
Discriminative Unsupervised Feature Learning with
Convolutional Neural Networks

Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller and Thomas Brox
Department of Computer Science

University of Freiburg
79110, Freiburg im Breisgau, Germany

{dosovits,springj,riedmiller,brox}@cs.uni-freiburg.de

Abstract

Current methods for training convolutional neural networks depend on large
amounts of labeled samples for supervised training. In this paper we present an
approach for training a convolutional neural network using only unlabeled data.
We train the network to discriminate between a set of surrogate classes. Each
surrogate class is formed by applying a variety of transformations to a randomly
sampled ’seed’ image patch. We find that this simple feature learning algorithm
is surprisingly successful when applied to visual object recognition. The feature
representation learned by our algorithm achieves classification results matching
or outperforming the current state-of-the-art for unsupervised learning on several
popular datasets (STL-10, CIFAR-10, Caltech-101).

1 Introduction

Convolutional neural networks (CNNs) trained via backpropagation were recently shown to perform
well on image classification tasks with millions of training images and thousands of categories [1,
2]. The feature representation learned by these networks achieves state-of-the-art performance not
only on the classification task for which the network was trained, but also on various other visual
recognition tasks, for example: classification on Caltech-101 [2, 3], Caltech-256 [2] and the Caltech-
UCSD birds dataset [3]; scene recognition on the SUN-397 database [3]; detection on the PASCAL
VOC dataset [4]. This capability to generalize to new datasets makes supervised CNN training an
attractive approach for generic visual feature learning.

The downside of supervised training is the need for expensive labeling, as the amount of required
labeled samples grows quickly the larger the model gets. The large performance increase achieved
by methods based on the work of Krizhevsky et al. [1] was, for example, only possible due to
massive efforts on manually annotating millions of images. For this reason, unsupervised learning
– although currently underperforming – remains an appealing paradigm, since it can make use of
raw unlabeled images and videos. Furthermore, on vision tasks outside classification it is not even
certain whether training based on object class labels is advantageous. For example, unsupervised
feature learning is known to be beneficial for image restoration [5] and recent results show that it
outperforms supervised feature learning also on descriptor matching [6].

In this work we combine the power of a discriminative objective with the major advantage of un-
supervised feature learning: cheap data acquisition. We introduce a novel training procedure for
convolutional neural networks that does not require any labeled data. It rather relies on an auto-
matically generated surrogate task. The task is created by taking the idea of data augmentation –
which is commonly used in supervised learning – to the extreme. Starting with trivial surrogate
classes consisting of one random image patch each, we augment the data by applying a random set
of transformations to each patch. Then we train a CNN to classify these surrogate classes. We refer
to this method as exemplar training of convolutional neural networks (Exemplar-CNN).

1

The feature representation learned by Exemplar-CNN is, by construction, discriminative and in-
variant to typical transformations. We confirm this both theoretically and empirically, showing that
this approach matches or outperforms all previous unsupervised feature learning methods on the
standard image classification benchmarks STL-10, CIFAR-10, and Caltech-101.

1.1 Related Work

Our approach is related to a large body of work on unsupervised learning of invariant features and
training of convolutional neural networks.

Convolutional training is commonly used in both supervised and unsupervised methods to utilize
the invariance of image statistics to translations (e.g. LeCun et al. [7], Kavukcuoglu et al. [8],
Krizhevsky et al. [1]). Similar to our approach the current surge of successful methods employing
convolutional neural networks for object recognition often rely on data augmentation to generate
additional training samples for their classification objective (e.g. Krizhevsky et al. [1], Zeiler and
Fergus [2]). While we share the architecture (a convolutional neural network) with these approaches,
our method does not rely on any labeled training data.

In unsupervised learning, several studies on learning invariant representations exist. Denoising au-
toencoders [9], for example, learn features that are robust to noise by trying to reconstruct data from
randomly perturbed input samples. Zou et al. [11] learn invariant features from video by enforcing
a temporal slowness constraint on the feature representation learned by a linear autoencoder. Sohn
and Lee [12] and Hui [13] learn features invariant to local image transformations. In contrast to our
discriminative approach, all these methods rely on directly modeling the input distribution and are
typically hard to use for jointly training multiple layers of a CNN.

The idea of learning features that are invariant to transformations has also been explored for super-
vised training of neural networks. The research most similar to ours is early work on tangent prop-
agation [14] (and the related double backpropagation [15]) which aims to learn invariance to small
predefined transformations in a neural network by directly penalizing the derivative of the output
with respect to the magnitude of the transformations. In contrast, our algorithm does not regularize
the derivative explicitly. Thus it is less sensitive to the magnitude of the applied transformation.

This work is also loosely related to the use of unlabeled data for regularizing supervised algorithms,
for example self-training [16] or entropy regularization [17]. In contrast to these semi-supervised
methods, Exemplar-CNN training does not require any labeled data.

Finally, the idea of creating an auxiliary task in order to learn a good data representation was used
by Ahmed et al. [18], Collobert et al. [19].

2 Creating Surrogate Training Data

The input to the training procedure is a set of unlabeled images, which come from roughly the same
distribution as the images to which we later aim to apply the learned features. We randomly sample
N ∈ [50, 32000] patches of size 32×32 pixels from different images at varying positions and scales
forming the initial training set X = {x1, . . .xN}. We are interested in patches containing objects
or parts of objects, hence we sample only from regions containing considerable gradients.

We define a family of transformations {Tα|α ∈ A} parameterized by vectors α ∈ A, where A is
the set of all possible parameter vectors. Each transformation Tα is a composition of elementary
transformations from the following list:

• translation: vertical or horizontal translation by a distance within 0.2 of the patch size;
• scaling: multiplication of the patch scale by a factor between 0.7 and 1.4;
• rotation: rotation of the image by an angle up to 20 degrees;
• contrast 1: multiply the projection of each patch pixel onto the principal components of the

set of all pixels by a factor between 0.5 and 2 (factors are independent for each principal
component and the same for all pixels within a patch);

• contrast 2: raise saturation and value (S and V components of the HSV color representation)
of all pixels to a power between 0.25 and 4 (same for all pixels within a patch), multiply
these values by a factor between 0.7 and 1.4, add to them a value between −0.1 and 0.1;

2

Figure 1: Exemplary patches sampled from
the STL unlabeled dataset which are later
augmented by various transformations to ob-
tain surrogate data for the CNN training.

Figure 2: Several random transformations
applied to one of the patches extracted from
the STL unlabeled dataset. The original
(’seed’) patch is in the top left corner.

• color: add a value between −0.1 and 0.1 to the hue (H component of the HSV color repre-
sentation) of all pixels in the patch (the same value is used for all pixels within a patch).

All numerical parameters of elementary transformations, when concatenated together, form a single
parameter vector α. For each initial patch xi ∈ X we sample K ∈ [1, 300] random parameter
vectors {α1

i , . . . , α
K
i } and apply the corresponding transformations Ti = {Tα1

i
, . . . , TαK

i
} to the

patch xi. This yields the set of its transformed versions Sxi
= Tixi = {Txi|T ∈ Ti}. Afterwards

we subtract the mean of each pixel over the whole resulting dataset. We do not apply any other
preprocessing. Exemplary patches sampled from the STL-10 unlabeled dataset are shown in Fig. 1.
Examples of transformed versions of one patch are shown in Fig. 2 .

3 Learning Algorithm

Given the sets of transformed image patches, we declare each of these sets to be a class by assigning
label i to the class Sxi . We next train a CNN to discriminate between these surrogate classes.
Formally, we minimize the following loss function:

L(X) =
∑
xi∈X

∑
T∈Ti

l(i, Txi), (1)

where l(i, Txi) is the loss on the transformed sample Txi with (surrogate) true label i. We use
a CNN with a softmax output layer and optimize the multinomial negative log likelihood of the
network output, hence in our case

l(i, Txi) =M(ei, f(Txi)),

M(y, f) = −〈y, log f〉 = −
∑
k

yk log fk,
(2)

where f(·) denotes the function computing the values of the output layer of the CNN given the
input data, and ei is the ith standard basis vector. We note that in the limit of an infinite number of
transformations per surrogate class, the objective function (1) takes the form

L̂(X) =
∑
xi∈X

Eα[l(i, Tαxi)], (3)

which we shall analyze in the next section.

Intuitively, the classification problem described above serves to ensure that different input samples
can be distinguished. At the same time, it enforces invariance to the specified transformations. In the
following sections we provide a foundation for this intuition. We first present a formal analysis of
the objective, separating it into a well defined classification problem and a regularizer that enforces
invariance (resembling the analysis in Wager et al. [20]). We then discuss the derived properties of
this classification problem and compare it to common practices for unsupervised feature learning.

3.1 Formal Analysis

We denote by α ∈ A the random vector of transformation parameters, by g(x) the vector of activa-
tions of the second-to-last layer of the network when presented the input patch x, by W the matrix

3

of the weights of the last network layer, by h(x) = Wg(x) the last layer activations before applying
the softmax, and by f(x) = softmax (h(x)) the output of the network. By plugging in the definition
of the softmax activation function

softmax (z) = exp(z)/‖ exp(z)‖1 (4)

the objective function (3) with loss (2) takes the form∑
xi∈X

Eα
[
−〈ei, h(Tαxi)〉+ log ‖ exp(h(Tαxi))‖1

]
. (5)

With ĝi = Eα [g(Tαxi)] being the average feature representation of transformed versions of the
image patch xi we can rewrite Eq. (5) as∑

xi∈X

[
−〈ei, Wĝi〉+ log ‖ exp(Wĝi)‖1

]
+
∑
xi∈X

[
Eα [log ‖ exp(h(Tαxi))‖1]− log ‖ exp(Wĝi)‖1

]
.

(6)

The first sum is the objective function of a multinomial logistic regression problem with input-target
pairs (ĝi, ei). This objective falls back to the transformation-free instance classification problem
L(X) =

∑
xi∈X l(i, xi) if g(xi) = Eα[g(Tαx)]. In general, this equality does not hold and thus

the first sum enforces correct classification of the average representation Eα[g(Tαxi)] for a given
input sample. For a truly invariant representation, however, the equality is achieved. Similarly, if we
suppose that Tαx = x for α = 0, that for small values of α the feature representation g(Tαxi) is
approximately linear with respect to α and that the random variable α is centered, i.e. Eα [α] = 0,
then ĝi = Eα [g(Tαxi)] ≈ Eα [g(xi) + ∇α(g(Tαxi))|α=0 α] = g(xi).

The second sum in Eq. (6) can be seen as a regularizer enforcing all h(Tαxi) to be close to their
average value, i.e., the feature representation is sought to be approximately invariant to the transfor-
mations Tα. To show this we use the convexity of the function log ‖ exp(·)‖1 and Jensen’s inequality,
which yields (proof in supplementary material)

Eα [log ‖ exp(h(Tαxi))‖1]− log ‖ exp(Wĝi)‖1 ≥ 0. (7)

If the feature representation is perfectly invariant, then h(Tαxi) = Wĝi and inequality (7) turns to
equality, meaning that the regularizer reaches its global minimum.

3.2 Conceptual Comparison to Previous Unsupervised Learning Methods

Suppose we want to unsupervisedly learn a feature representation useful for a recognition task, for
example classification. The mapping from input images x to a feature representation g(x) should
then satisfy two requirements: (1) there must be at least one feature that is similar for images of the
same category y (invariance); (2) there must be at least one feature that is sufficiently different for
images of different categories (ability to discriminate).

Most unsupervised feature learning methods aim to learn such a representation by modeling the
input distribution p(x). This is based on the assumption that a good model of p(x) contains infor-
mation about the category distribution p(y|x). That is, if a representation is learned, from which
a given sample can be reconstructed perfectly, then the representation is expected to also encode
information about the category of the sample (ability to discriminate). Additionally, the learned
representation should be invariant to variations in the samples that are irrelevant for the classifica-
tion task, i.e., it should adhere to the manifold hypothesis (see e.g. Rifai et al. [21] for a recent
discussion). Invariance is classically achieved by regularization of the latent representation, e.g., by
enforcing sparsity [8] or robustness to noise [9].

In contrast, the discriminative objective in Eq. (1) does not directly model the input distribution
p(x) but learns a representation that discriminates between input samples. The representation is not
required to reconstruct the input, which is unnecessary in a recognition or matching task. This leaves
more degrees of freedom to model the desired variability of a sample. As shown in our analysis (see
Eq. (7)), we achieve partial invariance to transformations applied during surrogate data creation by
forcing the representation g(Tαxi) of the transformed image patch to be predictive of the surrogate
label assigned to the original image patch xi.

4

It should be noted that this approach assumes that the transformations Tα do not change the identity
of the image content. If we, for example, use a color transformation we will force the network to be
invariant to this change and cannot expect the extracted features to perform well in a task relying on
color information (such as differentiating black panthers from pumas)1.

4 Experiments

To compare our discriminative approach to previous unsupervised feature learning methods, we re-
port classification results on the STL-10 [22], CIFAR-10 [23] and Caltech-101 [24] datasets. More-
over, we assess the influence of the augmentation parameters on the classification performance and
study the invariance properties of the network.

4.1 Experimental Setup

The datasets we test on differ in the number of classes (10 for CIFAR and STL, 101 for Caltech)
and the number of samples per class. STL is especially well suited for unsupervised learning as it
contains a large set of 100,000 unlabeled samples. In all experiments (except for the dataset transfer
experiment in the supplementary material) we extracted surrogate training data from the unlabeled
subset of STL-10. When testing on CIFAR-10, we resized the images from 32×32 pixels to 64×64
pixels so that the scale of depicted objects roughly matches the two other datasets.

We worked with two network architectures. A “small” network was used to evaluate the influence
of different components of the augmentation procedure on classification performance. It consists of
two convolutional layers with 64 filters each followed by a fully connected layer with 128 neurons.
This last layer is succeeded by a softmax layer, which serves as the network output. A “large”
network, consisting of three convolutional layers with 64, 128 and 256 filters respectively followed
by a fully connected layer with 512 neurons, was trained to compare our method to the state-of-
the-art. In both models all convolutional filters are connected to a 5 × 5 region of their input.
2× 2 max-pooling was performed after the first and second convolutional layers. Dropout [25] was
applied to the fully connected layers. We trained the networks using an implementation based on
Caffe [26]. Details on the training procedure, the hyperparameter settings, and an analysis of the
performance depending on the network architecture is provided in the supplementary material.

We applied the feature representation to images of arbitrary size by convolutionally computing the
responses of all the network layers except the top softmax. To each feature map, we applied the pool-
ing method that is commonly used for the respective dataset: 1) 4-quadrant max-pooling, resulting in
4 values per feature map, which is the standard procedure for STL-10 and CIFAR-10 [27, 11, 28, 13];
2) 3-layer spatial pyramid, i.e. max-pooling over the whole image as well as within 4 quadrants and
within the cells of a 4 × 4 grid, resulting in 1 + 4 + 16 = 21 values per feature map, which is the
standard for Caltech-101 [29, 11, 30]. Finally, we trained a linear support vector machine (SVM) on
the pooled features.

On all datasets we used the standard training and test protocols. On STL-10 the SVM was trained
on 10 pre-defined folds of the training data. We report the mean and standard deviation achieved on
the fixed test set. For CIFAR-10 we report two results: (1) training the SVM on the whole CIFAR-
10 training set (’CIFAR-10’); (2) the average over 10 random selections of 400 training samples
per class (’CIFAR-10(400)’). For Caltech-101 we follow the usual protocol of selecting 30 random
samples per class for training and not more than 50 samples per class for testing. This is repeated
10 times.

4.2 Classification Results

In Table 1 we compare Exemplar-CNN to several unsupervised feature learning methods, including
the current state-of-the-art on each dataset. We also list the state-of-the-art for supervised learning
(which is not directly comparable). Additionally we show the dimensionality of the feature vectors

1Such cases could be covered either by careful selection of applied transformations or by combining features
from multiple networks trained with different sets of transformations and letting the final classifier choose which
features to use.

5

Table 1: Classification accuracies on several datasets (in percent). † Average per-class accu-
racy2 78.0%± 0.4%. ‡ Average per-class accuracy 84.4%± 0.6%.

Algorithm STL-10 CIFAR-10(400) CIFAR-10 Caltech-101 #features
Convolutional K-means Network [27] 60.1± 1 70.7± 0.7 82.0 — 8000
Multi-way local pooling [29] — — — 77.3± 0.6 1024× 64
Slowness on videos [11] 61.0 — — 74.6 556
Hierarchical Matching Pursuit (HMP) [28] 64.5± 1 — — — 1000
Multipath HMP [30] — — — 82.5± 0.5 5000
View-Invariant K-means [13] 63.7 72.6± 0.7 81.9 — 6400
Exemplar-CNN (64c5-64c5-128f) 67.1± 0.3 69.7± 0.3 75.7 79.8± 0.5† 256
Exemplar-CNN (64c5-128c5-256c5-512f) 72.8± 0.4 75.3± 0.2 82.0 85.5± 0.4‡ 960
Supervised state of the art 70.1[31] — 91.2 [32] 91.44 [33] —

produced by each method before final pooling. The small network was trained on 8000 surrogate
classes containing 150 samples each and the large one on 16000 classes with 100 samples each.

The features extracted from the larger network match or outperform the best prior result on all
datasets. This is despite the fact that the dimensionality of the feature vector is smaller than that of
most other approaches and that the networks are trained on the STL-10 unlabeled dataset (i.e. they
are used in a transfer learning manner when applied to CIFAR-10 and Caltech 101). The increase in
performance is especially pronounced when only few labeled samples are available for training the
SVM (as is the case for all the datasets except full CIFAR-10). This is in agreement with previous
evidence that with increasing feature vector dimensionality and number of labeled samples, training
an SVM becomes less dependent on the quality of the features [27, 13]. Remarkably, on STL-10 we
achieve an accuracy of 72.8%, which is a large improvement over all previously reported results.

4.3 Detailed Analysis

We performed additional experiments (using the “small” network) to study the effect of three design
choices in Exemplar-CNN training and validate the invariance properties of the learned features.
Experiments on sampling ’seed’ patches from different datasets can be found in the supplementary.

4.3.1 Number of Surrogate Classes

We varied the number N of surrogate classes between 50 and 32000. As a sanity check, we also
tried classification with random filters. The results are shown in Fig. 3.

Clearly, the classification accuracy increases with the number of surrogate classes until it reaches
an optimum at about 8000 surrogate classes after which it did not change or even decreased. This
is to be expected: the larger the number of surrogate classes, the more likely it is to draw very
similar or even identical samples, which are hard or impossible to discriminate. Few such cases are
not detrimental to the classification performance, but as soon as such collisions dominate the set
of surrogate labels, the discriminative loss is no longer reasonable and training the network to the
surrogate task no longer succeeds. To check the validity of this explanation we also plot in Fig. 3 the
classification error on the validation set (taken from the surrogate data) computed after training the
network. It rapidly grows as the number of surrogate classes increases. We also observed that the
optimal number of surrogate classes increases with the size of the network (not shown in the figure),
but eventually saturates. This demonstrates the main limitation of our approach to randomly sample
’seed’ patches: it does not scale to arbitrarily large amounts of unlabeled data. However, we do not
see this as a fundamental restriction and discuss possible solutions in Section 5 .

4.3.2 Number of Samples per Surrogate Class

Fig. 4 shows the classification accuracy when the number K of training samples per surrogate class
varies between 1 and 300. The performance improves with more samples per surrogate class and

2 On Caltech-101 one can either measure average accuracy over all samples (average overall accuracy) or
calculate the accuracy for each class and then average these values (average per-class accuracy). These differ,
as some classes contain fewer than 50 test samples. Most researchers in ML use average overall accuracy.

6

50 100 250 500 1000 2000 4000 8000 1600032000
54

56

58

60

62

64

66

68

Number of classes (log scale)

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 o

n
S

T
L−

10

Classification
on STL (± σ)
Validation error on
surrogate data

0

20

40

60

80

100

E
rr

or
 o

n
va

lid
at

io
n

da
ta

Figure 3: Influence of the number of surro-
gate training classes. The validation error on
the surrogate data is shown in red. Note the
different y-axes for the two curves.

1 2 4 8 16 32 64 100 150 300
45

50

55

60

65

70

Number of samples per class (log scale)

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 o

n
S

T
L−

10

1000 classes
2000 classes
4000 classes
random filters

Figure 4: Classification performance on STL
for different numbers of samples per class.
Random filters can be seen as ’0 samples per
class’.

saturates at around 100 samples. This indicates that this amount is sufficient to approximate the
formal objective from Eq. (3), hence further increasing the number of samples does not significantly
change the optimization problem. On the other hand, if the number of samples is too small, there is
insufficient data to learn the desired invariance properties.

4.3.3 Types of Transformations

−20

−15

−10

−5

0

Removed transformations

rotation scaling translation color contrast rot+sc+tr col+con all

−20

−15

−10

−5

0

D
iff

er
en

ce
 in

 c
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

STL−10
CIFAR−10
Caltech−101

Figure 5: Influence of removing groups of trans-
formations during generation of the surrogate
training data. Baseline (’0’ value) is applying all
transformations. Each group of three bars corre-
sponds to removing some of the transformations.

We varied the transformations used for creating
the surrogate data to analyze their influence on
the final classification performance. The set of
’seed’ patches was fixed. The result is shown
in Fig. 5. The value ’0’ corresponds to ap-
plying random compositions of all elementary
transformations: scaling, rotation, translation,
color variation, and contrast variation. Differ-
ent columns of the plot show the difference in
classification accuracy as we discarded some
types of elementary transformations.

Several tendencies can be observed. First, ro-
tation and scaling have only a minor impact on
the performance, while translations, color vari-
ations and contrast variations are significantly
more important. Secondly, the results on STL-
10 and CIFAR-10 consistently show that spatial invariance and color-contrast invariance are ap-
proximately of equal importance for the classification performance. This indicates that variations
in color and contrast, though often neglected, may also improve performance in a supervised learn-
ing scenario. Thirdly, on Caltech-101 color and contrast transformations are much more important
compared to spatial transformations than on the two other datasets. This is not surprising, since
Caltech-101 images are often well aligned, and this dataset bias makes spatial invariance less useful.

4.3.4 Invariance Properties of the Learned Representation

In a final experiment, we analyzed to which extent the representation learned by the network is
invariant to the transformations applied during training. We randomly sampled 500 images from the
STL-10 test set and applied a range of transformations (translation, rotation, contrast, color) to each
image. To avoid empty regions beyond the image boundaries when applying spatial transformations,
we cropped the central 64×64 pixel sub-patch from each 96×96 pixel image. We then applied two
measures of invariance to these patches.

First, as an explicit measure of invariance, we calculated the normalized Euclidean distance be-
tween normalized feature vectors of the original image patch and the transformed one [11] (see the
supplementary material for details). The downside of this approach is that the distance between
extracted features does not take into account how informative and discriminative they are. We there-

7

−20 −10 0 10 20
0

0.2

0.4

0.6

0.8

1

Translation (pixels)

D
is

ta
nc

e
be

tw
ee

n
fe

at
ur

e
ve

ct
or

s

(a)

1st layer
2nd layer
3rd layer
4−quadrant
HOG

−50 0 50
10

20

30

40

50

60

Rotation angle (degrees)

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (

in
 %

)

(b)

No movements in training data
Rotations up to 20 degrees
Rotations up to 40 degrees

−0.2 −0.1 0 0.1 0.2 0.3
10

20

30

40

50

60

Hue shift

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (

in
 %

)

(c)

No color transform
Hue change within ± 0.1
Hue change within ± 0.2
Hue change within ± 0.3

−3 −2 −1 0 1 2 3
10

20

30

40

50

60

Contrast multiplier

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (

in
 %

)

(d)

No contrast transform
Contrast coefficients (2, 0.5, 0.1)
Contrast coefficients (4, 1, 0.2)
Contrast coefficients (6, 1.5, 0.3)

Figure 6: Invariance properties of the feature representation learned by Exemplar-CNN. (a): Nor-
malized Euclidean distance between feature vectors of the original and the translated image patches
vs. the magnitude of the translation, (b)-(d): classification performance on transformed image
patches vs. the magnitude of the transformation for various magnitudes of transformations applied
for creating surrogate data. (b): rotation, (c): additive color change, (d): multiplicative contrast
change.

fore evaluated a second measure – classification performance depending on the magnitude of the
transformation applied to the classified patches – which does not come with this problem. To com-
pute the classification accuracy, we trained an SVM on the central 64 × 64 pixel patches from one
fold of the STL-10 training set and measured classification performance on all transformed versions
of 500 samples from the test set.

The results of both experiments are shown in Fig. 6 . Due to space restrictions we show only few
representative plots. Overall the experiment empirically confirms that the Exemplar-CNN objec-
tive leads to learning invariant features. Features in the third layer and the final pooled feature
representation compare favorably to a HOG baseline (Fig. 6 (a)). Furthermore, adding stronger
transformations in the surrogate training data leads to more invariant classification with respect to
these transformations (Fig. 6 (b)-(d)). However, adding too much contrast variation may deteriorate
classification performance (Fig. 6 (d)). One possible reason is that level of contrast can be a useful
feature: for example, strong edges in an image are usually more important than weak ones.

5 Discussion

We have proposed a discriminative objective for unsupervised feature learning by training a CNN
without class labels. The core idea is to generate a set of surrogate labels via data augmentation.
The features learned by the network yield a large improvement in classification accuracy compared
to features obtained with previous unsupervised methods. These results strongly indicate that a
discriminative objective is superior to objectives previously used for unsupervised feature learning.

One potential shortcoming of the proposed method is that in its current state it does not scale to ar-
bitrarily large datasets. Two probable reasons for this are that (1) as the number of surrogate classes
grows larger, many of them become similar, which contradicts the discriminative objective, and (2)
the surrogate task we use is relatively simple and does not allow the network to learn invariance to
complex variations, such as 3D viewpoint changes or inter-instance variation. We hypothesize that
the presented approach could learn more powerful higher-level features, if the surrogate data were
more diverse. This could be achieved by using additional weak supervision, for example, by means
of video or a small number of labeled samples. Another possible way of obtaining richer surro-
gate training data and at the same time avoiding similar surrogate classes would be (unsupervised)
merging of similar surrogate classes. We see these as interesting directions for future work.

Acknowledgements

We acknowledge funding by the ERC Starting Grant VideoLearn (279401); the work was also partly
supported by the BrainLinks-BrainTools Cluster of Excellence funded by the German Research
Foundation (DFG, grant number EXC 1086).

References
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural

networks. In NIPS, pages 1106–1114, 2012.

8

[2] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.

[3] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. DeCAF: A deep convo-
lutional activation feature for generic visual recognition. In ICML, 2014.

[4] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In CVPR, 2014.

[5] K. Cho. Simple sparsification improves sparse denoising autoencoders in denoising highly corrupted
images. In ICML. JMLR Workshop and Conference Proceedings, 2013.

[6] P. Fischer, A. Dosovitskiy, and T. Brox. Descriptor matching with convolutional neural networks: a
comparison to SIFT. 2014. pre-print, arXiv:1405.5769v1 [cs.CV].

[7] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backprop-
agation applied to handwritten zip code recognition. Neural Computation, 1(4):541–551, 1989.

[8] K. Kavukcuoglu, P. Sermanet, Y. Boureau, K. Gregor, M. Mathieu, and Y. LeCun. Learning convolutional
feature hierachies for visual recognition. In NIPS, 2010.

[9] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with
denoising autoencoders. In ICML, pages 1096–1103, 2008.

[11] W. Y. Zou, A. Y. Ng, S. Zhu, and K. Yu. Deep learning of invariant features via simulated fixations in
video. In NIPS, pages 3212–3220, 2012.

[12] K. Sohn and H. Lee. Learning invariant representations with local transformations. In ICML, 2012.

[13] K. Y. Hui. Direct modeling of complex invariances for visual object features. In ICML, 2013.

[14] P. Simard, B. Victorri, Y. LeCun, and J. S. Denker. Tangent Prop - A formalism for specifying selected
invariances in an adaptive network. In NIPS, 1992.

[15] H. Drucker and Y. LeCun. Improving generalization performance using double backpropagation. IEEE
Transactions on Neural Networks, 3(6):991–997, 1992.

[16] M.-R. Amini and P. Gallinari. Semi supervised logistic regression. In ECAI, pages 390–394, 2002.

[17] Y. Grandvalet and Y. Bengio. Entropy regularization. In Semi-Supervised Learning, pages 151–168. MIT
Press, 2006.

[18] A. Ahmed, K. Yu, W. Xu, Y. Gong, and E. Xing. Training hierarchical feed-forward visual recognition
models using transfer learning from pseudo-tasks. In ECCV (3), pages 69–82, 2008.

[19] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. Natural language process-
ing (almost) from scratch. Journal of Machine Learning Research, 12:2493–2537, 2011.

[20] S. Wager, S. Wang, and P. Liang. Dropout training as adaptive regularization. In NIPS. 2013.

[21] S. Rifai, Y. N. Dauphin, P. Vincent, Y. Bengio, and X. Muller. The manifold tangent classifier. In NIPS.
2011.

[22] A. Coates, H. Lee, and A. Y. Ng. An analysis of single-layer networks in unsupervised feature learning.
AISTATS, 2011.

[23] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s thesis,
Department of Computer Science, University of Toronto, 2009.

[24] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An
incremental bayesian approach tested on 101 object categories. In CVPR WGMBV, 2004.

[25] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. Improving neural
networks by preventing co-adaptation of feature detectors. 2012. pre-print, arxiv:cs/1207.0580v3.

[26] Y. Jia. Caffe: An open source convolutional architecture for fast feature embedding. http://caffe.
berkeleyvision.org/, 2013.

[27] A. Coates and A. Y. Ng. Selecting receptive fields in deep networks. In NIPS, pages 2528–2536, 2011.

[28] L. Bo, X. Ren, and D. Fox. Unsupervised feature learning for RGB-D based object recognition. In ISER,
June 2012.

[29] Y. Boureau, N. Le Roux, F. Bach, J. Ponce, and Y. LeCun. Ask the locals: multi-way local pooling for
image recognition. In ICCV’11. IEEE, 2011.

[30] L. Bo, X. Ren, and D. Fox. Multipath sparse coding using hierarchical matching pursuit. In CVPR, pages
660–667, 2013.

[31] K. Swersky, J. Snoek, and R. P. Adams. Multi-task bayesian optimization. In NIPS, 2013.

[32] M. Lin, Q. Chen, and S. Yan. Network in network. In ICLR, 2014.

[33] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual
recognition. In ECCV, 2014.

9

http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/

	Introduction
	Related Work

	Creating Surrogate Training Data
	Learning Algorithm
	Formal Analysis
	Conceptual Comparison to Previous Unsupervised Learning Methods

	Experiments
	Experimental Setup
	Classification Results
	Detailed Analysis
	Number of Surrogate Classes
	Number of Samples per Surrogate Class
	Types of Transformations
	Invariance Properties of the Learned Representation

	Discussion

