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Motivation – Biological Motion Patterns 

2 

Wild type pattern (WT) Morphant pattern (MO) 

• Goal: Compare complex developmental growth patterns, identify differences to 
the wild type.  

• Hard to get groundtruth in these biomedical settings  
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Motivation – Juggling Patterns 

• 3D juggling dataset (recorded with Kinect camera) 

• Normal pattern is a “3-ball cascade” juggling pattern  

• Goal: Detect motion anomalies wrt. the normal pattern     
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Related Work and Contribution 

• Surveillance scenarios and crowd analysis 

• Mahadevan et al., Anomaly detection in crowded scenes, CVPR 2010 

• Wu et al., Chaotic invariants of lagrangian particle trajectories for anomaly detection 
in crowded scenes, CVPR 2010 

• Cong et al., Sparse reconstruction cost for abnormal event detection, CVPR 2011 

• Our contribution 

• Motion-based anomaly detection in a new setting and in 3D+time 

• New method for elastic registration of motion patterns 

• New motion anomaly dataset (juggling patterns) 
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Wu et al., CVPR 2010 Mahadevan et al., CVPR 2010 Mahadevan et al., CVPR 2010 
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Approach Overview 

• Input sequence 
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Approach Overview 

• Compute dense point trajectories* 
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*Sundaram et al., Dense point trajectories by gpu-accelerated large displacement optical flow, ECCV 2010 
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Approach Overview 

• Compute dense point trajectories* 

• Kinect camera (RGB-D data, depth information) 

• Compute 3D+time trajectories 
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*Sundaram et al., Dense point trajectories by gpu-accelerated large displacement optical flow, ECCV 2010 
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Approach Overview 

• Compute „supertrajectories“ in video (similar to „supervoxels“ in images) 
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Approach Overview 

• Select a supertrajectory prototype (training phase) 
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Approach Overview 

• Test sequence 
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Approach Overview 

• Compute supertrajectories 
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Approach Overview 

• Detect prototype instances (illustrated by bounding boxes) 

• Rigid and elastic registration of prototype patterns (spatiotemporal) 
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Approach Overview 

• Detect prototype instances (illustrated by bounding boxes) 

• Rigid and elastic registration of prototype patterns (spatiotemporal) 

• Reconstruct the whole test sequence by prototype placements 

• Training phase: Learn prototype model (accepted variations) 

• Test phase: Compute anomaly scores from the deviations to the aligned 
prototype patterns 
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Approach Details 

• Supertrajectory representation 

• Detection and elastic registration 

• Learning the prototype model 

• Detecting anomalies 
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Supertrajectory Representation 

• „Supertrajectories“ serve as an efficient and robust representation 

• Initialized by dense point trajectories* 

• Hierarchical clustering groups trajectories in bottom-up manner 

• Split the hierarchy at a certain intermediate level 
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*Sundaram et al., Dense point trajectories by gpu-accelerated large displacement optical flow, ECCV 2010 
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Supertrajectory Representation 

• Motion pattern definition 
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• Pairwise distances between trajectories 
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Supertrajectory Representation 
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Supertrajectory Representation 

• Supertrajectory computation  
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Detection and Elastic Registration 

19 

 

Prototype pattern 
(Supertrajectories xa) Test sequence (Supertrajectories xb) 



Robert Bensch, University of Freiburg, Germany    BMVC 2015, September 10 20 20 

• Compute detection hypotheses 

• Fast hashing approach*, extended for spatiotemporal setting 

• Temporal shift, 3D rotation and translation 

• Outputs rigid transformation hypotheses 
(temporal shift tshift, spatial rigid transformation T ) 

• Refinement by rigid and elastic registration 

 
*Winkelbach et al., Low-cost laser range scanner and fast surface registration approach, DAGM 2006 

Detection and Elastic Registration 

Prototype pattern 
(Supertrajectories xa) Test sequence (Supertrajectories xb) 
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Rigid Pre-Alignment 
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Prototype pattern xa Test pattern xb 
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Rigid Pre-Alignment 
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• Temporal shift, 3D rotation and translation 

 

 

Prototype pattern xa Test pattern xb 
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Rigid Pre-Alignment 
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• Temporal shift, 3D rotation and translation 

• Trajectory association function 

 

Test pattern xb Prototype pattern xa 
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Rigid Pre-Alignment 
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• Temporal shift, 3D rotation and translation 

• Trajectory association function 

• Minimize SSD of associated points 

 

Test pattern xb Prototype pattern xa 
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Rigid Pre-Alignment 
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• Temporal shift, 3D rotation and translation 

• Trajectory association function 

• Minimize SSD of associated points 

• Truncated squared norm (function ) 

• Penalize unassociated points (dundef) 

 

 

Test pattern xb Prototype pattern xa 
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Elastic Registration 
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Test pattern xb Prototype pattern xa 

• Deformation, temporal warping 
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Elastic Registration 
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Test pattern xb Prototype pattern xa 

• Deformation, temporal warping 

• Data term analogous to Edata(T, tshift, ) 
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Elastic Registration 
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Test pattern xb Prototype pattern xa 

• Deformation, temporal warping 

• Data term analogous to Edata(T, tshift, ) 

• Smoothness terms 
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Elastic Registration 
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Test pattern xb Prototype pattern xa 

• Deformation, temporal warping 

• Data term analogous to Edata(T, tshift, ) 

• Spatial smoothness (across trajectories) 
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Elastic Registration 

30 

Test pattern xb Prototype pattern xa 

• Deformation, temporal warping 

• Data term analogous to Edata(T, tshift, ) 

• Spatial smoothness (across trajectories) 
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Energy Optimization 

• Alternating optimization  

1) Assignment function   computed by dynamic programming 

2) Transformation 

• Rigid: Procrustes algorithm 

• Elastic: L-BFGS optimization 

        => Repeated until convergence 

• Both parts solved globally optimal (convex energies) 
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Learning the Prototype Model 

• Registration of the prototype to multiple instances in the training data 

• Set of rigid and elastic transformation parameters 

• Statistical model 

• Global deformations and data fitting costs  

=> Defines bounds for validating prototype registrations 

• Residual distances 

=> Locally aggregated for each prototype pattern point (residual model) 

32 

Training 
sequences 
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Detecting Anomalies 
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• Reconstruction by prototype placements (greedy search) 

• Iteratively find best placements of prototype patterns (candidates from detections) 

• Stop, if pattern is reconstructed completely (or if no candidates remain that can 
improve reconstruction) 

• Pointwise and framewise anomaly score 
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Experiments – Motion Anomaly Dataset 

• Recorded juggling sequences (> 10.000 frames) 

• Different jugglers, viewpoints, various anomalies, background motion 
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Anomaly Detection in Juggling Patterns 
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• Learn a protoype model from 3 training sequences only 
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Anomaly Detection in Juggling Patterns 

• Learn a protoype model from 3 training sequences only 

• Split 29 test sequences in two subsets 

36 

Subset A (different viewpoints) Subset B (similar viewpoints) 
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Anomaly Detection in Juggling Patterns 

• Learn a protoype model from 3 training sequences only 

• Split 29 test sequences in two subsets 

• Compare against Chaotic invariants (CI) for anomaly detection 
in crowded scenes* 
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*Wu et al., Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes, CVPR 2010 

Subset A (different viewpoints) Subset B (similar viewpoints) 
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• Evaluate framewise anomaly detection 

• ROC curves from thresholding anomaly profile 
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Anomaly Detection in Juggling Patterns 

Subset A 
(different viewpoints) 

Subset B 
(similar viewpoints) 

threshold 
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Anomaly Detection in Juggling Patterns 

Subset A 
(different viewpoints) 

Subset B 
(similar viewpoints) 
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Anomaly Detection in Biological Patterns* 
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Wild type pattern (WT) Morphant pattern (MO) 

*Trajectory data from** provided by Nico Scherf (Institute  for Medical Informatics and Biometry, TU Dresden)  and 
Jan Huisken (Max Planck Institudte of Molecular Cell Biology and Genetics (MPI-CBG), Dresden), 
** Schmid et al., High-speed panoramic light-sheet microscopy reveals global endodermal cell dynamics. Nat 
Commun, 2013 
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Anomaly Detection in Biological Patterns 

• Learn prototype model (3 WT patterns) 

• Test on remaining 9 WT and 12 MO patterns 

• Compare global anomaly scores 

Results: 

1) Significant difference between WT and MO patterns 

2) Time scaling (MO*) partially compensates the differences 

41 

WT vs. MO WT vs. MO* 
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Conclusion 

• New approach to motion anomaly detection 

• Detect and localize subtle anomalies 

• New motion anomaly dataset 

• Important application area in biomedical image analysis 
 

• MATLAB code and datasets (in preparation): 
 http://lmb.informatik.uni-freiburg.de/resources/opensource/AnomalyDetection/ 
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     Thank you! 


