
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Supplementary Material for “Discriminative
Unsupervised Feature Learning with Convolutional

Neural Networks”

Anonymous Author(s)
Affiliation
Address
email

1 Formal Analysis

In this section we present the proofs for the formal analysis from Section 3.1 of our paper.

Proposition 1 The function

Z(x) = log ‖ exp(x)‖1, x ∈ Rn

is convex. Moreover, for any x ∈ Rn the kernel of its Hessian matrix∇2Z(x) is given by span (1)

Proof Since

Z(x) = log ‖ exp(x)‖1 = log

n∑
i=1

exp(xi) (1)

we need to prove the convexity of the log-sum-exp function. The Hessian ∇2 of this function is
given as

∇2Z(x) =
1

(1Tu)2
((1Tu) diag (u)− uuT ), (2)

with u = exp(x) and 1 ∈ Rn being a vector of ones. To show the convexity we must prove that
zT∇2Z(x)z ≥ 0 for all x, z ∈ Rn. From (3) we get

zT ∇2Z(x) z =
1

(1Tu)2
((1Tu) zT diag (u) z− zTuuT z)

=
(
∑n
k=1 ukz

2
k)(

∑n
k=1 uk)− (

∑n
k=1 ukzk)

2

(
∑n
k=1 uk)

2
≥ 0 (3)

since (
∑n
k=1 uk)

2 ≥ 0 and (
∑n
k=1 zkuk)

2 ≤ (
∑n
k=1 ukz

2
k)(

∑n
k=1 uk) due to the Cauchy-Schwarz

inequality.

Inequality (3) only turns to equality if
√
ukzk = c

√
uk, (4)

where the constant c does not depend on k. This immediately gives z = c1, which proves the second
statement of the proposition.

Proposition 2 Let α ∈ A be a random vector with values in a bounded setA ⊂ Rk. Let x(·) : A →
Rn be a continuous function. Then inequality

Eα [log ‖ exp(x(α))‖1]− log ‖ exp(Eα[x(α)])‖1 ≥ 0 (5)

holds and only turns to equality if for all α1, α2 ∈ A: (x(α1)− x(α2)) ∈ span (1) .

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Proof Inequality (5) immediately follows from convexity of the function log ‖ exp(·)‖1 and
Jensen’s inequality.

Jensen’s inequality only turns to equality if the function it is applied to is affine-linear on the convex
hull of the integration region. In particular this implies

(x(α1)− x(α2))
T ∇2Z(x(α1)) (x(α1)− x(α2)) = 0 (6)

for all α1, α2 ∈ A. The second statement of Proposition 1 thus immediately gives x(α1)−x(α2) =
c1, Q.E.D.

2 Details on Training Procedure

We describe here in detail which network architectures we tried and explain the network training
procedure.

2.1 Network Architecture

We tested various network architectures in combination with our training procedure. They are coded
as follows: NcF stands for a convolutional layer with N filters of size F × F pixels, Nf stands for
a fully connected layer with N neurons. For example, 64c5-64c5-128f denotes a network with two
convolutional layers containing 64 filters spanning 5× 5 pixels each followed by a fully connected
layer with 128 neurons. The last specified layer is always succeeded by a softmax layer, which
serves as the network output. We applied 2 × 2 max-pooling to the outputs of the first and second
convolutional layers.

As stated in the paper we used a 64c5-64c5-128f architecture in our experiments to evaluate the
influence of different components of the augmentation procedure (we refer to this architecture as
the ’small’ network). A large network, coded as 64c5-128c5-256c5-512f, was then used to achieve
better classification performance.

All considered networks contained rectified linear units in each layer but the softmax layer. Dropout
was applied to the fully connected layer.

2.2 Training the Networks

We adopted the common practice of training the network with stochastic gradient descent with a
fixed momentum of 0.9. We started with a learning rate of 0.01 and gradually decreased the learning
rate during training. That is, we trained until there was no improvement in validation error, then
decreased the learning rate by a factor of 3, and repeated this procedure until convergence.

3 Experiments

We report here two additional experiments studying influence of different aspects of the algorithm
on the quality of the learned features. We also give the details on how we measure invariance of
feature representations in Section 4.3.4 of the paper.

3.1 Influence of the Network Architecture on Classification Performance

We perform an additional experiment to evaluate the influence of the network architecture on clas-
sification performance. The results of this experiment are shown in Table 1. All networks were
trained using a surrogate training set containing either 8000 classes with 150 samples each or 16000
classes with 100 samples each (for larger networks). We vary the number of layers, layer sizes and
filter sizes. Classification accuracy generally improves with the network size indicating that our
classification problem scales well to relatively large networks without overfitting.

3.2 Influence of the Dataset

We applied our feature learning algorithm to images sampled from three datasets – STL-10 unla-
beled dataset, CIFAR-10 and Caltech-101 – and evaluated the performance of the learned feature

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Table 1: Classification accuracy depending on the network architecture. The name coding is as fol-
lows: NcF stands for a convolutional layer with N filters of size F × F pixels, Nf stands for a fully
connected layer with N neurons. For example, 64c5-64c5-128f denotes a network with two convo-
lutional layers containing 64 filters spanning 5 × 5 pixels each followed by a fully connected layer
with 128 neurons. We also show the number of surrogate classes used for training each network.

Architecture #classes STL-10 CIFAR-10(400) CIFAR-10 Caltech-101
32c5-32c5-64f 8000 63.8± 0.4 66.1± 0.4 71.3 78.2± 0.6

64c5-64c5-128f 8000 67.1± 0.3 69.7± 0.3 75.7 79.8± 0.5

64c7-64c5-128f 8000 66.3± 0.4 69.5± 0.3 75.0 79.4± 0.7
64c5-64c5-64c5-128f 8000 68.5± 0.3 70.9± 0.3 77.0 82.2± 0.7

64c5-64c5-64c5-64c5-128f 8000 64.7± 0.5 67.5± 0.3 75.2 75.7± 0.4

128c5-64c5-128f 8000 67.2± 0.4 69.9± 0.2 76.1 80.1± 0.5

64c5-256c5-128f 8000 69.2± 0.3 71.7± 0.3 77.9 81.6± 0.5

64c5-64c5-512f 8000 69.0± 0.4 71.7± 0.2 79.3 82.9± 0.4

128c5-256c5-512f 8000 71.2± 0.3 73.9± 0.3 81.5 84.3± 0.6

128c5-256c5-512f 16000 71.9± 0.3 74.3± 0.3 81.4 84.6± 0.6

64c5-128c5-256c5-512f 16000 72.8± 0.4 75.3± 0.3 82.0 85.5± 0.4

Table 2: Dependence of classification performance (in %) on the training and testing datasets. Each
column corresponds to different test data, each row to different training data (i.e. source of seed
patches). We used the “small” network (64c5-64c5-128f) for this experiment.

TESTING

TRAINING STL-10 CIFAR-10(400) CALTECH-101
STL-10 67.1± 0.3 69.7± 0.3 79.8± 0.5

CIFAR-10 64.5± 0.4 70.3± 0.4 77.8± 0.6
CALTECH-101 66.2± 0.4 69.5± 0.2 80.0± 0.5

representations on classification tasks on these datasets. We used the “small” network (64c5-64c5-
128f) for this experiment.

We show first layer filters learned from the three datasets in Fig. 1. Note how filters qualitatively
differ depending on the dataset they were trained on.

Classification results are shown in Table 2. The best classification results for each dataset are ob-
tained when training on the patches extracted from the dataset itself. However, the difference is not
drastic, indicating that the learned features generalize well to other datasets.

3.3 Details of computing the measure of invariance

We now explain in detail and motivate computation of the normalized Euclidean distance used as a
measure of invariance in the paper.

First we compute feature vectors of all image patches and their transformed versions. We next
normalize each feature vector to unit Euclidean norm and compute Euclidean distances between
each original patch and all of its transformed versions. For each transformation and magnitude we
average these distances over all patches. Finally, we divide the resulting curves by their maximal
values (typically it is the value for the maximum magnitude of the transformation).

The normalizations are performed to compensate for possibly different scales of different features.
Normalizing feature vectors to unit length ensures that the values are in the same range for different
features. The final normalization of the curves by the maximal value allows to compensate for dif-
ferent variation of different features: as an extreme, a constant feature would be considered perfectly
invariant without this normalization, which is certainly not desirable.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

The resulting curves show how quickly the feature representation changes when an image is trans-
formed more and more. A representation for which the curve steeply goes up and then remains
constant cannot be considered invariant to the transformation: the feature vector of the transformed
patch becomes completely uncorrelated with the original feature vector even for small magnitudes
of the transformation. On the other hand, if the curve grows gradually, this indicates that the feature
representation changes slowly when the transformation is applied, meaning invariance or, rather,
covariance of the representation.

Figure 1: Filters learned by first layers of 64c5-64c5-128f networks when training on surrogate data
from various dataset. Top – from STL-10, middle – CIFAR-10, bottom – Caltech-101.

4


	Formal Analysis
	Details on Training Procedure
	Network Architecture
	Training the Networks

	Experiments
	Influence of the Network Architecture on Classification Performance
	Influence of the Dataset
	Details of computing the measure of invariance


