BENSCH et al.: DEFORMABLE PROTOTYPES FOR MOTION ANOMALY DETECTION 1

Spatiotemporal Deformable Prototypes for
Motion Anomaly Detection

Robert Bensch Department of Computer Science and
bensch@cs.uni-freiburg.de BIOSS Centre for Biological Signalling
Thomas Brox Studies _
brox@cs.uni-freiburg.de University of Freiburg

Germany

Olaf Ronneberger

ronneber@cs.uni-freiburg.de http://Imb.informatik.uni-freiburg.de

Abstract

This paper presents an approach for motion-based anomaly detection, where a proto-
type pattern is detected and elastically registered against a test sample to detect anoma-
lies in the test sample. The prototype model is learned from multiple sequences to define
accepted variations. “Supertrajectories” based on hierarchical clustering of dense point
trajectories serve as an efficient and robust representation of motion patterns. An efficient
hashing approach provides transformation hypotheses that are refined by a spatiotempo-
ral elastic registration. We propose a new method for elastic registration of 3D+time
trajectory patterns that induces spatial elasticity from trajectory affinities. The method
is evaluated on a new motion anomaly dataset and performs well in detecting subtle
anomalies. Moreover, we demonstrate the applicability to biological motion patterns.

1 Introduction

An anomaly is generally a deviation from what is regarded as normal. Since there are no
examples from which distinct features of the anomaly could be learned, anomaly detection
cannot be modeled as a discriminative classification task. We must rather learn a precise
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Figure 1: Motion anomaly detection in juggling patterns. (a) Motion pattern prototype:
standard 3-ball cascade pattern. (b-c) Detection of local anomalies in context of prototype
detections (bounding boxes) of different jugglers in different 3D poses. The anomaly score
is plotted for supertrajectories from low/normal (blue) to high/abnormal (red).
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generative model of normal patterns, for which we have examples, and detect anomalies as
cases that are not sufficiently explained by this model. In this paper, we consider motion-
based anomaly detection from video and present a new setting of anomaly detection. Com-
pared to existing approaches in the literature, we formulate anomaly detection as the task
of detecting subtle anomalies in the context of a well-defined, reproducible motion pattern,
termed motion pattern prototype. We want to detect instances of this prototype and local-
ize anomalies in its context. Anomaly detection is performed by reconstructing an unseen
motion pattern by prototype placements. Subpatterns that remain poorly reconstructed are
detected as abnormal. For reconstruction, we start with a robust detection followed by a spa-
tiotemporal elastic registration of a deformable prototype. Our method copes with 3D+time
data, where 3D+time denotes motion trajectories in full 3D space, in contrast to 2D+depth.
For detection, we allow for temporal shift and 3D spatial translation and rotation. 3D scaling
is not modelled explicitly and therefore will be recognized anomalous in principle. However,
elastic registration is able to compensate for scaling to some extent. A statistical prototype
model is learned from training data. It defines the accepted spatiotemporal deformations
and deviations. Fig. | illustrates our setting of anomaly detection with an example of jug-
gling patterns. In this example, the prototype defines a standard 3-ball juggling pattern. It
is robustly detected under various transformations. Deviations from the standard pattern are
localized as anomalies. We stress that, in this paper, we are interested in anomalies in the
motion pattern rather than the object appearance. For example, we do not want to detect
an anomaly, if a “normal” motion pattern is performed but the person is wearing a different
shirt. An overview of our method is given in Fig. 2. The experimental section evaluates
the performance of our approach on a new motion anomaly dataset. Moreover, we demon-
strate the relevance and general applicability of our method in experiments on biological
motion patterns. While in the motion anomaly dataset the 3D+time data originates from
Kinect 2D+depth data, the biological motion patterns stem from 3D volumetric microscopy
recordings. We will make the new motion anomaly dataset and the code publicly available
at http://Imb.informatik.uni-freiburg.de/resources/opensource/ AnomalyDetection/.
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Figure 2: Overview of our approach.

2 Related Work

Many works in the anomaly detection literature consider the surveillance scenario in crowded
scenes of people or traffic scenes. Usually a fixed scene and camera setting is assumed and
absolute position information is the predominant feature. Commonly, a fixed spatial (and
temporal) grid representation is used and local statistics of grid cells are learned. Anoma-
lies are detected for cells in which the observed statistics deviate from the learned model,
e.g. [12, 13, 14, 16]. However, in several scenarios the absolute position is not relevant for
the characterization of anomalies. Consider cases where anomalies occur invariant to their
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absolute position, or relative to a certain spatiotemporal context, or under spatio(-temporal)
transformations, such as rotations or deformations. One type of approaches dealing with
these cases relies on bag of invariant features. For instance, in [21] chaotic invariants are
computed that are invariant to position and magnitude, and a global probabilistic scene
model of normality is learned using Gaussian mixture models (GMMs). In [15] a social
force model induces interaction forces that serve as input for a bag of words approach. With
these approaches localization of anomalies is only possible indirectly by projecting anoma-
lous features back to their spatiotemporal domain. Another type of approaches considers
anomaly detection as a reconstruction task, in which anomalies remain as poorly recon-
structed entities. Anti¢ and Ommer [3] use the term “video parsing” for jointly explaining
the foreground from normal training samples. In [9] a sparse reconstruction cost is used to
perform sparse dictionary selection given an over-complete spatiotemporal basis. In [10] and
[5, 6] the problem is formulated as matching against spatiotemporal segments in the training
data, or composition from a database of patch ensembles, respectively. Reconstruction based
approaches provide a more direct explanation of the test data by concrete instances from the
training data. Furthermore, they can deal with few training samples, compared to approaches
learning statistical models. The presented approach is most related to reconstruction based
approaches. However, it is different in that, reconstruction is performed in a direct way by
detection and elastic registration of a well-defined prototype. Furthermore, the presented
approach deals with 3D-+time data, while existing methods deal with 2D+time data.

3 Supertrajectory Representation

We suggest to represent motion patterns by “supertrajectories” describing the motion of lo-
cal groups of similarly moving points, see Fig. 3(b). We initialize our representation by
dense point trajectories [18]. These basic motion trajectories from tracked points consti-
tute the lowest level of our representation and are denoted as raw trajectories. Trajectories
are allowed to start and end at arbitrary points in time. We define motion patterns by two
functions,

Xraw : Qraw — R3 : (iraW7t) eraw(iraWat)» Iraw € {17~~~;Nraw} CNN,teR
Wraw © Qraw — {07 1} : (iraW7t) — Wraw(iraW7t)a

where Q,w, C IN X R denotes the domain of raw trajectories iy, and time ¢. The position is
denoted by Xraw (iraw,?) and the validity by Wraw (iraw,?)- Wraw (iraw,?) = 1 means that trajec-
tory ip,w exists at time point ¢ and the corresponding position is valid.

3.1 Hierarchical Clustering

Motion patterns often exhibit a natural hierarchical composition of subpatterns. We propose
a clustering step to represent bundles of similarly moving points at different hierarchical
levels by “supertrajectories”, see Fig. 3. We build a hierarchical representation by agglom-
erative clustering [11], that iteratively groups trajectories in bottom-up manner. Low levels
represent local trajectory bundles, while higher levels represent object-like structures, as
shown in Fig. 3(a). Hierarchical clustering is defined by a distance metric between elements
and a linkage criterion that defines distances between sets of elements. We define pairwise
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Figure 3: Supertrajectory representation. (a) Agglomerative clustering of motion trajectories
yields a hierarchical representation of motion patterns. (b) A supertrajectory (green) provides
a smooth, robust and efficient representation of a bundle of raw trajectories (black).

distances between trajectories (raw trajectories or supertrajectories) by their maximum Eu-
clidean distance in the overlapping time window:

d(i, j) = max(w(i,t) - w(j,1) - [[x(7, 1) = x(j,)[])- €]

The distance between temporally non-overlapping trajectories, i.e. w(i, ) -w(j,7) =0,V € R,
is defined as d(i, j) = +oo. For bottom-up grouping we apply centroid linkage [11], that
defines distances between sets of elements by their centroids. Here, the centroid of a set
of raw trajectories is computed as the supertrajectory (described in the next section). Pairs
of temporally non-overlapping trajectories are not evaluated during linkage. The resulting
hierarchical cluster tree can be cut at arbitrary levels to obtain 1 to Ny, clusters. By splitting
the hierarchy at a certain level, we obtain “supertrajectories” (the clusters at the split level).

3.2 Supertrajectories

As illustrated in Fig. 3(b), supertrajectories provide a smooth, robust and efficient represen-
tation of the dominant motion of a bundle of raw trajectories. We denote the set of raw
trajectories that form one supertrajectory by X; C {1,...,Nraw}, where i € {1,..., Nguper}-
A supertrajectory is computed by averaging the positions of all grouped raw trajectories at
each time point. Analogous to raw trajectories, the position is denoted by a function x and
the validity is denoted by a function w, on the domain Qgyper C IN X R. Details are given in
the supplementary material in Sec. 1.1.

4 Detection and Elastic Registration of Motion Patterns

We aim for reconstructing a whole test pattern by prototype placements. Based on that, we
detect anomalies in the context of the prototype. Prototype detection shall be invariant to
temporal shift and 3D spatial translation and rotation, as well as spatiotemporal deforma-
tions. Below, we describe how a motion pattern prototype, represented by supertrajectories,
can be efficiently detected and elastically registered to the underlying test pattern. The pro-
totype pattern is denoted by the supertrajectories x“. The test sequence is represented by the

supertrajectories x”.

Detection Hypotheses To efficiently detect a prototype pattern in a new test sequence we
modified the hashing approach [20] to deal with our spatiotemporal setting. For details we
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point to Sec. 2.1 in the supplementary material. The output of the algorithm is a number of
rigid transformation hypotheses. We parameterize them as a temporal shift #shi and a spatial
rigid transformation T with 3 x 3 rotation matrix R and translation b.

Trajectory Association Function To perform registration, we have to estimate the corre-
spondences and the transformation. We define trajectory correspondences by an association
function o : Q;, — IN : (ip,1,) — iy, that assigns test trajectory i, of pattern x” at time point
f, to a prototype trajectory i, of pattern x®. The assignment is undefined o (ip,#,) := 0, if
no temporally warped prototype trajectory i, is valid at time #,. Trajectory association is al-
lowed to change in time, which is important, for instance, when a temporally long trajectory
corresponds to two temporally consecutive trajectories.

4.1 Rigid Pre-Alignment

The transformation of each detection hypothesis is refined using a scheme similar to the
iterative closest point algorithm [4]. The energy to be minimized is the sum of squared
distances of all points of test pattern x” to the associated points in pattern x:

Egua( Tt 0) = > ¥ (T Altains 01,)) =X o) IP) + D g

(iptp) EQp (ip:ty) €y
w(ip,tp)=1 w(ip,tp)=1
0 (ip,1p)#0 o (ip,tp)=0

2)
For easier notation, we define an association function Al[tsnisi, 0] : Qp — Qq = (ip, 1) = (iasta),
that assigns test trajectory i at time point 7, to prototype trajectory i, at time point #,. The
function depends on the temporal shift ¢, and the trajectory association function ¢. To be
robust against outliers, we apply a truncated squared norm denoted by function ¥(d?) = d?
for d < dmax and ¥(d?) = d2,, otherwise. In addition, unassociated points, i.e. & (iy,,) =0,
are penalized with dypger. The energy is minimized with respect to the rigid transformation

parameters T and #pif, and association function ©.

4.2 Elastic Registration

After rigid pre-alignment we perform a spatiotemporal elastic registration. The elastic trans-
formation is parameterized by a spatial deformation function u(i,?) : Q, — R? and a tempo-
ral warping 7(i,) : Q, — R, such that x'(i,7) = x(i,t — t(i,t)) +u(i,t — 7(i,¢)) and w'(i,t) =
w(i,t — 7(i,t)) accordingly. The data term is defined analogous to Eq. 2, where the rigid
transformations (T, #pif) get replaced by deformation and temporal warping (u, 7).

Furthermore, we formulate the following smoothness assumptions: Firstly, the elastic
transformation should be smooth both spatially (across trajectories) and temporally (along
trajectories). Secondly, the assignment function should be temporally smooth as well. To
this end, we formulate the total energy

E(ua T, G) = Edata (u7 T, 6) + aspatialEspatial (u7 T) + alempEtemp (ll, T) + aassignEassign(G)- (3)

The elastic coupling within the prototype pattern is described by the smoothness en-
ergy Egpaial on the spatiotemporal deformation functions for each pair of prototype trajecto-
ries. We define spatial smoothness across trajectories, such that the elastic coupling between
trajectories C(i, j) = exp(—d(i, j)?/2r*) depends on the pairwise distances d(i, j) (Eq. 1),
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where r is a user selected distance (we used r = 10cm in our experiments). This results
in strong coupling between similar trajectories (similar moving points) and weak coupling
between dissimilar trajectories, that therefore can be transformed rather independently. A
temporal smooth transformation along trajectories is enforced by the energy term Etemp.
Moreover, a temporally smooth assignment is preferred by the smoothness term Eqgsign that
penalizes temporal assignment changes from one to another trajectory by their pairwise dis-
tance d(i,j). In this way, assignment changes between dissimilar trajectories get strong
penalization. The formulation of the data term and the smoothness terms is described in
detail in Sec. 2.2 in the supplementary material.

4.3 Energy Optimization

We found an approximate solution for minimizing the total energy, for both the rigid pre-
alignment and the elastic registration, by alternating optimization of the transformation and
the assignment 6. Given a fixed transformation the assignment function ¢ minimizing Eqgsign
can be obtained by exact inference and computed efficiently by dynamic programming. The
rigid transformation T and the temporal shift ¢, are found by a Procrustes algorithm [19]
using all point correspondences with distance d < dmax. The elastic transformation (u, 7)
minimizing the total energy in Eq. 3 is obtained by L-BFGS [8] optimization. Alternating
optimization is repeated until the estimated transformation converges. Both parts of the
optimization can be solved globally optimal, due to the convex energies.

S Motion Anomaly Detection

5.1 Learning a Spatiotemporal Deformable Prototype Model

First a concrete motion pattern is selected as the spatiotemporal prototype which represents
a clean and segmented instance of the “normal” motion pattern of interest, see Fig. 1(a) and
suppl. Video 1. The “normal” variations of spatiotemporal deformation and remaining devi-
ations observed in training sequences are learned and together with the prototype build the
prototype model. The complete training pipeline is shown in Fig. 2(top row). For learning
the prototype model, the prototype pattern is detected in training sequences and D detections
are selected. For each detection d, the prototype pattern is rigidly pre-aligned and elastically
registered. This results in rigid transformation parameters ((Ry,bg), %nifi.¢) and elastic trans-
formation parameters (uy, 7). Elastic spatial transformation parameters are transformed to
the prototype coordinate system by u/, = R;lud. We build a statistical model that captures:

Global spatiotemporal deformations and data fitting costs after registration For both,
we define bounds for validating prototype registrations.

Residual distances remaining after elastic registration For each prototype pattern point
the obtained residual distances with associated training pattern points are locally aggregated
and learned using a Gaussian residual model.

For more details see Sec. 3.1 in the supplementary material.

5.2 Reconstruction by Prototype Placements

For reconstructing a whole test pattern by prototype placements we apply a greedy search
algorithm. It iteratively finds best placements of prototype patterns into the test pattern.
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Candidate placements are obtained from prototype detections. The algorithm stops, if the
test pattern is reconstructed completely, or if no candidates remain that can reconstruct parts
of the unreconstructed test pattern. Details of the algorithm are given in Sec. 3.2 of the
supplementary material.

Pointwise Anomaly Score We compute an anomaly score for each test pattern point ex-
pressing how much it deviates from the prototype model. The pointwise anomaly score is
computed by taking the minimum residual distance to all registered prototype patterns and
applying the locally learned residual model from the associated prototype pattern point.

Framewise Anomaly Score We map the anomaly scores of all trajectory points within
one video frame to a framewise anomaly score by computing the maximum. The maximum
measure is better suited for detecting local fine-grained anomalies, compared to the average
measure, which is sufficient for detecting global anomalies. A sample anomaly profile is
plotted in Fig. 4.
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Index of testing frame

Anomaly score
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Figure 4: Anomaly profile (red). Ground truth profile (green).

6 Experiments

Our anomaly detection approach is basically different from most existing approaches. Ac-
cordingly, we found existing benchmarks to be inappropriate for demonstrating our method.
Popular datasets such as the UMN dataset [1], the UCSD dataset [14] or the Subway dataset
[2] present surveillance scenarios with fixed scene and camera, where absolute position is
relevant and fixed spatiotemporal grid representations are sufficient. Apart from dealing
with 2D data only, particularly the task of detecting anomalies in context of a specific mo-
tion pattern of interest is not present. To demonstrate our method, we recorded a new motion
anomaly dataset from persons juggling balls using a Kinect camera (see Fig. 5).

= ] /‘ ".w
(2 (h)

(a) (b) (© (d) (e)
Figure 5: Juggling pattern test datasets of different persons performing the standard 3-ball
cascade pattern including various anomalies. (a-d) One person from four different view-
points. (e-g) Three further persons performing the same juggling pattern. (h) Background
motion. Supertrajectories are shown over a range of 45 frames (= 1.5sec), the color corre-
sponds to the depth obtained from Kinect camera.
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Figure 6: Anomaly detection ROC curves. Comparison of our method and the chaotic invari-
ants (CI) [21] for the two subsets A (top row) and B (bottom row). (a) Average performance
of all methods. (b-d) Performance on single sequences for each method.

Motion trajectories are generated by large displacement optical flow tracking [18]. The
tracking algorithm was adapted to include depth in addition to RGB data. Background mo-
tion is removed by a threshold on the maximum velocity. For training, three sequences
(200 frames each) were selected, that contain juggling patterns from three different persons,
recorded in frontal view with 1.5m distance to the camera. We chose a rather small training
set with a single viewpoint, to demonstrate generalization capabilities of our method. For
testing, we used 29 sequences'. See the supplementary Video 1 to get a better impression of
the recorded training and test sequences.

We generated a framewise anomaly ground truth. Additionally, we provide a segmen-
tation of juggling relevant motion patterns (hands and arms of persons, and juggling balls)
for both, the training and test set. The segmentation is given as a pointwise labelling of
supertrajectories from our representation.

6.1 Anomaly Detection in Juggling Patterns

We evaluate anomaly detection, i.e. classifying each video frame as normal or abnormal.
Detection ROC curves are generated by thresholding the anomaly profile (Fig. 4) at different
levels. We compare against an existing anomaly detection method, namely chaotic invariants
(CI) for anomaly detection in crowded scenes [21] > Among the methods with code available,
CI is the most related one as it provides invariance to position and magnitude. To the best
of our knowledge, there is no previous method that deals with 3D+time data. However, to
provide a comparison for CI on 3D+time data as well, we extended the approach to 3D.

The evaluation is based on a temporally short prototype pattern (25 frames), see Fig. 1(a).
The prototype model is learned from the training sequences, and anomaly detection is per-
formed on all 29 test sequences. For comparison, we evaluate two versions of [21]: 1) chaotic
invariants only (position invariant), we denote by CI and 2) absolute position added to CI,
we denote by CI+pos. We perform anomaly detection as described in [21]. For comparabil-

! An overview of the test set is given in the supplementary material in Tablel.
2We thank the authors for providing essential code pieces to assemble an implementation of [21].
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Method Subset A Subset B All sequences
CI (2D) [21] 0.42 0.53 0.46
Cl+pos. 2D) [21] 0.57 0.68 0.62
CI (3D) 0.42 0.41 0.42
Cl+pos. (3D) 0.51 0.55 0.53
Our method (3D) 0.71 0.73 0.72

Table 1: Anomaly detection results of our method and the chaotic invariants (CI). The aver-
age performance is given by the area under curve.

ity, we provide the same optical flow to both methods (LDOF [7]). Since the approach [21]
does not include model detection, it performs anomaly detection on the whole frame. We
use the segmentation of juggling relevant motion patterns to provide [21] with segmentation
information. To obtain a framewise anomaly score we use the maximum measure, whereas
chaotic invariants [21] use the mean measure. We split the test set into two subsets: Subset
A contains 17 sequences with different viewpoints, i.e. the patterns are differently aligned
compared to the training data. In contrast, subset B contains 12 sequences with similar view-
points and well aligned patterns in 2D. ROC curves in Fig. 6 show the comparison against
the original 2D version of CI. The average performance for each subset and the performance
on single sequences is shown. Tablel lists the average performance for both subsets and all
sequences, and includes results for the 3D version of CIL

The results in Fig. 6 and Tablel show that CI has problems with the strong variation
between the training and test data caused by different jugglers. CI+pos., which uses the
absolute position, achieves a competitive performance to our approach for subset B, where
the absolute position is a valuable feature. However, on subset A, where the test data includes
different viewpoints, the absolute position is a rather weak feature and our method, which is
invariant to changing viewpoint, clearly outperforms both CI and Cl+pos. Also the use of
3D trajectories in CI does not improve results. Our method outperforms all tested variants
of CI to its accurate modeling of the normal pattern variation.

We show additional results in supplementary Video 1. Anomaly detection results are
rendered into the test sequences and give a good impression of the anomaly localization
capability, complementary to the results presented in this section.

6.2 Anomaly Detection in Biological Motion Patterns

Furthermore, we evaluate the applicability to biological motion patterns. We use 3D-+time
trajectory data showing global endodermal cell dynamics in the early development of ze-
brafish embryos [17]. The data consists of two groups, 12 wild type (WT) embryos (normal
patterns) and 12 cxcr4a morphant (MO) embryos (genetically modified). Fig. 7(a,b) shows
an example from each group as 3D rendering (color indicates time, from blue to red). All data
are resampled temporally to 100 time points. In our experiments, we select one WT pattern
as the prototype and learn the prototype model using three further WT patterns. For testing
we use the remaining 8 WT and 12 MO patterns. By computing overall anomaly scores for
each pattern we are able to quantify a significant difference between the WT and MO motion
patterns, as shown in the boxplot in Fig. 7(c). In addition, we tested our hypothesis that a
time scaling of MO patterns (denoted MO*) might partially compensate this difference. To
this end, we rescale MO patterns to 60 time points (increased speed by factor 1.66) and find
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Figure 7: Anomaly detection in biological motion patterns of cell dynamics in the early
development of zebrafish embryos.

that the patterns overall can not be distinguished any more (at the 5% significance level),
see the results in Fig. 7(d). The proposed approach allows to quantify significant differences
between wild type and morphant motion patterns, and additionally reveals that a time scaling
can partially explain and compensate for these differences.

7 Conclusion

We have presented a new approach to motion anomaly detection in complex motion patterns.
Prototype patterns are allowed to appear anywhere in a video and in any orientation. Our
approach therefore starts with a robust detection that is invariant to rigid transformations,
followed by a spatiotemporal elastic registration of the prototype pattern to the test pattern.
The precise alignment of the patterns has allowed us to detect and localize subtle anomalies,
as demonstrated by experiments on a 3D motion anomaly dataset. An important application
area for our approach is in biomedical image analysis, where complex developmental and
growth patterns need to be compared.
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