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Abstract. We consider a bilevel optimization approach for parameter
learning in nonsmooth variational models. Existing approaches solve this
problem by applying implicit differentiation to a sufficiently smooth ap-
proximation of the nondifferentiable lower level problem. We propose an
alternative method based on differentiating the iterations of a nonlin-
ear primal–dual algorithm. Our method computes exact (sub)gradients
and can be applied also in the nonsmooth setting. We show preliminary
results for the case of multi-label image segmentation.

1 Introduction

Many problems in imaging applications and computer vision are approached by
variational methods. The solutions are modeled as a state of minimal energy of
a function(al). Deviations from multiple model assumptions are penalized by a
higher energy. This immediately comes with an important question, namely, the
relative importance of the individual assumptions. As it is traditionally hard to
manually select the weights, we consider an automatic approach cast as a bilevel
optimization problem—an optimization problem that consists of an upper and a
lower level. The upper level tries to minimize a certain loss function with respect
to the sought set of hyper-parameters. The quantification of the quality of a set
of hyper-parameters is only given via the output of the lower level problem.
The lower level problem models a specific computer vision task, given a set of
hyper-parameters.

Present optimization algorithms for bilevel learning require the lower level
problem to be twice differentiable. This limits the flexibility of the approach.
For example, in computer vision only a smoothed version of the total variation
can be used, whereby favorable properties are lost. Figure 1 plots the energy of
a bilevel learning problem and shows the effect of smoothing the lower problem.

In some sense the requirement of regularized models in the lower level prob-
lem is a step back in time. In the last decades, people have put a lot of effort
to efficiently solve also nonsmooth problems. The main driving force was that
nonsmooth energies provide better solutions for many practical problems,
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Fig. 1. Contour plot of the energy of a bilevel learning problem with two parameters.
The dashed contours correspond to the same learning problem as the solid contours but
with a smoothed lower level energy. Usually, gradient descent like schemes are used to
find the optimal parameters. We propose a way to compute gradient directions directly
on the original problem (solid lines), instead of the smoothed problem (dashed lines)
where gradient directions can be completely wrong.

Why not to make use of these powerful optimization tools for bilevel learning?
In this paper, we fill the gap between variational bilevel learning and the use
of nonsmooth variational models in the lower level problem. The applicability
of the developed technique is shown exemplarily for multi-label segmentation,
which poses a difficult nonsmooth optimization problem.

2 Related Work

We consider a bilevel optimization problem for parameter learning of the form as
considered in [1, 2]. This model for parameter learning is motivated from [3, 4].
The authors argue that the bilevel optimization approach has several advantages
compared to classical probabilistic learning methods. In fact, their approach
circumvents the problem of computing the partition function of the probability
distribution, which is usually not tractable. Earlier, influential approaches are
the tree-based bounds of Wainwright et al. [5], Hinton’s contrastive divergence
method [6] and discriminative learning of graphical models [7, 8].

A generic approach for hyper-parameter optimization is to sample the up-
per level loss function and regress its shape using Gaussian processes [9] or
Random Forests [10]. Since optimization is not based on gradients, it does not
require any smoothness of the lower level problem. It rather makes assumptions
about the shape of the loss function. This approach is currently limited to the
optimization of a moderate number of parameters. Sampling the loss function
becomes increasingly demanding if a large number of parameters have to be op-
timized. Eggensperger [11], for example, reports problem sizes of a few hundred
parameters which can be tackled using the generic approach, whereas the bilevel
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approach that we consider in this work was successfully applied to problems with
up to 30000 parameters [12].

Bilevel optimization was considered for task specific sparse analysis prior
learning [13] and applied to signal restoration. In [14, 15] a bilevel approach
was used to learn a model of natural image statistics, which was then applied to
various image restoration tasks. Recently, it was used for the end-to-end training
of a Convolutional Neural Network (CNN) and a graphical model for binary
image segmentation [12].

So far all bilevel approaches required the lower level problem to be differen-
tiable; Nonsmooth problems have to be handled using smooth approximations.
In [3, 4] differentiability is used in combination with implicit differentiation to
analytically differentiate the (upper level) loss function with respect to the pa-
rameters. In [1] an efficient semi-smooth Newton method is proposed. In contrast
to these approaches the method that we propose can solve bilevel learning prob-
lems with a nonsmooth lower level problem.

The procedure of our method is similar to that in [16]. The idea is to directly
differentiate the update step of an algorithm that solves the lower level problem
with respect to the parameters. Domke [17] applied algorithmic differentiation
to derive gradients of truncated gradient based optimization schemes. In con-
trast to our method, this approach requires to store every intermediate result
of the optimization algorithm, which results in a huge memory demand. In [16]
the lower level problem is approximated with quadratic majorizers and thus is
differentiable by construction. A similar approach was proposed earlier in [18].

Recently, the primal–dual (PD) algorithm from Chambolle and Pock [19]
was extended to incorporate Bregman proximity functions [20]. The Bregman
proximity function is key in this paper. It allows us to solve a nonsmooth lower
level problem with a PD algorithm having differentiable update rules. In [21], in
the setting of unbiased risk estimation and parameter selection, iterative (weak)
differentiation of Euclidean proximal splitting algorithms is studied.

3 The Bilevel Learning Problem

The bilevel learning problem considered in this paper is the following:

min
ϑ
L(x(ϑ))

s.t. x(ϑ) ∈ arg min
x∈RN

E(x, ϑ)
(1)

The continuously differentiable function L : RN → R+ is a loss function describ-
ing the discrepancy between a solution x∗(ϑ) ∈ RN of the lower level problem
for a specific set of parameters ϑ ∈ RP and the training data. The goal is to
learn optimal parameters for the lower level problem, given by the proper lower
semi-continuous energy E : RN × RP → R+.

If the lower problem can be explicitly solved for x∗(ϑ), then the bilevel prob-
lem reduces to a single level problem. However, this construction is not always
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possible. In that case, implicit differentiation can be used to find a descent di-
rection of L(x(ϑ)) with respect to ϑ. This is essential for a gradient based opti-
mization method, like it is used in [3], however, twice continuous differentiability
of the lower problem is required. We briefly recap the well-known idea before we
propose a way to waive this requirement.

3.1 Bilevel Optimization via Implicit Differentiation

The optimality condition of the lower level problem is ∂
∂xE(x, ϑ) = 0, which

under some conditions implicitly defines a function x∗(ϑ). Let us define F (x, ϑ) =
∂
∂xE(x, ϑ). As we assume that the problem minxE(x, ϑ) has a solution, there is
(x∗, ϑ′) such that F (x∗, ϑ′) = 0. Then the implicit function theorem says that,
if F is continuously differentiable and the matrix ∂

∂xF (x∗, ϑ′) is invertible, there
exists an explicit function X : ϑ 7→ x(ϑ) in a neighborhood of (x∗, ϑ′). Moreover,
the function X is continuously differentiable and

∂X

∂ϑ
(ϑ) =

(
−∂F
∂x

(X(ϑ), ϑ)

)−1
∂F

∂ϑ
(X(ϑ), ϑ) .

Back-substituting F = ∂
∂xE and using the Hessian HE(X(ϑ), ϑ) = ∂2E

∂x2 yields

∂X

∂ϑ
(ϑ) = −(HE(X(ϑ), ϑ))−1 ∂

2E

∂ϑ∂x
(X(ϑ), ϑ) . (2)

The requirement for using (2) from the implicit function theorem is the continu-
ous differentiability of ∂

∂xE and the invertibility of HE . Applying the chain rule
for differentiation the derivative of the loss function L of (1) w.r.t. ϑ is

∂

∂ϑ
L(x(ϑ)) = −∂L

∂x
(x(ϑ))

(
HE(X(ϑ), ϑ)

)−1 ∂2E

∂ϑ∂x
(X(ϑ), ϑ) . (3)

A clever way of setting parentheses avoids explicit inversion of the Hessian ma-
trix [22]. For large problems iterative solvers are required, however.

4 Bilevel Optimization with Nonsmooth Functions

In this section, we resolve the requirement of twice continuous differentiability
of the lower level problem. The coarse idea is quite simple: even if the lower level
problem is nondifferentiable, there can be algorithms with a differentiable update
rule. Let A and A(n) : RN ×RP → RN describe one or n iterations, respectively,
of algorithm A for minimizing E in (1). For a fixed n ∈ N, we replace (1) by

min
ϑ
L(x(ϑ))

s.t. x(ϑ) = A(n)(x0, ϑ) ,
(4)

where x0 is some initialization of the algorithm. As the algorithm A is chosen to
solve the (original) lower level problem in (1), we expect it to yield, for each ϑ,
a solution x(n)(ϑ)→ x∗(ϑ) with E(A(n)(x0, ϑ), ϑ)→ minxE(x, ϑ) for n→∞.
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An interesting aspect of this approach is that, for a fixed n, the differentiation
of L w.r.t. ϑ is exact; No additional approximation is required. In this way, the
algorithm for solving the lower level problem learns parameters that yield an
optimal solution after exactly n iterations.

Depending on the problem structure of minxE(x, ϑ) different algorithms can
be chosen. We use the flexible PD algorithm from [20], which extends [19] to
proximal terms involving Bregman distances. Using this technique, iterations
can be made differentiable without requiring differentiability of the energy.

4.1 A Primal–Dual Algorithm with Bregman Distances

We consider the convex–concave saddle-point problem

min
x

max
y
〈Kx, y〉+ f(x) + g(x)− h∗(y) ,

which is derived from minx f(x) + g(x) + h(Kx). One iteration of the PD algo-
rithm [20] reads (x̂, ŷ) = PDτ,σ(x̄, ȳ, x̃, ỹ) or

x̂ = PDxτ := arg min
x
f(x̄) + 〈∇f(x̄), x− x̄〉+ g(x) + 〈Kx, ỹ〉+ 1

τDx(x, x̄)

ŷ = PDyσ := arg min
y
h∗(y)− 〈Kx̃, y〉+ 1

σDy(y, ȳ) ,
(5)

where PDxτ = PDxτ (x̄, ȳ, x̃, ỹ) (the same for PDyσ) with step size parameter σ and
τ . The step size parameter must be chosen according to (τ−1 − Lf )σ−1 ≥ L2

where L = ‖K‖ is the operator norm of K and Lf is the Lipschitz constant
of ∇f . The Bregman function Dx(x, x̄) = ψx(x) − ψx(x̄) − 〈∇ψx(x̄), x− x̄〉 is
generated by a 1-convex function ψx satisfying the requirements and properties
in [20] (the same for Dy).

4.2 Primal–Dual Algorithm for Bilevel Learning

Although we assume A := PDτ,σ to be differentiable, we do not require it for
the lower energy in (4). This allows us to differentiate A with respect to the
parameters. Using the chain rule iterations can be processed successively. A
single PD step reads ∂

∂ϑ (x̂(ϑ), ŷ(ϑ)) = ∂
∂ϑPDτ,σ(x̄(ϑ), ȳ(ϑ), x̃(ϑ), ỹ(ϑ)) where

∂PDxτ
∂ϑ

=
∂PDxτ
∂x̄

∂x̄

∂ϑ
(ϑ) +

∂PDxτ
∂ȳ

∂ȳ

∂ϑ
(ϑ) +

∂PDxτ
∂x̃

∂x̃

∂ϑ
(ϑ) +

∂PDxτ
∂ỹ

∂ỹ

∂ϑ
(ϑ) , (6)

and we dropped the dependency of PDxτ on (x̄(ϑ), ȳ(ϑ), x̃(ϑ), ỹ(ϑ)) for clarity.
The analogous expression holds for PDyσ. As the functions x̄(ϑ), ȳ(ϑ), x̃(ϑ) and
ỹ(ϑ) are simple combinations (products with scalars and sums) of the output of
the previous PD iteration, the generalization to n iterations is straightforward.
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5 Application to Multi-Label Segmentation

In this section, we show how the developed abstract idea is applied in practice.
Before the actual bilevel learning problem is presented, we introduce the multi-
label segmentation model. Then, the standard (nondifferentiable) PD approach
to this problem, our (differentiable) formulation, and the PD algorithm for the
smoothed energy (required by the implicit differentiation framework) are shown.

5.1 Model and Discretization

Given a cost tensor c ∈ XNl , where X = RNxNy , that assigns to each pixel
(i, j) and each label k, i = 1, . . . , Nx, j = 1, . . . , Ny, k = 1, . . . , Nl, a cost cki,j
for the pixel taking label k. We often identify RNx×Ny with RNxNy by (i, j) 7→
i+(j−1)Nx to simplify the notation. The sought segmentation u ∈ XNl

[0,1], where

X[0,1] = [0, 1]NxNy ⊂ X, is represented by a binary vector for each label. As a
regularizer for a segment’s plausibility we measure the boundary length using
the total variation (TV). The discrete derivative operator ∇ : X → Y , where
we use the shorthand Y := X ×X (elements from Y are considered as column
vectors), is defined as (let the pixel dimension be 1× 1):

(∇uk)i,j :=

(
(∇uk)xi,j
(∇uk)yi,j

)
∈ Y (= R2NxNy ) , Du := (∇u1, . . . ,∇uNl)

(∇uk)xi,j :=

{
uki+1,j − uki,j , if 1 ≤ i < Nx, 1 ≤ j ≤ Ny
0 , if i = Nx, 1 ≤ j ≤ Ny

(∇uk)yi,j is defined analogously. From now on, we work with the image as a
vector indexed by i = 1, . . . , NxNy. Let elements in Y be indexed with j =
1, . . . , 2NxNy. Let the inner product in X and Y be given, for uk, vk ∈ X and

pk, qk ∈ Y , as:
〈
uk, vk

〉
X

:=
∑NxNy

i=1 uki v
k
i and

〈
pk, qk

〉
Y

:=
∑2NxNy

j=1 pkj q
k
j ,

〈u, v〉XNl :=
∑Nl

k=1

〈
uk, vk

〉
X

and 〈p, q〉Y Nl :=
∑Nl

k=1

〈
pk, qk

〉
Y

. The (discrete,

anisotropic) TV norm is given by ‖Du‖1 :=
∑Nl

k=1

∑2NxNy

j=1 |(∇uk)j|, where | · | is
the absolute value. In the following, the iteration variables i = 1, . . . , NxNy and
j = 1, . . . , 2NxNy always run over these index sets, thus we drop the specification;
the same for k = 1, . . . , Nl. We define the pixel-wise nonnegative unit simplex

∆Nl := {u ∈ XNl | ∀(i, k) : 0 ≤ uki ≤ 1 and ∀i :
∑
k u

k
i = 1} , (7)

and the pixel-wise (closed) `∞-unit ball around the origin

B`∞1 (0) := {p ∈ Y Nl | ∀(j, k) : |pkj | ≤ 1} .

Finally, the segmentation model reads

min
u∈XNl

〈c, u〉XNl + ‖Du‖1 , s.t. u ∈ ∆Nl . (8)
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This model and the following reformulation as a saddle-point problem are well
known (see e.g. [19])

min
u∈XNl

max
p∈Y Nl

〈Du, p〉Y Nl + 〈u, c〉XNl , s.t. u ∈ ∆Nl , p ∈ B`∞1 (0) . (9)

5.2 Parameter Learning Setting

We consider (8) where the cost is given for each label k by cki = λ(Ii−ϑk)2, where
I ∈ X is the image to be segmented and λ is a positive balancing parameter. ϑk

can be interpreted as the mean value of the region with label k.
The training set consists of NT images I1, . . . ,INT ∈ X and corresponding

ground truth segmentations g1, . . . , gNT . The ground truths are generated by
solving (8) with (ct)ki = λ(Iti − ϑ̂k)2 for each t ∈ {1, . . . , NT } and predefined

parameters ϑ̂1, . . . , ϑ̂Nl .
We consider an instance of the general bilevel optimization problem (1):

min
ϑ∈RNl

1

2

NT∑
t=1

‖u(ϑ, It)− gt‖22

s.t. u(ϑ, It) = arg min
u∈XNl

E(u, ct) , (ct)ki = λ(Iti − ϑk)2 .

(10)

The goal is to learn the parameters (the mean values) ϑk and try to recover ϑ̂k.
The energy E in the lower level problem is (8).

5.3 The Standard Primal–Dual Algorithm

Problem (8) can be solved using the PD algorithm from (5). The standard way
to apply it is by setting x = u, y = p, f ≡ 0, g(u) = 〈u, c〉XNl + δ∆Nl (u),
and h∗(p) =

∑
k

∑
j δ[−1,1](p

k
j ), where δC is the indicator function of the convex

set C. Furthermore, the Bregman functions are the squared Euclidean distance
(for primal and dual update) and the constraints of the primal variable are
incorporated in the proximal step. It reads

û = Π∆Nl

(
ū− τD>p̃− τc

)
p̂ = ΠB`∞

1 (0) (p̄+ σDu) ,
(11)

where ΠC denotes the orthogonal projection operator onto the set C. As these
projections are nonsmooth functions, they are not suited for our framework.

5.4 A Primal–Dual Algorithm with Bregman Proximity Function

A differentiable PD iteration can be derived using the Bregman function

Dx(u, ū) =
1

2

∑
k

∑
i
uki (log(uki )− log(ūki ))− uki + ūki ,
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which is generated by ψx(u) = 1
2

∑
k,i u

k
i log(uki ). The key idea for choosing this

Bregman function is that it takes finite values only for nonnegative coordinates.
As a consequence the nonnegativity constraint in the primal update step can be
dropped and the projection is given by a simple analytic expression:

∀(k, i) : ûki =
exp(−2τ(∇>p̃k)i − 2τcki )ūki∑Nl

k′=1 exp(−2τ(∇>p̃k′)i − 2τck
′

i )ūk
′

i

. (12)

For the dual update step we use the Bregman proximity function

Dy(p, p̄) =
1

2

∑
k

∑
j

(1− pkj )(log(1− pkj )− log(1− p̄kj ))− pkj + p̄kj

+ (1 + pkj )(log(1 + pkj )− log(1 + p̄kj ))− pkj + p̄kj ,

which is generated by ψy(p) = 1
2

∑
k

∑
j(1+pkj ) log(1+pkj )+(1−pkj ) log(1−pkj ).

It takes finite values only within the feasible set [−1, 1] for each coordinate.

∀(k, j) : p̂kj =
exp(2σ(∇ũk)j)−

1−p̄kj
1+p̄kj

exp(2σ(∇ũk)j) +
1−p̄kj
1+p̄kj

(13)

emerges as the resulting update step. (12) and (13) define the update function
(û, p̂) = PDτ,σ(ū, p̄, ũ, p̃) for the PD algorithm, which is differentiable.

5.5 A Smoothed Parameter Learning Problem

The method of implicit differentiation requires the lower level problem of (10) to
be twice differentiable. As in [12] for binary segmentation, the domain constraint
uki ∈ [0, 1] is incorporated via a log barrier µ

∑
k,i(log(uki ) + log(1 − uki )) with

µ < 0 and instead of the TV for each label function the smooth Charbonnier
function ‖Du‖ε :=

∑
k

∑
j((∇uk)2

j + ε2)
1
2 with ε > 0 is used. The simplex

constraint (7) is incorporated using a Lagrange multiplier ρ ∈ X, such that the
smoothed Lagrangian reads

Eε(u, ρ) := 〈c, u〉XNl +‖Du‖ε+
〈
ρ,
∑

k
uk − 1

〉
X

+µ
∑

k,i
(log(uki )+log(1−uki )) ,

where (1, . . . , 1)> =: 1 ∈ X. As the Hessian matrix of Eε with respect to (u, ρ)
needs to be computed at the optimum of minu maxρEε(u, ρ), we seek for its
efficient optimization. We use the PD algorithm [20] (see (5)) with Euclidean
proximity functions by setting f(u) = ‖Du‖ε, g(u) = 〈c, u〉XNl +µ

∑
k,i(log(uki )+

log(1 − uki )), h∗(ρ) = 〈ρ,1〉X , and K such that Ku :=
∑
k u

k. The Lipschitz
constant of ∇f is Lf = 8/ε, the operator norm is L = ‖K‖ = Nl, and the strong
convexity modulus of g is −8µ. These properties allow us to use the accelerated
PD algorithm. Sadly, the proximal map of g requires to solve (coordinate-wise)
for the unique root of a cubic polynomial in [0, 1], which is expensive.
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Discussion of the smoothed model. Opposed to our approach, smoothing the
energy has several disadvantages: (1) It is only an approximation to the actual
energy; (2) additional terms for dealing with constraints are required; (3) the
extra variable ρ increases the size of the Hessian matrix of Eε by NxNy to
NxNy(Nl + 1); (4) the proximal map is costly to solve; and (5) the Lipschitz
constant, hence the step size, is directly affected by ε, i.e. by the approximation
quality. (5) can be resolved by another approximation. If we set f = 0 and dualize
the Charbonnier function, the step size becomes independent of ε. However,
the proximal map for the Charbonnier function—the same holds for its dual
function—is not simple, a numerical solver is required for its minimization.

5.6 Experiment for Parameter Learning

We consider the bilevel optimization problem in (10) with ground truth param-

eters (ϑ̂1, ϑ̂2) = (0.4, 0.6). The balancing parameter was set to λ = 20. The
dataset consists of 50 images from the Weizmann horse dataset [23]. Each image
was converted to gray scale and downsampled by factor 10. For each image, we
generated a segmentation by running 2000 iterations of (11) with the ground
truth mean value parameters. Note that this is a numerical toy problem, where
we are interested in retrieving the parameters that lead to these segmentations.
We are not interested in segmentations that correspond to horses.

Figure 1 shows the upper level energy (solid lines) obtained using segmenta-
tions for parameters (ϑ1, ϑ2) sampled on a regular grid. The dashed lines cor-
respond to the smoothed lower level problem with ε = 0.1, µ = 10−4. The
energies differ a lot, although this is a simple problem. Reducing ε yields better
approximations but also makes the lower level problem harder to solve.

We solve the learning problem with a simple gradient descent method with
backtracking initialized at (0.13, 0.56) with a maximum of 50 iterations. Fig-
ure 2 compares the convergence of our method with the implicit differentia-
tion approach (implDiff) for different numbers of inner iterations. Our approach
reaches the optimum already for 200 iterations. It clearly requires fewer inner
iterations than the implDiff method. The segmentations are shown in Figure 3.

As Figure 2 shows, the gradient directions computed with our framework
align with the geometric gradient—this is the reason for optimizing with gradient
descent—, which is orthogonal to the level lines. The gradients computed with
the implDiff framework often point to a different direction. For a small number
of inner iterations, the energy computed with the smoothed segmentation model
deviates even more from the original energy than in Figure 1. Inverting the
poorly conditioned Hessian matrix (by solving a system of equations) amplifies
inaccuracies of the lower level solution significantly.

As the original and the smoothed energies have similar minimizers in this
two-dimensional example, also the implDiff framework approaches the optimum
with more inner iterations. Due to inappropriate step sizes determined by the
simple backtracking that we use, our method fails to find the optimum when
using 800 inner iterations. With iPiano [24] we found the exact optimum; see
also Figure 3. Another option to iPiano is L-BFGS [25].
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Fig. 2. Convergence of our approach (red line) vs. the implDiff approach (green line)
visualized on a contour plot of the two-parameter problem. From left to right: The
learning problem is solved with 20, 100, 400, and 800 inner iteration. The gradients
computed with our method are orthogonal to the level lines even for few inner iterations.

Fig. 3. Row-wise alternating: left column: input sample, ground truth segmentation;
right block: our method, implDiff; and from left to right: numbers of inner iterations:
5, 20, 50, 100, 200, 400, 800, and 800 (iPiano) for the two-parameter problem.

Since the parameter learning problem is nonconvex, initialization matters.
The initialization that we used was selected among 3 randomly generated pro-
posals, to show a good performance of both approaches. In general our gradient
based optimization could be a good complement to zero-order search methods.
This will be subject to future work.

We simulate such a scenario by initializing the following 4-label segmenta-
tion experiment close to the optimum. We perturb the ground truth parameters
(0.17, 0.37, 0.42, 0.98) randomly with numbers drawn uniformly in [−0.1, 0.1]. λ
is set to 120, and 400 inner iterations are performed on the single training ex-
ample in Figure 4. The final Euclidean distance, the error, between our solution
parameters and the ground truth parameters is about 0.4 ·10−2, and for implDiff
it is 4.75 · 10−2. Corresponding segmentations are shown in Figure 4.
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Fig. 4. Parameter learning problem and results for sunflowers (102× 68). From left to
right: input image, ground truth segmentation with mean values (0.17, 0.37, 0.42, 0.98),
segmentation obtained with implDiff, and our method, both with 400 inner iterations.

6 Conclusion

We considered a bilevel optimization problem for parameter learning and pro-
posed a way to overcome one of its main drawbacks. Solving the problem with
gradient based methods requires to compute the gradient with respect to the
parameters and thus also requires (twice) differentiability of the lower level prob-
lem. With our approach the lower level problem can be nondifferentiable; Only a
differentiable mapping from the parameters to a solution of the lower level prob-
lem is needed. We propose to use the iteration mapping of a recently proposed
primal–dual algorithm with Bregman proximity functions as such a mapping.
Fixing a number of iterations, the computation of gradients w.r.t. the parameters
is exact. Our algorithm learns to yield optimal parameters when using exactly
this number of iterations. The abstract idea was exemplified on the (nonsmooth)
multi-label segmentation problem.
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