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Abstract

One fundamental step in many state of the art optical flow methods is the initial es-
timation of reliable correspondences. It is well-established to extract and match features
such as HOG to handle large displacements. We propose a combinatorial refinement of
the initial matching. Optimization is done in the space of affine motion, where we regu-
larize between neighboring points and similar regions. The evaluation on the MPI-Sintel
dataset shows that the proposed method removes outliers from the initial matching and
increases the number of reliable matches. The proposed refinement improves all optical
flow algorithms that build upon pre-computed correspondences.

1 Introduction
Dealing with large displacements has been the main research focus in the field of optical flow
estimation in recent years [4, 7, 17, 20, 21]. To estimate the large motion of small, detailed
structures, a popular strategy is to pre-compute correspondences based on discriminative
descriptors, such as HOG.

A reliable initial set of correspondences is an important requirement for accurate large
displacement optical flow. While [4] relies on simple nearest neighbor matching to establish
such correspondences, subsequent works have proposed more involved strategies to avoid
wrong correspondences. The difference in performance between LDOF[4] and DeepFlow
[20] is due to a more involved hierarchical matching strategy.

The contribution of the present paper is a refinement algorithm that further improves
a given set of correspondences. We suggest extracting translational and affine motion hy-
potheses from the initial matching. This has two positive effects: First it gives us a higher
order regularization and second, without increasing the computational complexity much, we
increase the coverage of the apparent motion. We use the initial correspondences as an addi-
tional constraint and extend the local 4-connected neighborhood by additional, far reaching
edges between homogeneous regions with similar color. An overview of the method is shown
in Figure 1.

The proposed refinement is a self-contained procedure and can be employed in any
matching based optical flow algorithm. We show the improvement of our matches on the
challenging Sintel dataset [5], where we evaluate the proposed refinement in the framework
of LDOF [4], DeepFlow [20] and EpicFlow [17].
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Figure 1: Outline of our method. The first row shows the overlaid input frames, the matching
step (red arrows=high error, blue=low error) and the estimated optical flow using Deep Flow
[20]. Starting from the initial matching, we extract translational and affine hypotheses. The
4-connected grid in the optimization/refinement step is enhanced by edges connecting similar
regions. Our refinement improves at several position (note the fewer erroneous flow vectors
and the denser field).

2 Related Work
Integrating an initial matching as a constraint into variational optical flow was introduced by
Brox and Malik [4]. For the matching itself, they evaluated several methods: features from
over-segmented regions, HOG features and geometric blur. It turned out that matching HOG
features on a regular grid gives the best results. Here, a forward-backward check serves as
confidence measure.

A hierarchical version of feature matching has been proposed by Kim et al. [9]. The
authors use a coarse-to-fine pyramid, with a vertical regularization (spatial in the feature
level) and a horizontal regularization, connecting the different levels. Revaud et al. [17] and
Weinzaepfel et al. [20] introduced the so called DeepMatching. This approach works the
other way around, the HOG features are matched from a fine to a coarse level, whereby at
each level a convolution, followed by a max pooling and sub-sampling is done.

The PatchMatch framework of Barnes et al. [2] uses image patches to establish corre-
spondences between images. The search is done in a nearest neighbor manner. Besse [3] et
al. extended this idea with belief propagation to obtain a more regular matching.

Xu et al. [21], first generate a set of displacement candidates by using the SIFT matching
of Lowe [13]. Spatial regularity is obtained with combinatorial optimization, the so-called
fusion moves from Lempitsky et al. [11].

The SIFTFlow approach of Liu et al. [12] also uses combinatorial optimization for align-
ment methods in feature space. Like in Drayer and Brox [6] the method does not primarily
aim for classical optical flow estimation but for dense correspondences between different
object instances or scenes.

Recently, Sevilla-Lara et al. [18] proposed to split the gray values in different channels
before smoothing and down-sampling the image. This method does not have any combina-
torial components and estimates the motion of fine structures in a purely variational setting.
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3 Combinatorial Refinement

The matching of LDOF [4] performs a forward-backward check to remove unreliable matches,
but there is no kind of regularization. In the case of DeepMatching [20], due to the aggrega-
tion of features in the higher levels there is a sort of implicit regularization, which can handle
arbitrary complex motions, but the regularization is only local and ambiguities cannot be re-
solved.

We propose the combinatorial refinement of a given feature matching. Our method im-
proves the matching in several ways: (1) The refinement is computed densely (on a grid),
which increases the number of matches. (2) Due to the explicit regularization, ambiguities
in homogeneous regions or areas with repetitive texture are resolved. (3) Initially wrongly
estimated outliers can be corrected.

We cast the refinement problem as a combinatorial energy minimization problem. The
energy consists of three terms:

E(L) = EA(L)+EM(L)︸ ︷︷ ︸
Data terms

+ ES(L)︸ ︷︷ ︸
Smoothness

(1)

The task is to find a labeling L that yields the minimal energy. The set of possible labels or
hypotheses is derived from the initial matching. For each hypothesis we assign a matching
cost EM on how similar the displacement is to the initial guess (if there is one) and an ap-
pearance term EA that measures the similarity of the matched features. We regularize on a
4-connected neighborhood extended by edges between areas with similar color; see Section
3.4 for more details. Since our method consists of several components, we give an analy-
sis of each component’s contribution. All tuning parameters are automatically optimized as
described in Section 3.5, if not mentioned otherwise.

Algorithm 1: Estimate hypotheses
from correspondences

Input : Correspondences C, h
Output: Hypotheses H

L ← 1
for i = 1 : h do

Hi,Li← RANSAC(L ,C)
L ←L \Li

update(C)
while not converged do

for i = 1 : h do
Hi← RANSAC(L ,C)

L ← update(H,C)

E=88392

E=36543

Initialization

After convergence

Figure 2: Left: Pseudocode for hypotheses generation. Right: Computing h = 4 hypotheses
from the initial matching (top row). The initial estimation is biased by the dominant motion
of the matching (middle row). The alternating optimization decreases the error and recon-
structs the given correspondences better. The right column shows the best hypothesis for
each point.
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3.1 Hypotheses
Rather than instance based translational hypotheses, we propose using hypotheses based on
affine motion models. This is beneficial for two reasons. First, affine object motion will not
induce cost in the regularizer. Second, it increases the space of possible displacements in a
very effective way and allows us to generate hypotheses in areas without initial correspon-
dences.

A good set of hypotheses should well cover most of the initial correspondences C while
being small. A set of translational hypotheses is implicitly given by the initial matching. We
extend the translation hypotheses with a set of affine motion hypotheses {Hi}, where

Hi =

a1 a2 dx
a3 a4 dy
0 0 1

 . (2)

In contrast to [7, 8], we use an alternating optimization scheme to estimate the affine hy-
potheses and do not update them at any later step. We fix the number of hypotheses h = 15
and focus on minimizing the error to the given correspondences:

max
L ,H

∑
x

f (L ,H,C,x)

f (L ,H,C,x) =

{
1 if

∣∣(HL (x)x−x
)
−C(x)

∣∣< ε

0 else
, (3)

where ε = 1 is the threshold that separates good hypotheses from bad ones. We solve the
problem by alternatingly optimizing the labeling L and the hypotheses H. To optimizing
for L, the correspondence is assigned to the hypothesis it fits best:

L (x) = min
i
|(Hix−x)−C(x)| . (4)

Fixing L , we use RANSAC to improve the hypotheses. We repeat these two steps until L
and H converge. The initial solution is computed greedily. We set L to one (consider the
whole matching) and estimate the affine matrix. All correspondences that are further away
than ε are considered for the estimation of the next matrix. We proceed in this fashion until
we have an initial guess for all hypotheses. The algorithm with an accompanying example is
shown in Figure 2.

3.2 Data term
The data term consists of two terms. The appearance term EA measures the similarity in
descriptor space. Additionally, we penalize the deviation from the initial correspondences
with the matching term EM . The former one consists of the cosine distance between the
features FA and FB:

EA(L) = ∑
x
−ρα

(
〈FA(x),FB(HL(x)x)〉

‖FA(x)‖2 · ‖FB(HL(x)x)‖2

)
·σ(x) (5)

Due to its invariance against multiplicative changes, lightning changes due to shadows are
handled well. In case of HOG features, we gain extra invariance against additive changes.
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The robust function ρα(x) = max(x,α) prevents hypotheses with poor similarity from being
matched. This filtering step is especially important in occluded regions. The matching of
features tends to work better in structurally rich areas than in homogeneous regions. Thus,
we weight the appearance term by the amount of local structure σ(x), which we compute as
the second eigenvalue of the structure tensor.

The valuable information of the initial matching contributes the other part of the data
term:

EM(L) = ∑
x

min(‖H(L(x))x−M(x)‖2,θ) ·C(x) (6)

Here θ marks the trade off between trusting the initial correspondence and allowing for
outliers. C(x) is a confidence function from the initial matching that rates the quality of the
match or just acts as an indicator function whether a correspondence is available at x.

3.3 Regularization
There are multiple possibilities on how to regularize affine motion. A straightforward method
is to directly compare the affine parameters [16], which comes with the drawback that
changes in parameter space are not proportional to the respective flow vectors. Hornacek
et al. [7] directly regularize in the space of flow vectors. While they only deal with spatially
neighboring points, in our case the edges E may connect arbitrary points. This is why we
follow [8] and use their so-called flow continuity term

ES(L) = ∑
(x1,x2)∈E

ω(x1,x2) ·d
(

HL(x1),HL(x2),
x1 +x2

2

)
, (7)

where the measure between two hypotheses is defined as:

d(H1,H2,x) = min(|H1x−H2x|1 ,β ). (8)

One very important aspect in terms of optimization is that this specific regularizer is a metric
and thus the occurring binary optimization problems are sub-modular problems.

Since motion edges are strongly correlated with image edges, it is a common procedure
[1, 14, 19, 21] to weight the smoothness term with the gradient magnitude in the image. We
adapt this idea to the transitions of features between neighboring points:

ω(x1,x2) = λ · exp−‖FA(x1)−FA(x2)‖2
ν

, (9)

where λ is the global weighting parameter, controlling the smoothness and ν adjusts the
features magnitude.

3.4 Additional Edges
It is well-established to use a 4- or 8-connected neighborhood for discrete regularization.
This concept falls short in enclosed homogeneous areas without sufficient characteristics
that can be put into correspondence. Therefore, we propose to extend the set of edges by
connecting homogeneous regions which likely belong together.

Identifying the homogeneous regions is the first step in doing so. We classify a pixel as
structureless, if the smaller eigenvalue of its structure tensor is below a threshold (in practice
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Figure 3: Benefit of additional edges. When matching the first frame to the second (b), we
compute regions with little texture, highlighted as black and colored areas in (c). Noise and
small regions are discarded (marked as black). The remaining regions are connected if their
appearance is similar. Connected regions have the same color. The bottom row shows the
improvement from the initial LDOF [4] correspondences (d), over the refined matches (e) to
and the refinement with the extended set of edges (f). The arrows are colored from blue to
red (small to high error).

we used 0.153). Color histograms Di in HSV-space describe the appearance of the individual
connected components. In order to obtain an expressive descriptor we ignore small regions
with less then 400 pixels. The distance between the normalized histograms is

dD(Di,D j) =
∣∣Di−D j

∣∣ . (10)

We only connect two regions A= {ai} and B = {b j}, if dD < 1.3. Connecting all points of
A with all points of B is computational expensive, when it comes to minimizing the energy.
Connecting only the centers of the regions on the other hand has only little effect on the
regularity of the solution. We strike a balance, by determining a matrix M that maps the
maximal number of points from A to B:

max
M

∑
ai∈A

m(ai,B,M)

m(a,B,M) =

{
1 if ∃b j ∈ B : Ma−b j = 0
0 else

. (11)

We restrict the optimization of M to translations and variations in scale. In this way we
preserve the relative ordering of the points, while solving the equation can be done quickly
with a multi scale convolution.

The newly introduced edges might connect regions not belonging together, therefore they
are weighted proportional to the regions’ appearance similarity:

ω(x1,x2) = ω(x1,x2) ·
1

dD(Di,D j)
. (12)

The benefit and computation of these additional edges is illustrated in Figure 3.
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4-connected affine hypotheses additional edges affine & edges
EPE 5.484 5.397 5.4127 5.303

Table 1: Analysis of the different steps in the refinement on the whole grid. Starting from
a 4-connected neighborhood with translational hypotheses, the affine hypotheses and the
additional edges improve the matching. Best results are obtained by combining both.

Ldof Ldof+R Deep Deep+R
EPE 3.4627 3.4537 3.5073 3.1757
Points 2.14 ·103 6.19 ·103 5.87 ·103 6.56 ·103

Table 2: Evaluation of the refinement of the LDOF (Left) and DeepMatching (Right) matches
on the final pass of the Sintel training set. Regarding the very same points, the refinement of
LDOF gives only a very slight improvement, but overall it triples the number of correspon-
dences. The improvement on the initial point set with DeepMatching is almost 0.4 and in
average, we establish additional 690 matches for each frame.

3.5 Optimization

For minimizing the sub-modular energy, we use the Fast_PD solver of Komodakis and Tzir-
itas [10]. We optimized the parameters (α = 0.9,β = 65,θ = 37.341,λ = 0.00001,ν = 2.1)
that are directly involved in the MRF. Starting from several initial seed guesses, we opti-
mized using the downhill-simplex algorithm of Nelder and Mead [15]. The optimization is
done on a subset of the final sintel training sequences and contains 50 pairs of images.

3.6 Matching Score

As a post processing step, we assign scores to the estimated correspondences. First, we do
a forward-backward check and score the matches by the inverse of the distance. Second the
color combined with the structure tensor comes in as weight (as in [20]). In practice, this
scoring scheme works well with LDOF and DeepFlow.

4 Results

4.1 Matching

We evaluated the combinatorial refinement on the final pass of the Sintel training dataset.
Both, the affine hypotheses and the additional edges improved the matching; see Table 1.

Matching Refinement Optical Flow Total
LDOF 22.367 13.148 26.011 61.526
DeepFlow 126.721 11.871 40.737 179.329
EpicFlow 4.251 142.843

Table 3: The runtime analysis (in seconds) of the different components shows that the addi-
tional cost of the proposed refinement is low in relation to the other parts.
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Method EPE EPE noc EPE occ d0-10 d10-60 d60-140 s0-10 s10-40 s40+

Ldof [4] 6.026 4.713 13.693 7.200 4.895 4.099 2.134 5.195 18.348

Ldof+R 5.616 4.333 13.234 6.528 4.325 3.812 2.283 4.970 16.634

Deep [20] 4.022 2.668 11.889 5.618 2.752 1.727 1.902 4.619 14.214

Deep+R 3.852 2.457 11.962 5.466 2.575 1.475 1.824 4.533 14.027

Epic [17] 3.566 2.489 9.838 5.238 2.570 1.534 1.828 4.179 13.728

Epic+R 3.497 2.366 9.996 5.052 2.460 1.481 1.826 4.180 13.568

Table 4: Comparison of the different optical flow methods with (+R) and without our reg-
ularization on the final pass of the Sintel training dataset. Throughout the methods, we get
better results with the refined matches.

Method EPE EPE noc EPE occ d0-10 d10-60 d60-140 s0-10 s10-40 s40+

Deep [20] 7.212 3.336 38.781 5.650 3.144 2.208 1.284 4.107 44.118

Deep+R 6.769 2.996 37.494 5.182 2.770 2.064 1.157 3.837 41.687

Table 5: The proposed regularization (+R) improves the DeepFlow, by almost 0.5 on the
final pass of the Sintel test dataset.

By combining the two, we obtained an additional benefit, since regularization over a large
spatial distance cannot be handled in the translational space.

Directly comparing the respective matching and its refinement is difficult due the differ-
ent set of correspondences. Therefore, we performed two comparisons, one on the very same
points and the other one on the joint set of correspondences (Table 2).

In the case of LDOFmatching, the refinement performs equally well on the same points.
The small initial density makes it hard for the refinement to filter out wrong correspondences.
However, we find many additional correspondences. Averaged over the dataset, the number
of correspondences triples.

Using Deep Matching, we get a denser set of initial matches. Here, the proposed re-
finement improves the matching by almost 0.4 EPE. Regarding the number of matches, we
found 690 additional correspondences per frame.

4.2 Optical Flow

For LDOF we observed the largest gain; see Table 4. Here the quality of the initial matches
did not change much (see Table 2), so we explain this by the large increase of correspon-
dences.

The increased number of matches and the lower EPE of the refined DeepMatches (see
Table 2) resulted in a better optical flow estimation for both DeepFlow and EpicFlow (see
Table 4). Using the very same matches, we observed a stronger gain for DeepFlow. We
put this down to the fact that EpicFlow has already some kind of regularization. Despite this
redundancy, the results indicate that our proposed regularization is complementary (compare
Figure 5). For all of the methods, we report an improvement on the final pass of the Sintel
training set.

Finally, we evaluated our proposed refinement on the test set. We chose the currently
most popular algorithm, DeepFlow and achieved an improvement of almost 0.5 EPE; see
Table 5.
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Figure 4: The upper line of each example shows the overlay of the input frames, the ini-
tial matching and the results of LDOF. The bottom line contains, groundtruth, our refined
matching and the respective optical flow.

The additional time for the refinement is relative low in relation to the other parts of the
respective algorithm. In Table 3, a detailed analysis for LDOF, DeepFlow and EpicFlow is
given. The runtimes are measured on an Intel R©Xeon R©E5630 (2.53 GHz) with 12Gb RAM.

5 Conclusion
We have presented a novel regularization strategy to improve the initial feature matching in
several state of the art methods (LDOF, DeepFlow and EpicFlow). Analysis on the MPI-
Sintel benchmark shows that we improve both, the quality (EPE) and the quantity of the
correspondences. As a consequence, the respective optical flow algorithms become more
accurate.
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