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Abstract. Descriptors based on orientation histograms are widely used
in computer vision. The spatial pooling involved in these representa-
tions provides important invariance properties, yet it is also responsible
for the loss of important details. In this paper, we suggest a way to
preserve the details described by the local curvature. We propose a de-
scriptor that comprises the direction and magnitude of curvature and
naturally expands classical orientation histograms like SIFT and HOG.
We demonstrate the general benefit of the expansion exemplarily for
image classification, object detection, and descriptor matching.

1 Introduction

Orientation histograms, such as SIFT [14] or HOG [4], are omnipresent in com-
puter vision. They are the dominant descriptors in all recognition tasks and play
a major role in structure from motion and image retrieval. This success is be-
cause the descriptor is invariant to local deformations on the one hand, and it
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Fig. 1. Curvature is a valuable feature.
The image is overlaid with its scalar cur-
vature q, where the opacity is given by
the gradient magnitude. The ear tips
have high curvature. The average q val-
ues are: 62 for the cat’s ears, 43 for the
dog’s ears.

Fig. 2. The two images are considered
equivalent when using the proposed cur-
vature descriptors. The vector curvature
Q is invariant to the sign of the gradi-
ent and always points from the interior
to the exterior of the circle. The image
shows the product of Q with the local
gradient magnitude.
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is still descriptive due to the spatial grid of multiple histograms (cells) on the
other hand. It allows recognition approaches to deal with a large set of natural
variations without the need to model them explicitly.

However, the invariance to local deformations also frustrates discrimination of
structures. HOG and SIFT locally simplify the image to straight lines. Therefore,
the pointed tip of a cat’s ear leads to almost the same representation as the
roundish ear of a dog (see Fig. 1).

In this paper, we extend the idea of orientation histograms to curvature, i.e.,
the image is no longer locally simplified to straight lines but curved lines. Con-
sequently, curvature histograms can distinguish local shape at a more detailed
level. In contrast to previous work [16], we compute curvature with a per-pixel
filter instead of operating on parametric curve segments. Hence, the approach is
generally applicable and the descriptor can be computed basically as fast as a
SIFT or HOG descriptor.

Moreover, we include the sign of the curvature (convex vs. concave). It is
worth noting that the sign of the curvature is different from the sign of the
gradient, which often is of little use in classification tasks. In contrast, the sign
of the curvature allows the descriptor to get an idea where the interior or exterior
of a (convex) object is, independent of the gradient direction; see Fig 2.

The richer set of features leads to significant improvements in descriptor per-
formance. We demonstrate this with image classification experiments on Caltech
101, detection experiments on Pascal VOC 2007, and descriptor matching ex-
periments on the dataset of Mikolajczyk et al. [15].

2 Related Work

The most closely related work is by Monroy et al. [16], where curvature his-
tograms are used for object detection. In [6] Eigenstetter et al. use these fea-
tures in combination with self-similarity. Our approach is different in the way
how curvature is defined and computed. In [6, 16], the chord-to-point distance
accumulation from [10] is used to measure curvature; see Fig. 3. This requires
boundary segments, which Monroy et al. obtain performing a boundary proba-
bility computation pB [1]. Due to sparsity of such edge maps, some features in
the image are lost for the descriptor. In contrast, we compute curvature densely
based on the image gradient, which is significantly faster and preserves all rel-
evant features. While Monroy et al. showed good results of their approach on
images with strong line segments, our approach is more generally applicable, as
we demonstrate in Section 4.

There are many works on curvature computation in general. In the contin-
uous setting, curvature is well defined [17], yet on discrete images there are
multiple ways to estimate it. Most works on discrete curvature estimation oper-
ate on binary images or discrete contours [3, 11, 13]. In contrast, the work in [5]
also applies to color images. It assumes a height field surface given by the image
intensity, and calculates the principal curvatures on this surface. However, this
is fundamentally different from the intuitive understanding of curvature in an
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Fig. 3. Curvature computation
by chord-to-point distance ac-
cumulation. The chord-to-point
distances are shown as red lines.
These are accumulated to ob-
tain the local curvature at pN/2

in [6, 16]

Fig. 4. Profile of a vertical line in a discrete im-
age. The sign of the normalized gradient changes
at the center of the line. This leads to a non-
zero curvature on straight lines when curvature
is calculated via the divergence of the normalized
gradient (in this example central differences were
used). With the proposed descriptor the straight
line does not expose curvature.

image, which is the curvature of isolines. Another classical application of curva-
ture is the use of maxima of the norm of the Hessian to detect interest points.
However, in this paper we compute the signed curvature densely on natural color
images and curvature is represented by a curvature histogram to increase the
expressiveness as a local image descriptor.

In a wider sense, also Carreira et al. [2] is related to our work. They suggested
second order pooling of features in the context of semantic segmentation. This
work shares the idea that important second order features need to be computed
before pooling, as they get lost otherwise. While they propose the use of the
feature vector covariance, we propose the use of second order derivatives. The
two concepts are complementary.

3 Curvature

In general, the curvature of some curve is understood as how much it deviates
from a straight line. Quantitatively, for one point on the curve it is defined as
κ = 1/r, where r is the radius of a circle fitting the curve locally; hence straight
lines have zero curvature.

As there are different ways to describe a curve, there are also different ways
to define curvature, all leading to the same concept as stated above. We focus
on the definition from [17] and assume that the curve X is parameterized by the
arc-length t, such that equally spaced t map to equally spaced X(t). Let T (t) be
the tangent and N(t) the normal at X(t). As in [17], we define curvature as the
change of the normal along the tangent:

κ · T = −dN
dt

(1)

For an intuition, imagine how the normal rotates when you walk along a curve.
The quicker the change, the higher the curvature. The sign of κ depends on the
direction of the normal rotation.
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3.1 Dense Vector Curvature on Images

When computing curvature in an image, we are limited by its resolution, and
hence the underlying curve can never be reproduced accurately. Curvature com-
puted on discrete images can only be an approximation of κ. In the discrete case,
the image gradient must be approximated by considering a neighborhood with
some spatial extent, for instance, by using finite differences. To distinguish a
slightly curved line from a straight line, the observed area must be large enough.
Hence, the maximum and minimum curvature that can be detected, are bounded
by pixel size and neighborhood size.

Another important issue is illustrated in Fig. 4. While the divergence of the
normalized gradient is a standard method to determine the curvature of the
isolines, in the discrete case it can yield undesired curvature responses along
straight lines.

Following the idea of Eq. 1, the aim is to determine the change of the gradient
(or normal) along the tangent. Locally, the tangent coincides with the curve itself.
At each point (x, y) we extract the gradient g = (gx, gy)T = ∇I using standard
linear differencing filters. This yields also the tangent φ = (−gy, gx)T orthogonal
to the gradient. Further, let gN = g/|g| and φN = φ/|φ| denote their normalized
forms.

The Jacobian matrix of the normalized gradient (i.e. its differential) describes
the change of gradient direction:

J(gN ) =

((
gNx
)
x

(
gNx
)
y(

gNy
)
x

(
gNy
)
y

)

Thus, J(gN ) ·φN ∈ R2 gives the gradient change in tangent direction. According
to (1), the resulting vector is expected to be −κ · T and hence parallel to the
tangent. On a discrete image, however, small deviations occur. Thus we project
this vector to the tangent to obtain the scalar q approximating κ:

q = −
((
φN
)> · J(gN ) · φN

)
∈ R (2)

Note that this scalar curvature can be positive or negative. The sign depends on
both the convexity and the sign of the gradient.

For deriving a descriptor, we suggest combining the curvature with the ori-
entation of the gradient. In this scope, we are interested in decoupling the sign
of the curvature from the sign of the gradient to distinguish convex and concave
curves (see Fig. 2). To this end, we multiply q with the gradient vector gN

Q = q · gN ∈ R2 (3)

and obtain a vector Q, which we call vector curvature.
Intuitively, driving along the curved isoline with a car, the vector Q points in

the direction of the centrifugal force that acts on the passenger. Its magnitude
is proportional to this force, assuming a constant velocity.
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(a) (b)

Fig. 5. The curvature
vector Q can be binned to
marginal histograms for
magnitude and direction.
This results in 12 bins.

Fig. 6. Positive weights of feature descriptors trained for
pedestrian detection using a linear SVM. In (a) HOG fea-
tures were used, (b) shows a curvature descriptor. High
convexity is learned pointing upwards in the head region
and downwards in the feet region.

3.2 Feature Binning

With the above procedure, we compute the vector curvature Q densely for ev-
ery pixel in an image and bin it into sparse per-pixel histograms as illustrated
in Fig. 5. We quantize the orientations of Q into 8 bins. This histogram is
partially redundant to the orientation histogram, but the sign depends on the
direction of the curvature rather than the direction of the gradient. Our experi-
ments show that the combination of orientation, sign and magnitude of curvature
makes a strong feature.

Following the standard procedures to assemble SIFT and HOG descrip-
tors [4, 8, 16], we pool these dense features into spatial histograms. The image
is divided into a grid of square cells, and for each cell the sparse curvature
histograms (one for each pixel) are aggregated by weighting them with their re-
spective gradient magnitude. For detection, we follow the soft binning approach
by linearly interpolating between cell centers just as in HOG. Figure 6 shows
visualizations of trained HOG and curvature descriptors.

The feature computation on one image of size 300×250px takes around 0.3
seconds with HOG. Adding our curvature, increases the computation time to
0.7 seconds. The approach from [16] takes about 35 seconds due to the costly
extraction of boundary segments.
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4 Experiments

To demonstrate the benefits of curvature histograms in a wide range of tasks and
images, we tested it in three major areas: image classification, object detection,
and descriptor matching.

Curvature is a second order feature and hence a natural expansion to first
order features like HOG and SIFT. In isolation, second order features are not
meaningful enough to exceed the performance of a good first order feature. Thus,
we compared gradient-only features to the version that includes gradient and
curvature histograms. A comparison to the boundary curvature from [16] was
done in the same way.

4.1 Image Classification

For the experiments on image classification we used the Caltech 101 dataset and
the VLfeat implementation of spatial pyramid matching [12, 18]. The baseline
method is based on dense SIFT descriptors. It trains a k-means based bag-
of-words classifier with an SVM. By collecting SIFT descriptors from random
positions and scales, it builds a dictionary using k-means clustering. Using this
dictionary, for every training image a spatial histogram is built with one bin
per word (i.e. one k-means cluster). Spatial binning is achieved by dividing the
image into 2× 2 and 4× 4 cells and generating histograms for each cell of each
division. A χ2 kernel map is applied before training the SVM on the histograms.
For further details, we refer to the public source code.

We compared this baseline to our curvature-augmented approach which was
added in the form of a second spatial pyramid (i.e. using a second dictionary).
For training the SVM and during testing, both histograms were concatenated.

Results. For every category, we randomly chose 15 training images and 15 test
images. We repeated the whole training and testing process for 10 random sets
to report statistics on the accuracy in Fig. 8(a). The accuracy refers to the share
of test images that were classified correctly, i.e., the sum of the confusion matrix

(a) (b) (c)

Fig. 7. Two flamingo images from Caltech are shown in (a) and (b). The typical shape
of the flamingos’ beaks and necks enables reliable recognition when using curvature.
The scalar curvature of (b) is shown in (c). Note the high curvature at the beak’s tip.
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Fig. 8. Statistical results. The blue boxes show the inter-quartile range, the red line is
the median. The total extent of the results is given by the black whiskers, while the
red triangles enclose the range of significance2.
(a) Results of Caltech101 evaluation. The average accuracies are 66.5% for SIFT only,
65.1% for SIFT with boundary curvature, and 69.1% for SIFT and vector curvature.
This is an incrase of 2.6% over the baseline using our approach. There is some variance
but the differences are clearly significant.
(b) Summarized results of Pascal VOC 2007 evaluation. When changing the random
seeds, the mean AP over all classes varies by about 1%. Still, the boxplots show that
the mean AP distributions do not overlap and that they differ significantly. Table 1
shows a per-class performance overview.

diagonal. The average increase in accuracy of our method over the baseline is
2.6%. While the curvature features from [16] work well on some images, they have
problems on other images, where the extraction of good boundary segments is
harder. On average, the accuracy is slightly lower than the baseline.

The proposed vector curvature improves performance on almost all classes.
For some classes it is particularly useful: on the classes pyramid, flamingo head
and electric guitar, the curvature extension outperforms baseline SIFT by a
large margin. Objects belonging to these classes expose sharp corners, which
help recognition. Figure 7 shows two sample images. As shown in Fig. 7(c), the
flamingo exposes high curvature at the tip of its beak. Also the neck has a typical
curvature. This information is largely ignored by orientation histograms.

4.2 Object Detection

For the evaluation in object detection, we trained filter masks for all 20 object
classes used in the Pascal VOC 2007 challenge [7]. For every class, we clustered
the training examples in 3 aspect ratios, such that in total 60 filter masks were
trained. The training was iterated and used random negatives for the first round.

2Two distributions differ significantly (by 95%), if the triangle intervals (i.e.
notches) do not overlap (cf. MATLAB 2013a boxplot function)
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aeropl bike bird boat bottle bus car cat chair cow table dog

HOG 18.1 46.8 1.8 6.5 14.7 38.2 42.3 4.6 11.9 17.3 8.3 2.5
HOG+ [16] 22.1 39.9 3.4 5.9 11.6 33.6 39.1 7.7 9.8 11.5 8.3 5.1
HOG+Curv 20.9 47.3 2.7 7.4 15.6 40.9 44.8 4.3 13.7 18.0 6.5 2.8

horse mbike person plant sheep sofa train tvmon avg ∆

HOG 38.2 33.0 27.6 5.2 13.0 20.2 31.8 27.9 20.50 0
HOG+ [16] 36.7 26.6 26.8 2.6 8.4 18.4 29.1 30.3 18.85 -1.65%
HOG+Curv 41.8 35.5 29.7 6.0 15.0 19.9 33.0 28.9 21.74 +1.24%

Table 1. Pascal VOC 2007 Object Detection Challenge. Average results of 10 iterations
of training and testing. While our approach improves the overall result, the approach
from [16] on average decreases the performance over the baseline.

Retraining was based on the hard-negatives. Testing was done in a multi-scale
sliding window fashion.

As in image classification, we compared gradient-only features (HOG in this
case) to the curvature augmented versions, which add either our vector curvature
or the boundary curvature from [16]. For Pascal we also ran the whole training
and testing 10 times with different random seeds for sampling negative examples.

Results. While a combination of HOG and our vector curvature increases the
mean AP by 1.24% over the baseline, the method from [16] combined with HOG
decreases the mean AP by 1.65%. To show statistical significance, the results
are summarized using boxplots in Fig. 8(b). A detailed per-class overview can
be found in Table 1. The proposed curvature extension of HOG increases the
AP for 18 of 20 classes.

As demonstrated in [16], boundary curvature performs well on datasets with
clean boundaries, such as the ETHZ shape dataset [9]. The proposed vector
curvature descriptor is more generally applicable as it does not fully depend
on strong boundaries. Moreover, it includes important cues provided by the
curvature direction.

The raw numbers already indicate the benefit of adding vector curvature to
the overall descriptor. Some more distinct advantages can be seen when looking
at actual samples. Figure 9 shows false-positives of the bus category. The top
row lists the top ranked false-positives detected by HOG that did not occur
when using curvature. The bottom row analogously shows the top ranked false-
positives detected with curvature that did not occur with HOG. Note how the
false-positives obtained by adding curvature all show buses and are only due
to suboptimal bounding boxes or duplicate detections. This indicates that by
adding curvature we obtain an additional performance gain that is not measured
by the standard evaluation criterion.
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Fig. 9. By adding curvature we obtain an additional performance gain that is not measured
by the standard evaluation criterion: The figure shows exclusive top false-positives buses
for HOG without (top row) and with curvature (bottom row). Note how the false-positives
obtained by adding curvature all show buses and are only due to suboptimal bounding
boxes or duplicate detections.
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Fig. 10. Mean average precision on the Mikolajczyk dataset. The bottom right plot
shows the average over the whole dataset. SIFT features (green) are consistently out-
performed by the curvature expanded version (red).
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4.3 Descriptor matching

In this experiment we evaluated the feature description performance in image
matching tasks. We use the standard matching dataset by Mikolajczyk et al. [15],
which contains different transformations such as zoom, rotation, blur and light-
ing changes. The dataset has previously been used for two different tasks: local
interest point/region detection and local descriptor matching. We are interested
in descriptor matching and intentionally disregard the detector performance by
using the same region detector for both descriptors. We chose the MSER (max-
imally stable extremal regions) detector, because it is among the best detectors
in [15]. The image patches of the detected elliptical regions were normalized to
a uniform patch size and rotated to the dominant gradient orientation, which is
the standard procedure. Given two images and their regions to be matched, we
computed the descriptors of the normalized patches. All possible descriptor pairs
were then ranked by their Euclidean distance. As in [15], a pair was considered
to be a correct match if the overlap error of the region ellipses is less than 40%
when transformed by the ground truth mapping. Subsequently, for each image
pair, we computed a precision-recall graph and its average precision (AP).

Results. The dataset contains 8 image categories with 5 image pairs each. The
matching results for all 40 image pairs are given in Figure 10, while the last graph
shows the average performance over all categories. The curvature augmented
version performs consistently better than SIFT alone.

5 Conclusions

We have presented an elegant expansion of the popular SIFT and HOG descrip-
tors by curvature histograms. The new curvature descriptor can be computed as
easily as SIFT and HOG. We have demonstrated the general applicability of the
descriptor on very diverse tasks: image classification in a bag-of-features style,
object detection with sliding windows, and descriptor matching. The expansion
of SIFT or HOG descriptors by curvature consistently increases performance on
all three tasks. This demonstrates that the benefits of curvature are not limited
to certain datasets or object classes. The features are universal and can be used
in various areas of visual recognition. Our source code will be made publicly
available for research purposes.
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