter τ1 in line 10 to zero so that any candidate solution
decreasing the actual energy is accepted. The parameter τ2
in line 12 is usually set to 0.25 [17]. Reduction ratio above
τ2 implies that approximation model Ẽ is sufficiently good
within the current trust region and that the trust region size
(step size) could be increased in the next iteration.

Algorithm 1: TRUST REGION FOR SEGMENTATION

1 S0 ←− Sinit, d←− dinit

2 Repeat until convergence
3 //Compute approximation model (2) around S0

4 U0(S)←− Taylor exp. of R(S) at S0 //see details in [8]
5 //Solve trust region sub-problem (3)
6 S∗ ←− argminS∈Ω,||S−S0||≤d Ẽ(S)

7 ∆P = Ẽ(S0)− Ẽ(S∗) //predicted reduction in energy
8 ∆A = E(S0)− E(S∗) //actual reduction in energy
9 //Update current solution

10 S0 ←−
{

S∗ if ∆A/∆P > τ1
S0 otherwise

11 //Adjust the trust region

12 d←−
{

d · α if ∆A/∆P > τ2
d/α otherwise



3. Our Algorithm
Constrained non-linear optimization (3) is a central prob-

lem for a general trust region approach. Section 3.1 shows
how this problem can be solved using unconstrained La-
grangian formulation and states its properties. Section 3.2
discusses the relationship between trust region size d in (3)
and Lagrange multiplier λ. Section 3.3 describe in detail
our Fast Trust Region algorithm and Section 3.4 discusses
its relation to gradient descent methods.

3.1. Lagrangian Formulation

Similarly to [8] we use the following unconstrained La-
grangian formulation for the trust region sub-problem (3):

Lλ(S) = Ẽ(S) +
λ

2
dist(∂S0, ∂S)

2, (4)

where dist(·, ·) is a non-symmetric distance on the shape
space defined on the segmentation’s boundary as

dist(∂S0, ∂S) :=

[∫
S0

min
s∈S

∥s− s0∥2 ds0
] 1

2

. (5)

This distance can be approximated [6] using the integration
of the signed distance function ϕ0 of S0:

dist(∂S0, ∂S)
2 ≈⟨2 · ϕ0, S⟩ − ⟨2 · ϕ0, S0⟩ . (6)

The above approximation is linear and therefore Lλ(S) can
be minimized efficiently for any value of λ using graph-cut
or TV-based methods. Below we state some basic properties
of this Lagrangian formulation.

Property 1: Consider function F : R+ → R defined
via F (λ) := minS Lλ(S). Each S induces a linear function
λ 7→ Lλ(S) and Fλ is their lower envelope. Therefore,
F (λ) is a piece-wise linear concave function of λ with a
finite (possibly exponential) number of break points [12].

Property 2: Let Sλ be the minimizer of Lλ(S) in (4)
and let λmax be the maximal break point of F . Namely,

λmax = sup {λ|Sλ ̸= S0} .

By definition, for any λ > λmax, Sλ = S0 and, therefore,
F (λ) = Ẽ(S0) = const. Since F is concave (Prop.1), F
must also be monotonic non-decreasing function of λ with
maximum at λmax (see Figure 2).

Property 3: For any λ > 0 it holds that

Ẽ(Sλ) ≤ Ẽ(S0). (7)

Assume that there is a λ such that Ẽ(Sλ) > Ẽ(S0). Then,

F (λ) =Lλ(Sλ) = Ẽ(Sλ) +
λ

2
dist(∂Sλ, ∂S0)

2

>Ẽ(S0) = Lλ(S0),

contradicting the optimality of Sλ. More generally,
Property 4: The function λ 7→ Ẽ(Sλ) is monotonic

non-decreasing (see Remark 1 in [6]).

λ λmax 0 

F(λ) 
Sλ = S0 

F(λ) = E(S0) ̃ 

Figure 2. Each S induces a linear function λ 7→ Lλ(S). Their
lower envelope yields the function F (λ) = minS Lλ(S).

Empirical Relation between λ 

λ 
 lo

g-
sc

al
e 

d  log-scale 

Relation between λ and d 

d 
λ 

empirical 

1/d 

and d 
 

Figure 3. Empirical dependence between λ and d obtained in one
typical iteration in our experiments (left). Using the log-scale in
both λ and d it can be seen that the slope of empirical dependence
is the same as that of 1/d.

3.2. Relationship between λ and d

The standard trust region approach (see Algorithm 1)
adaptively adjusts the distance parameter d. Since we use
the Lagrangian formulation (4) to solve the trust region sub-
problem (3), we do not directly control d. Instead, we con-
trol Lagrange multiplier λ. However, for each Lagrangian
multiplier λ there is a corresponding distance d such that
minimizer Sλ of (4) also solves (3) for that d. We can easily
compute the corresponding value of d = dist(∂S0, ∂Sλ).
Figure 3(left) illustrates empirical dependence between λ
and d obtained in one typical iteration in our experiments.

The relationship between λ and d can also be de-
rived analytically. Consider the Lagrangian in (4) where
dist(∂S0, ∂S) is given by the approximation in (6), i.e.

Lλ(S) ≈ Ẽ(S) + λ ⟨ϕ0, S − S0⟩ . (8)

Let Sλ be the minimizer of (8). Then it must satisfy

0 =∇Ẽ(Sλ) + λϕ0

0 =
⟨
∇Ẽ(Sλ), Sλ − S0

⟩
+ λ ⟨ϕ0, Sλ − S0⟩

λ =

⟨
∇Ẽ(Sλ), S0 − Sλ

⟩
d2

≈ Ẽ(S0)− Ẽ(Sλ)

d2

The last expression is obtained via a Taylor approxima-
tion. Note that the gradient that we used here is taken with



respect to the natural L2 function space of relaxed segmen-
tation. In particular, every segmentation S : Ω → {0, 1} is
also a function of the form S : Ω → R.

Instead of writing Ẽ in a region-based form using the
function S, we can also rewrite it in a contour-based form
ẼC(∂S) = Ẽ(S) using Green’s formula. By applying
again the Taylor approximation, we obtain

λ ≈

⟨
∇ẼC(∂S0), ∂Sλ − ∂S0

⟩
d2

(9)

≤

∥∥∥∇ẼC(∂S0)
∥∥∥dist(∂S0, ∂Sλ)

d2
=

∥∥∥∇ẼC(∂S0)
∥∥∥

d

We therefore can assume a proportionality between λ and
1/d. This means that when the distance dk is multiplied by
a certain factor α, we instead divide λ by the same factor α.
Figure 3(right) compares the empirical dependence shown
on the left plot with the dependence given by λ = 1/d.
Using log-scale for both d and λ, it can be seen that the
slope of empirical dependence is the same as the slope of
1/d which justifies our heuristic.

3.3. Fast Trust Region (FTR)

In this section we describe our Fast Trust Region (FTR)
algorithm. It is based on the high-level principles of the
trust region framework presented in Algorithm 1, but uses
Lagrangian formulation (4) instead of constrained optimiza-
tion in (3). The relationship between Lagrange multiplier λ
and distance d established in Section 3.2 allows us to trans-
late the standard adaptive scheme for d in Algorithm 1 into
an adaptive scheme for λ in our Algorithm 2. Note that we
use parameter τ1 = 0 (see Algorithm 1) so that any decrease
in energy is accepted.

We can show that our algorithm converges: in each itera-
tion the method solves the trust region sub-problem with the
given multiplier λ (Line 6). The algorithm either decreases
the energy by accepting the candidate solution (line 20) or
reduces the trust region (Line 23). When the trust region is
so small that Sλ = S0 (Line 9), one more attempt is made
using λmax (see Property 2). If no reduction in actual energy
is achieved using Sλmax (Line 16), we have arrived at local
minimum [6] and the algorithm stops (Line 17).

Following recommendations for standard trust region
methods [17], we set parameter τ2 = 0.25 in Line 23. Re-
duction ratio ∆A/∆P above τ2 implies good approxima-
tion quality, allowing increase of the trust region.

3.4. Relationship to Gradient Descent

A trust region approach can be seen as a generalization
of a gradient descent approach. In this section we will re-
visit this relationship in the case of the specific energy that

Algorithm 2: FAST TRUST REGION

1 S0 ←− Sinit, λ←− λinit, convergedFlag←− 0
2 Repeat until convergedFlag
3 //Compute approximation model (2) around S0

4 U0(S)←− Taylor exp. of R(S) at S0 //details in [8]
5 //Solve trust region sub-problem
6 Sλ ←− argminS Lλ // Lagrangian Lλ in (4)
7 ∆P = Ẽ(S0)− Ẽ(Sλ) //predicted reduction in energy
8 ∆A = E(S0)− E(Sλ) //actual reduction in energy
9 If ∆P = 0 //(meaning Sλ = S0 and λ > λmax)

10 λ←− λmax //make smallest possible step
11 //Solve trust region sub-problem
12 Sλ ←− argminLλ

13 ∆P = Ẽ(S0)− Ẽ(Sλ) //predicted reduction
14 ∆A = E(S0)− E(Sλ) //actual reduction
15 //Update current solution

16 S0 ←−
{

Sλ if ∆A > 0
S0 otherwise

17 convergedFlag←− (∆A ≤ 0) //local minima
18 Else //(meaning Sλ ̸= S0 and λ ≤ λmax)
19 //Update current solution

20 S0 ←−
{

Sλ if ∆A > 0
S0 otherwise

21 End
22 //Adjust the trust region

23 λ←−
{

λ/α if ∆A/∆P > τ2
λ · α otherwise

24 we use α = 10, τ2 = 0.25; λmax is defined in Property 2.

we use. In particular, we are interested in a relationship be-
tween our approach and a level-set approach. Like in Sec-
tion 3.2 we express the energy Ẽ(S) as a function of seg-
mentation boundary ∂S. We denote this energy by ẼC and
it holds ẼC(∂S) = Ẽ(S). Now let Sλ be the minimizer of

Lλ(S) = ẼC(∂S) +
λ

2
dist(∂S0, ∂S)

2. (10)

According to the definition (5) there is a vector field V on
the boundary ∂S0 such that ∂S0 + V = ∂Sλ. Below we
denote this vector field by ∂Sλ − ∂S0. Note that this no-
tation implies that every parameterization of S0 induces a
parameterization of Sλ. For the minimizer Sλ it holds that

0 =∇ẼC(∂Sλ) + λ(∂Sλ − ∂S0)

∂Sλ =∂S0 − t∇Ẽ(Sλ), (11)

where t = 1/λ is a step size. Note that Equation (11) is
an update step that may arise during gradient descent ap-
proaches using the level-set formulation. There are differ-
ences between our approach and the level-set framework.
First, we minimize (10) globally using graph-cut or TV ap-
proaches, while level-set methods only make small steps.



Another difference is that our trust region approach does
not follow −∇Ẽ(S0) but rather −∇Ẽ(Sλ) instead. We
show that this is nonetheless a direction in which the en-
ergy decreases. By rewriting (11), we obtain

∂S0 = ∂Sλ + t∇Ẽ(Sλ),

which proves that S0 can be seen as a gradient ascent step
starting from Sλ if t = 1/λ is small enough. Obviously Sλ

becomes a gradient descent step for such small t.

In practice, we cannot make infinitesimally small steps
because the minimal step size is given by t = 1/λmax. Ac-
cording to (7), Sλmax is a descent step of the energy, i.e.

Ẽ(Sλmax
) ≤ Ẽ(S0).

We use this property in order to simulate a gradient descent
approach. Starting with segmentation S0, at iteration k+1,
we set Sk+1 = Sλmax computed with respect to segmenta-
tion Sk. Since Ẽ(·) decreases, this approach converges.

We show in Section 4 that such a simulated gradient
descent approach is not only much slower than our trust-
region approach, but also less reliable as it is prone to get
stuck in a weaker local minimum.

4. Applications

In this section we apply our method to segmentation of
natural and medical images. We selected several exam-
ples of segmentation energies with non-linear regional con-
straints. These include volume constraint, shape prior in
a form of L2 distance from target shape moments, as well
as Kullback-Leibler divergence and Bhattacharyya distance
between the segment and target appearance distributions.

We compare the performance of our Fast Trust Region
approach with the exact line-search algorithm proposed in
[8] and simulated gradient descent described in Section
3.4, because these are the most related general algorithms
for minimization of non-linear regional segmentation ener-
gies. Our implementation of the above methods is based on
graph-cuts, therefore we compare the energy as a function
of number of graph-cuts performed. We use the floating
point precision in the standard code for graph-cuts [5].

While the running time of simulated gradient descent
could potentially be improved by using level-sets imple-
mentation, it would still be prone to getting stuck in weak
local minimum when optimizing complex energies (see Fig-
ures 7-9). This behavior of simulated gradient descent
method also conforms to the conclusions made in [2, 1] re-
garding gradient descent based on level-sets.

Init Line-Search Trust Region Descent” 
“Gradient Fast Exact 

“ “ 

Figure 4. Synthetic example with volume constraint: λSmooth = 1,
λShape = 0.0001. Target volume is the size of initial segmentation.

4.1. Volume Constraint

Below, we perform image segmentation with volume
constraint. Namely, E(S) = R(S) +Q(S) where

R(S) =
1

2
(⟨1Ω, S⟩ − V )2,

V is a given target volume and Q(S) is a 16-neighborhood
quadratic length term,

Q(S) = λ
∑
(p,q)

wpq · δ(sp ̸= sq).

We approximate R(S) near S0 using the first order Taylor
approximation U0(S) = ⟨g, S⟩. For our volume constraint,
this results in

g(x, y) ≡ ⟨1Ω, S0⟩ − V.

This is a relatively simple energy and Figure 4(top) shows
that FTR as well as exact line-search [8] and simulated gra-
dient descent converge to good local minimum solutions
(circle), with FTR being significantly faster (bottom).

Figure 5 shows four examples of vertebrae segmenta-
tion with volume constraint. The color coded segmenta-
tions (yellow, green, red, cyan) are performed separately
but shown together due to the lack of space. Since the vol-
ume varies considerably across vertebrae we use a range
volume constraint that penalizes deviations from the allow-
able range, namely

R(S) =

 1/2(⟨1Ω, S⟩ − Vmax)
2 if |S| ≥ Vmax

1/2(⟨1Ω, S⟩ − Vmin)
2 if |S| ≤ Vmin

0 otherwise.
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Figure 5. Four examples of vertebrae segmentation with range
volume constraint, color coded (yellow, green, red, cyan). We
used Vmin = 890, and Vmax = 1410, λSmooth = 0.02, λShape =
0.01, λApp = 0.1 and appearance models with 32 bins.

In this example, in addition to the volume constraint and
contrast-sensitive quadratic length term we make use of
Boykov-Jolly style log-likelihoods [4] based on color his-
tograms. Namely, E(S) = R(S) + Q(S) + D(S), where
D(S) is a standard log-likelihood unary term. In this case,
Ẽ(S) = U0(S) + Q(S) + D(S). Again, all three meth-
ods (FTR, exact line-search and simulated gradient descent)
converge to good solutions (see Figure 5) with FTR being
significantly faster. The plot shows convergence behavior
for the vertebrae marked in red. The volume constraint
strongly controls the resulting segmentation compared to
the one obtained without the constraint (top-right).

4.2. Shape Prior with Geometric Shape Moments

Below, we perform image segmentation with shape prior
using L2 distance between segment and target geometric
shape moments. Our energy is defined as E(S) = R(S) +
Q(S) + D(S). Here, D(S) is a standard log-likelihood
unary term based on color histograms, Q(S) is a contrast-
sensitive quadratic length term and R(S) is given by

R(S) =
1

2

∑
p+q≤d

(⟨xpyq, S⟩ −mpq)
2,

with mpq denoting the target geometric moment of order
d = p + q. The first order Taylor approximation of R(S)

Exact Trust 
Init 

Boykov-Jolly 

Line-Search Region   

Fast 

“Gradient 
Descent” 

“ “ 

Figure 6. Liver segmentation with the shape prior. The target shape
moments and appearance model are computed for the user pro-
vided input (ellipse). We used moments of up to order 2 exclud-
ing volume and appearance models with 100 bins. (λSmooth = 5,
λShape = 0.01 and λApp = 1)

near S0 results in U0(S) = ⟨g, S⟩ where

g(x, y) =
∑

p+q≤d

[⟨xpyq, S0⟩ −mpq]x
pyq.

Figure 6 shows an example of liver segmentation with
the shape prior constraint. The target shape moments as
well as the foreground and background appearance models
are computed from an input ellipse (top-left) provided by
user as in [11]. We used moments of up to order d = 2 (in-
cluding the center of mass and shape covariance but exclud-
ing the volume). This energy can be optimized quite well
with the exact line-search and the simulated gradient de-
scent methods, but it is 10 to 100 times faster to do so with
FTR (bottom). Shape prior constraint controls the resulting
segmentation compared to the best segmentation obtained
without shape prior (top-right).

So far we have demonstrated that FTR is a fast opti-
mization method. In the next experiments we show that
as the segmentation energy becomes more complex, FTR
becomes more advantageous since Gradient Descent often
gets stuck in weak local minimum while exact line-search
is too slow.

4.3. Matching Target Appearance

In the experiments below we apply FTR to optimize seg-
mentation energies where the goal is to match a given target
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Figure 7. Matching target appearance: via standard log-likelihood
data term style Boykov-Jolly [4] with 15 bins per color channel
(top), KL divergence with 15 bins per channel (middle) and KL
divergence with 100 bins per channel (bottom). Target appearance
model is set using the ground truth, λSmooth = 0.01, λApp = 80.

appearance distribution using either Kullback-Leibler diver-
gence [8] or Bhattacharyya distance [1, 8] between the seg-
ment and target appearance distributions. The images in the
experiments below are taken from [13]. We approximate
R(S) near S0 using the first order Taylor approximation
U0(S) = ⟨g, S⟩ resulting in the following scalar functions:

g(x, y) =
k∑

i=1

[
log

(
⟨fi, S0⟩
⟨1, S0⟩ qi

)
+ 1

]
·

[
fi(x, y)

⟨1, S0⟩
− ⟨fi, S0⟩

⟨1, S0⟩2

]
for the KL divergence and

g(x, y) =

∑k
i=1

√
⟨fi,S0⟩qi
⟨1,S0⟩3

−
√

qi
⟨1,S0⟩⟨fi,S0⟩fi(x, y)

2
∑k

i=1

√
⟨fi,S0⟩qi
⟨1,S0⟩

for the Bhattacharyya distance. Here, fi is an indicator
function of pixels belonging to bin i and qi is the target
probability of bin i. The target appearance distributions for
the object and background were obtained from the ground
truth segments. We used 100 bins per color channel.

Figure 7 illustrates the superior performance of FTR
compared to the simulated gradient descent method. As the
energy becomes more complex, either due to addition of the
non-linear regional term (moving from the first row to the
second) or due to the increased number of bins used to fit
appearance distribution (moving from the second row to the
third), the Gradient Descent approach gets stuck in weak lo-
cal minimum while our FTR efficiently converges to good
solutions (see right column for comparing the energy).

Init Line-Search Trust Region Descent”
“GradientExact Fast

“ “

Figure 8. Matching target appearance using KL divergence and
100 bins per channel. Target appearance model is set using the
ground truth segmentation. We used λSmooth = 0.01, λApp = 100
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Figure 9. Matching target appearance using Bhattacharyya dis-
tance and 100 bins per channel. Target appearance model is set
using the ground truth segmentation, λSmooth = 1, λApp = 1000.

Figures 8-9 show additional examples with KL diver-
gence and Bhattacharyya distance respectively, using 100
bins per color channel and regularizing with contrast sensi-
tive quadratic length term Q(S). The simulated gradient de-
scent is unable to reduce the energy, while exact line-search
is about 100 times slower than the proposed FTR.

Finally, Figure 10 show the practical robustness of the
FTR algorithm to the reduction ratio threshold τ2.



τ=0 τ=0.05 τ=0.25 τ=0.5 τ=0.75 Init 

Init τ=0 τ=0.25 τ=0.5 τ=0.75 

Figure 10. Robustness to reduction ratio τ2 with KL divergence,
100 bins per channel, λSmooth = 0.01 and λApp = 100. Target
appearance model is set using the ground truth segmentation.

5. Conclusions and Extensions
We show that the proposed Fast Trust Region (FTR)

method is a robust and practically efficient algorithm for
a very general class of high-order segmentation functionals.
We use a Lagrangian formulation of the trust region sub-
problem and derive a simple analytic relationship between
step size d and Lagrange multiplier λ. This relationship al-
lows to control the trust region size via λ. Our adaptive
scheme for λ significantly speeds up (up to a factor of 100)
over the exact line-search [8], while getting comparable so-
lutions. We analyze the relationship between FTR and clas-
sical gradient descent approaches based on level-sets. In
contrast to local linear updates in gradient decent methods,
FTR incorporates long-range non-linear steps that, in prac-
tice, can avoid weak local minima.

Extensions of FTR can explore other schemes for ad-
justing λ between the iterations, e.g., one can use scalar
||∇ẼC(∂S0)|| in d ∼ 1/λ relation (9). Following [6], FTR
can use non-Euclidean trust regions, e.g., ellipsoids as in
Levenberg-Marquardt. Approximate models better than (2)
can be used in case their efficient minimizers are known.
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