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Abstract. In this paper, we propose a method for accurate detection
and segmentation of cells in dense plant tissue of Arabidopsis Thaliana.
We build upon a system that uses a top down approach to yield the
cell segmentations: A discriminative detection is followed by an elastic
alignment of a cell template. While this works well for cells with a dis-
tinct appearance, it fails once the detection step cannot produce reliable
initializations for the alignment. We propose a validation method for the
aligned cell templates and show that we can thereby increase the average
precision substantially.

1 Introduction

Multi class segmentation is an important task in biomedical image analysis.
It enables statistically meaningful analysis of signals by relating them to the
underlying structures. There are basically two approaches to this problem: 1. In
the bottom up approach, one generates a set of region hypotheses that are later
classified and merged to obtain the class label, e.g. [9,3]. 2. In the top down
approach one uses a detector to obtain coarse object localizations that are refined
by a finer grained alignment of a model to the data, e.g. [10,2].

In [10] we presented a paper that deals with detection and alignment of plant
cells in volumetric data in a top down approach. The goal of this paper was to
detect single cells of a certain layer from an Arabidopsis root and to reconstruct
this cell layer. Arabidopsis thaliana is a model organism widely used in plant bi-
ology [7,11]. We use a rigid cell detector based on 3D HOG features to coarsely
localize the cells, similar to Dalal and Trigg’s approach for 2D human detec-
tion [5]. Then we align a template image (sharp mean image) for the respective
cell type to the data using elastic registration. Finally we reconstruct the root in
a greedy fashion by assembling the aligned cell templates iteratively, beginning
with the aligned detection whose associated detection filter received the highest
score.

This approach works well for the cell layer 3 (Fig. 3), as the rigid detection
filter produces reliable hypotheses for the alignment. Unfortunately it fails to
produce satisfactory results for cell layer 4 as is illustrated in Fig. 2(a). The
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Fig. 1. Overview of our processing pipeline. (a) We run a sliding window detector Dk

on the rotation normalized image Bj . On the left you see a slice of Bj and a local
maximum of the produced scoremap Lk,j . (b) The template image Zk is aligned to
the data with the transformation θi

k,j . (c) We use the inverse transformation (θi
k,j)

−1

to shape normalize the root image at this location. Finally, we compute a 3D HOG
feature and validate it with the proposed classifier Vk.

reason for this is the greedy reconstruction based on the scores obtained by the
HOG based rigid detector. This coarse localization step is needed as it would
be computationally impossible to perform alignments of all cell models in all
image locations. The detection system is hence optimized to deliver a high recall.
This, however, leads to many false positive detections, as the image data often
allows for multiple different interpretations with similar scores. For example, it
happens frequent that two adjacent small cells are interpreted as a bigger cell
that encompasses both (or vice versa).
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Therefore, the score from the rigid detector is a bad foundation to decide
whether the suggested model describes the recorded data correctly. While the
alignment step can correct for coarse localizations of the right cell type, it cannot
correct the error if the wrong cell type has been chosen. This is especially bad
with the greedy reconstruction approach: once a false alignment is accepted, it
is likely to also prevent valid alignments in its direct neighborhood.

Bourdev et al. [1] use a linear support vector machine to rescore detections
of persons based on mutually consistent poselet activations. Their framework,
however, is more directed to deal with appearance changes due to the camera
viewpoint and the articulated nature of their objects, opposed to the deformable
nature of the plant cells that we consider.

Contribution. We propose an effective validation step that makes use of the
finer grained localization of the elastic alignment. For every detector, we train
a discriminative classifier that verifies whether the alignment of the sharp mean
image is valid for a certain location. This validation step results in a much better
greedy reconstruction (Fig. 2(b)).

2 Detection and Alignment

The foundation of the approach presented here is our detection and alignment
pipeline from [10]. We will outline the pipeline and introduce our formal notation
along the way. For an overview, have a look at Fig. 1.

We define a 3D volumetric image I of an Arabidopsis root as a function
I : Ω 7→ R, Ω ⊂ R3. It comes with a set of ground truth cell segmentations
Si : Ω 7→ {0, 1}. Attached to the root is a root coordinate system (RCS) [12]
consisting of the direction of the main axis of rotation of the root and an arbi-
trary but fixed “up” component perpendicular to this axis.

The root has a cylindrical structure with cells organized in concentric rings
around its core (Fig. 3). The RCS is used to normalize for the orientation and the
location of the cells with a rigid transformation Hi. The normalized cells are clus-
tered into K clusters with a k-means clustering based on their cuboidal bounding
volumes. For every cluster, a discriminative detection filter Dk is trained. It is
based on 3D HOG features that bin the image gradients into 20 orientation di-
rections (vertices of a Dodecahedron). The soft binning and spatial pooling is
realized with a convolution by a triangular filter with a radius rHOG. The HOG
features are sampled on a regular grid at a distance of sHOG. The Dk are realized
as linear support vector machines, with the orientation normalized cell images of
a cluster being the positive training examples and randomly sampled orientation
normalized images from other parts of the root as negative examples. Along with
the detector a sharp mean image Zk [13] is generated from the positive training
examples. It represents the centroid of the cell cluster with respect to appearance
and shape. The sharp mean image Zk comes with a segmentation mask SZk

.
At test time, all detection filters Dk are tested in a sliding window

fashion on overlapping rotation normalized cuboid shaped image regions
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(a) (b)

Fig. 2. Greedy reconstructions of layer 4 of the root r06. (green) cells are correctly
aligned detections of cells with an IOU ≥ 0.5, (red) cells are falsely aligned detections
with an IOU < 0.5. (a) Reconstruction based on the scores from the rigid detector.
Many locations of the root are occupied by false detections (average precision = 0.64).
(b) The proposed validation step produces much better scores and thus leads to a
better reconstruction (average precision = 0.88).

Bj , j ∈ {1, . . . , NB} of the root, that are sampled in 10◦ steps. The rotation
normalization is based on the RCS. The sliding window is realized as a convo-
lution operation that is efficiently computed in the Fourier domain. This results
in score maps Lk,j : R3 7→ R. The detection locations lik,j ∈ R3, i ∈ {1, . . . , Nk,j}
(ith detection for the detection filter Dk on the rotation normalized image Bj)
are the local maxima of these maps. All local maxima need to be > 0. Within the
volume of the segmentation mask SZk

, all local maxima except the best scoring
local maxima are suppressed.

The corresponding sharp mean image Zk : R3 7→ R is put at the location
lik,j and is subsequently aligned to the rotation normalized image region Bj
with an elastic registration based on the combinatorial optimization from [8].
The elastic registration yields a transformation θik,j : R3 7→ R3 that is used for

obtaining the aligned sharp mean image Ẑik,j = Zk ◦ θik,j and the corresponding

aligned segmentation mask ŜiZk,j
= SZk

◦ θik,j . Note that the Zk and SZk
are only

dependent on the k, but the aligned images Ẑik,j and the aligned segmentation

masks ŜiZk,j
are also dependent on the respective rotation normalized image

region Bj and the implied transformation θik,j .
As last step, the aligned sharp mean images are transformed back into the

coordinate system of the original root to obtain a reconstruction. This is done in
an iterative greedy fashion, beginning with the aligned sharp mean image Ẑik,j
corresponding to the highest scoring detection location lik,j . The indices {k, j, i}
are formally given by

{k, j, i} = arg max
k∈{1,...,K}
j∈{1,...,NB}
i∈{1,...,Nk,j}

Lk,j(l
i
k,j) . (1)

The aligned sharp mean image Ẑik,j is transformed back to the original root
image, then it is removed from the pool of available detection hypotheses and
the detection hypotheses with the next best score is processed. Note that once
a location in the original root image is occupied, it is not possible to put other
aligned images at this location. This gives a crucial importance to the ordering
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of the aligned candidates implied by Eqn. 1: Due to the continuous nature of the
cells wrt. deformation, we usually have multiple competing aligned candidates
per ground truth location. It is crucial to pick the well aligned candidates first
during this greedy iterative reconstruction, as a badly aligned candidate can not
be corrected and will probably also prevent subsequent well aligned candidates
in its direct neighborhood.

If the scores delivered by the rigid detector fail to provide a good sorting of
the aligned candidates prior to the greedy reconstruction, the results for layer 4
are not satisfactory (Fig. 2(a)). We propose a validation of the aligned sharp
mean images that makes use of the finer grained information that is available
due to the alignment. This results in much better reconstruction results as we
will show in the experiments section (Fig. 2(b)).

3 Training of the Alignment Classifiers

In order to validate a candidate alignment of the sharp mean template we pro-
pose to use the metric induced by a discriminative classifier. To this end we
will use a support vector machine, as it gives a normalized score around zero.
Values > 1 indicate a confident decision for the positive class (well aligned can-
didate), values < −1 indicate a confident decision for the negative class (badly
aligned candidate). As SVMs have good generalization properties, decision values
in the interval [−1, 1] mark a gradual change between the classes.

In our case the data used for training and testing is the 3D HOG represen-
tation of the root image within the support of the aligned cell template. The
support vector machine, however, needs input data of a fixed size. This means
that we cannot use the image data “below” the aligned template directly, as its
volume is variable due to the elastic alignment. Therefore we will use the inverse
transformation θ−1 to warp the image data onto the cell template. This assures
that all training and test data for a cluster k will have the same number of
features.

We need to mine positive (+) and negative (−) training examples from a
training and validation root to train the validation classifier Vk. We compare the
aligned segmentation masks ŜiZk,j

with the ground truth segmentations. The
Intersection over Union is the measure MIOU used in the PASCAL VOC [6]
challenge to assess the quality of a detection:

MIOU(S1, S2) =

∫
Ω
S1(x) · S2(x) dx∫

Ω
max

(
S1(x), S2(x)

)
dx

. (2)

This area based measure is well suited to evaluate the degree of alignment in
a detection setting, especially when it is based on 3D segmentation masks. We
assign the class {+,−} based on the rule that is also used for the evaluation
of the complete pipeline. An aligned candidate is accepted, iff the intersection
over union of the corresponding aligned segmentation mask with ground truth
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segmentation Sl is greater than 0.5:

c(ŜiZk,j
) =

{
+, MIOU(ŜiZk,j

, Sl) ≥ 0.5

−, MIOU(ŜiZk,j
, Sl) < 0.5

. (3)

We shape normalize the corresponding root image by transforming it with the
inverse transformation:

B̂ik,j = Bj ◦
(
θik,j

)−1
. (4)

After the this transformation, we extract the 3D HOG feature that will be used
in the training for the validation classifiers Vk.

ξlk = f(B̂ik,j), f : (Ω 7→ R) 7→ RN
f
k (5)

The function f transforms the image B̂ik,j into a vectorial feature representation,
i.e. the 3D HOG feature, and crops it along the support of the sharp mean im-
age Zk. For simplicity of notation we replace the indices j, k with l ∈ {1, . . . , Nk},
as its no longer important, from which Bj the ξlk originates. After the classifi-
cation of the training examples into (+) and (−) with Eqn. 3 we end up with a
set S+k = {l+1 , . . . , l

+
N+} for positive examples and a set S−k = {l−1 , . . . , l

−
N−} for

the negative training examples for every cluster k.
As wish to investigate the effect of the model complexity of the classifier,

train a linear support vector machine V lin
k a RBF kernel support vector machine

V RBF
k . We use 5-fold cross validation to estimate suitable parameters for the

outlier penalty c and the radius γ of the radial basis function for V RBF
k . The

training is done with libsvm [4].

3.1 Validating Aligned Templates

The setting at test time is identical to the mining of the training examples for
the Vk, except that we run the greedy iterative reconstruction of the root image
after the detection and alignment phase. For each detection location lik,j , we
perform the elastic registration of the corresponding sharp mean image Zk to
the data and yield the transformation θik,j . Then we shape normalize the root

image at this location by warping it with the inverse transformation (θik,j)
−1

and compute the 3D HOG features ξlk (Eqn. 5). Thus we end up with a set
of aligned template image candidates and the corresponding 3D HOG feature
representations of the locally shape normalized root image:(

Ẑlk, ξ
l
k

)
with k ∈ {1, . . . ,K} and l ∈ {1, . . . , Nk} . (6)

We perform the iterative greedy reconstruction, but replace the sorting induced
by the rigid detector scores (Eqn. 1) with a sorting based on the proposed vali-
dation classifier. We begin with the best scoring candidate image

Ẑlk with {k, l} = arg max
k∈{1,...,K}
l∈{1,...,Nk}

V
{lin,RBF}
k (ξlk) . (7)
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Fig. 3. Volume rendering and slice of the raw data. The root has a cylindrical structure
and is made up of concentric layers of different cell types. In this paper, we consider
cells from layer 2 (blue), layer 3 (green), and layer 4 (red) for the detection task.

Note that we run the reconstruction either with the scores from the linear SVM
Vlin or with the scores from the RBF SVM VRBF.

4 Experiments

In this section we show a quantitative and a qualitative evaluation of the effec-
tiveness of the proposed validation approach. We had three Arabidopsis roots
with ground truth segmentations available: r06, r14, and pi005. The generation of
the ground truth is very time consuming, as each root contains ∼ 2500 cells. The
ground truth segmentations are obtained by manually checking segmentations
from a watershed algorithm on enhanced data [9]. For each root, we trained rigid
detectors Dk and validation classifiers Vk for the cell layers 2, 3, and 4 (Fig. 3).
We used a round robin scheme (Table 1), such that each root takes every role
(training, validation, test) once. For the training of the rigid detectors we only
used the training root. We always split the data into k = 15 clusters, as this
value has proven to be good for layer 3 [10]. We do not perform a mining of hard
negative examples for the detectors, as it did not improve the average precision
of the results.

Table 1. Round robin scheme for training and testing.

Training Validation Test

r06 pi005 r14
r14 r06 pi005
pi005 r14 r06

As the rigid detector returns virtually no false positives when tested on the
training root, we mine the training examples for the validation classifier Vk on the
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training and the validation root. We train a linear support vector machine V lin
k

and a RBF support vector machine V RBF
k using libsvm [4].

Our test setup is a detection setting. To assess the quality of the detections,
we use the same method as in the PASCAL VOC challenge [6]. We accept a
detection as valid, iff the intersection over union of the predicted segmentation
mask with the ground truth segmentation is ≥ 0.5. All subsequent detections
of the same ground truth cell that are not suppressed during the reconstruction
count as false positives. We investigate all combinations

{r06, r14, pi005} × {layer 2, layer 3, layer 4} × {Dk, V
lin
k , V RBF

k }

and thus end up with 27 experiments. The sliding window detection is performed
on the rotation normalized root images Bj and takes ∼ 50s on a six core work-
station. We compute the necessary convolutions in the Fourier domain, therefore
the runtime is not dependent on the size of the detection filter Dk. The align-
ment of a cell template to the image data is computed with the combinatorial
registration from our previous work [10], using a gradient orientation based data
term. The computation of one alignment takes ∼ 1.5s. The scoring of the aligned
cell templates with the validation classifier takes < 0.1s. These steps are nearly
perfectly parallelizable. When executed on a computing cluster with 5×32 cores
the detection for a whole root takes ∼ 5min, the alignment of the cell templates
in average ∼ 20min, depending on the number of cell hypotheses. The limiting
factor with our setup was the hard disk IO.

The iterative greedy reconstruction is more difficult to parallelize and takes
in average ∼ 30min, also dependent on the number of aligned cell candidates.
For some more statistics of the roots, have a look at Table 2.

Table 2. Statistics for the roots (“GT” = ground truth).

r06 r14 pi005

size (voxels) 1030 × 433 × 384 944 × 413 × 360 855 × 458 × 329

layer 2 #GT cells 542 487 554
layer 3 #GT cells 216 188 208
layer 4 #GT cells 266 211 222

Bj arrangement 3 × 36 3 × 36 2 × 36
Bj size (voxels) 301 × 101 × 131 301 × 101 × 131 301 × 101 × 131

Our findings are summarized in Fig. 4 as precision-recall graphs and in Ta-
ble 3 as the mean average precision (�AP) per cell layer. The average precision
is computed as the area under the precision-recall curve. Our original process-
ing pipeline (cyan curve) works reasonably well for layer 2 and layer 3 with
�AP = 0.71 and �AP = 0.82 respectively. It fails for layer 4 with �AP = 0.52.
The reason for this can be found in the less distinctive cell shapes of this layer and
in its location within the root. For the volumetric recording of layer 4, the light
has to pass layers 1, 2, and 3 during the recording with a confocal microscope,
which results in a more distorted signal.
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When performing the greedy reconstruction based on the scores of the pro-
posed validation approach, we yield substantially better results for the difficult
layer 4. For an illustration see Fig. 2. For every other root and layer combination
we also achieve better results through the validation scores. The linear SVM
based scores (black curve) achieve the best reconstructions on layer 3. With
the RBF SVM based scores (red curve), we achieve the best reconstructions for
layer 2 and layer 4. The performance of the linear scoring and the RBF scor-
ing is very similar, maybe with a slight edge for the RBF based rescoring. The
training times of the SVMs are practically identical. When training directly on
the kernel matrix with libsvm [4], the training takes under a minute including a
cross validation based grid search for the SVM parameters γ and C.

For the validation with the RBF SVM, one needs to compute between 50×
and 200× longer compared to the validation with the linear SVM. However, the
time needed to compute a validation is dominated by the disk IO, which leads
to a similar overall computation time.

Table 3. Mean average precision (�AP) for scoring strategy and cell layer.

layer 2 layer 3 layer 4

raw detector score 0.71 0.82 0.52
linear SVM 0.86 0.87 0.80
RBF SVM 0.88 0.86 0.83

5 Conclusions

In this paper we presented a validation strategy for detections in volumetric im-
ages that leverages the fine grained localization provided by the elastic alignment
of a cell template image to the underlying image data. We use a metric based on
trained discriminative classifiers to decide whether this alignment was successful
or not. This validation step comes at practically no extra cost given the aligned
detections. However, it achieves to boost the detection accuracy substantially,
especially in regions of lower data quality, where the scores of the rigid detector
are no longer reliable. We believe that this validation strategy should also work
for other object classes in 2D and 3D images when the intra class appearance
variation mainly stems from an elastic deformation of the objects.
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(a) r06, layer 2 (b) r14, layer 2 (c) pi005, layer 2

(d) r06, layer 3 (e) r14, layer 3 (f) pi005, layer 3

(g) r06, layer 4 (h) r14, layer 4 (i) pi005, layer 4

Fig. 4. Precision-Recall curves for cell layer reconstructions of the roots r06, r14, and
pi005 organized in columns, e.g. root r06: (a), (d), (g) and cell layers 2, 3, and 4
organized in rows, e.g. layer 2: (a), (b), (c). (cyan curve) Reconstruction based on
the detector scores. (black curve) Reconstruction based on the scores after validating
the aligned cell templates with a linear SVM. (magenta curve) Reconstruction based
on the scores after validating with an RBF SVM. All settings benefit from the better
scores produced by the validation. The benefit is the biggest for layer 4, as the cells
in this layer have the least distinctive cell shape and the data quality is worst for this
layer. (d) is the configuration examined in our previous work [10].
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9. Liu, K., Schmidt, T., T.Blein, Dürr, J., Palme, K., Ronneberger, O.: Joint 3d cell
segmentation and classification in the arabidopsis root using energy minimization
and shape priors. In: IEEE International Symposium on Biomedical Imaging (ISBI)
(2013) 1, 7
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