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1 Supertrajectory Representation

1.1 Supertrajectories
We denote the set of raw trajectories that form one supertrajectory by Xi ⊂ {1, . . . ,Nraw},
where i ∈ {1, . . . ,Nsuper}. A supertrajectory i is computed by averaging the positions of all
grouped raw trajectories at each time point

x(i, t) =


∑

iraw∈Xi
wraw(iraw,t)·xraw(iraw,t)∑

iraw∈Xi
wraw(iraw,t)

if w(i, t) = 1

0 else,
(1)

where w(i, t) = maxiraw∈Xi wraw(iraw, t). Additionally, x is low-pass filtered in temporal di-
rection (average filter), to suppress noise and especially high frequencies that occur, when
trajectories start and end frequently.

2 Detection and Elastic Registration of Motion Patterns

2.1 Detection Hypotheses via Efficient Hashing
To efficiently detect a prototype pattern xa in a new test sequence xb we modified [1] to
deal with the spatiotemporal setting and point trajectories. Random point pairs of xa and xb

are chosen and stored in a hash table using rotationally invariant features as table indices.
Hash collisions provide transformation hypotheses with a time complexity of O(n) for the
first hypothesis, that converges to O(1) for further hypotheses. The original algorithm [1]
works on surface points and surface normals. To adapt it to our setting, we use points on su-
pertrajectories and their velocity vectors instead: q =

(
x(i, t1); ẋ(i, t1);x( j, t2); ẋ( j, t2); t1; t2

)
,

where ẋ := dx
dt (see Fig. 1). The rest of the algorithm (including hypothesis verification by
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(a) (b)

Figure 1: (a) Relative transformation T between matching two point constellations qa and
qb on point trajectories. (b) Relation between xa(i, t1) and xa( j, t2). Transferred from [1].

computing “overlapping areas”) was adapted accordingly. The final output of the algorithm
is a number of rigid transformation hypotheses. We parameterize them as a temporal shift
tshift and a spatial rigid transformation T : R3→ R3 : x(i, t) 7→ Rx(i, t)+b, with 3×3 rota-
tion matrix R and translation b, such that x′(i, t) = T(x(i, t− tshift)), ∀i ∈ {1, . . . ,Nsuper} and
w′(i, t) = w(i, t− tshift) respectively.

2.2 Elastic Registration
The elastic transformation is parameterized by a spatial deformation function u(i, t) : Ωa→
R3 and a temporal warping τ(i, t) : Ωa → R, such that x′(i, t) = x(i, t − τ(i, t)) + u(i, t −
τ(i, t)), and w′(i, t) = w(i, t− τ(i, t)) accordingly.

Data term The data term is the sum of squared distances of all points of test pattern xb to
the associated points in pattern xa, subject to spatial deformation and temporal warping

Edata(u,τ,σ) =
∑

(ib,tb)∈Ωb
w(ib,tb)=1
σ(ib,tb)6=0

Ψ

(
‖xa(A[τ,σ ](ib, tb))+u(A[τ,σ ](ib, tb))−xb(ib, tb)‖2

)
+

∑
(ib,tb)∈Ωb
w(ib,tb)=1
σ(ib,tb)=0

d2
undef. (2)

Analogous to Eq. 2 (in the main paper), we define an association function A[τ,σ ] : Ωb→
Ωa : (ib, tb)→ (ia, ta), which now depends on the temporal warping τ instead.

Spatial smoothness We define spatial smoothness across trajectories, such that the elastic
coupling between trajectories C(i, j)= exp(−d(i, j)2/2r2) depends on the pairwise distances
d(i, j). The elastic coupling within the prototype pattern is described by a smoothness energy
on the spatiotemporal deformation functions for each pair of prototype trajectories

Espatial(u,τ) =
∑
i, j,t

(i,t)∈Ωa∧( j,t)∈Ωa
w(i,t)=1∧w( j,t)=1

C(i, j) ·
(
‖u(i, t)−u( j, t)‖2 +βtemp(τ(i, t)− τ( j, t))2

)
.
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Temporal smoothness A temporal smooth transformation along trajectories is enforced
by the energy term

Etemp(u,τ) =
∑

(i,t)∈Ωa
w(i,t)=1

‖u̇(i, t)‖2 +βtemp(τ̇(i, t))2, (3)

where u̇ := du
dt and τ̇ := dτ

dt respectively. The weighting between spatial deformation and
temporal warping is determined by βtemp.

Assignment smoothness Moreover, a temporally smooth assignment is preferred by the
smoothness term

Eassign(σ) =
∑

i,t
(i,t)∈Ωb∧(i,t−∆t)∈Ωb
w(i,t)=1∧w(i,t−∆t)=1
σ(i,t)6=0∧σ(i,t−∆t)6=0

d2 (
σ(i, t),σ(i, t−∆t)

)
,

that penalizes temporal assignment changes from one to another trajectory by their pair-
wise distance d(i, j). In this way, assignment changes between dissimilar trajectories get
strong penalization. Let ∆tmin be the shortest interval for assignment changes of σ , then
∆t ∈ (0,∆tmin]⊂R must be chosen.

3 Motion Anomaly Detection

3.1 Learning a Spatiotemporal Deformable Prototype Model
We build a statistical model that captures:

Global spatiotemporal deformations and data fitting costs after registration For both,
we define bounds for validating prototype registrations. Global deformation parameters
are computed by standard PCA on the concatenation of deformation parameters u′d(i, t)
and τd(i, t), where (i, t) ∈ Ωa ∧w(i, t) = 1, ∀d ∈ {1, · · · ,D}. Let yd be the representation
of deformations for detection d in PCA space, with elements yd(k) and k ∈ {1, · · · ,K}.
We define a bounding hyper-cuboid in PCA space based on the lower and upper bounds
ymin(k) = mind(yd(k)) and ymax(k) = maxd(yd(k)), for each k. Prototype data fitting costs
cd are computed analogous to the data term in Eq. 2, but averaging over valid points on the
prototype domain Ωa and applying association functions mapping from Ωa to Ωb instead.
We define an upper bound based on the maximum cmax = maxd(cd).

Residual distances remaining after elastic registration For each prototype pattern point
xa(i, t) the obtained residual distances with associated training pattern points are locally
aggregated and learned using a Gaussian residual model.

3.2 Reconstruction by Prototype Placements
For reconstructing a whole test pattern by prototype placements we apply a greedy search
algorithm. It iteratively finds best placements of prototype patterns into the test pattern.
Candidate placements are obtained from an over-complete set of prototype detections. A
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priority list defines the order of placements. It is sorted by the score s′ = r · s, where s =
d2

max− c, with data fitting cost c, described in Sec. 3.1, and maximum value d2
max. r is the

ratio of the candidate pattern overlapping with so far unreconstructed test pattern. Thus, a
high score is achieved only with good data fitting combined with good overlapping with so
far unreconstructed test pattern. In each step, the k-best candidates are elastically registered.
Registered candidates are accepted only if all deformation and data fitting parameters are
within the learned bounds. Rejected candidates are removed from the priority list. The scores
of accepted candidates are updated (temporarily) and the best accepted candidate is selected
for reconstruction and removed from the priority list. The unreconstructed test pattern is
updated accordingly. The algorithm stops, if the test pattern is reconstructed completely, or
if no candidates remain that can reconstruct parts of the unreconstructed test pattern.

4 Experiments

4.1 Anomaly Detection in Juggling Patterns
Table 1 gives an overview of the test set of the juggling dataset. It contains 29 sequences
with juggling patterns from five different persons including anomalies, recorded in different
viewpoint settings (distance to camera, view angle).

Seq. Person Frames
Distance
to camera View angle Seq. Person Frames

Distance
to camera View angle

1 1 141 1.5m 0◦ 15 5 460 1.5m 0◦

2 1 460 1.5m ±20◦ 16 5 420 1.5m ±20◦

3 1 220 2.5m 0◦ 17 5 440 2.5m 0◦

4 1 460 2.5m ±20◦ 18 5 410 2.5m ±20◦

5 2 250 1.5m 0◦ 19 3+5 370 2.5m 0◦

6 2 440 2.5m 0◦ 20 3+5 480 2.5m 0◦

7 3 410 1.5m 0◦ 21 1 280 1.5m 0◦ . . .±20◦

8 3 430 1.5m ±20◦ 22 1 410 1.5m. . .2.5m 0◦ . . .±20◦

9 3 420 2.5m 0◦ 23 1 350 1.5m. . .2.5m 0◦ . . .±20◦

10 3 420 2.5m ±20◦ 24 1 320 1.5m 0◦

11 4 430 1.5m 0◦ 25 1 250 1.5m 0◦

12 4 360 1.5m ±20◦ 26 1 390 1.5m 0◦

13 4 440 2.5m 0◦ 27 2 360 1.5m. . .2.5m 0◦ . . .±20◦

14 4 440 2.5m ±20◦ 28 2 400 1.5m 0◦ . . .±20◦

29 2 450 1.5m ±20◦

Total #sequences: 29, #frames: 11.111, #persons: 5

Table 1: Juggling dataset test set overview.
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Additional results are shown in Video 1, complementary to the results presented in Sec.
6.1 of the main paper.

Video 1: Additional anomaly detection results. The video shows the prototype and training
sequences and anomaly detection results for five test sequences. Anomaly detection results
are rendered into the test sequences and give a good impression of the anomaly localization
capability. They include the scenario of a moving juggler and two persons juggling side-by-
side.
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