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Figure 1. Bird’s eye view of the Driving scene. The camera fol-
lows a convoluted path on street level and encounters many turns,
crossings, other cars and varying lighting conditions.

1. Introduction
Due to space limitations in the paper, this supplemental

material contains a more detailed description of the dataset
generation process (Section 2) as well as more details and
more qualitative results of DispNet (Section 3).

2. Dataset creation details
We modified the pipeline of Blender’s internal render en-

gine to produce – besides stereo RGB images – three addi-
tional data passes per frame and stereo view. Fig. 2 gives a
visual breakdown of this data:

• In the base pass (3DPost), each pixel stores the true
3D position of the scene point which projects into that
pixel (the 3D position is given within the camera coor-
dinate system).

• For the second pass (3DPost−1), we revert time to the
previous frame t−1 and save all vertices’ 3D positions
at that time. We then return to the current frame t and
use the vertex 3D positions at time t to project the 3D
vertices of time t − 1 into image space. Hence, we
again store 3D positions for each pixel, but this time
the 3D positions from time t−1 using the projection at
time t.
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Figure 2. Our intermediate render data for frame t: The X/Y/Z
channels encode the 3D positions (relative to the camera) of all
visible points at frame t (center column) and what their respective
3D positions were/will be in the previous/next frame (left/right
columns). The 3D positions of the previous and next frame are
stored at the same image locations as in frame t. Hence, analyzing
a location from frame t gives information about the past, current
and future 3D position of the corresponding 3D point. All scene
flow data can then be derived from this information. For example,
the car moving to the right changes its X values (note that the per-
spective projection compresses the intensity gradient of the distant
sky into an apparent step at X = 0). Nothing is moving vertically,
so all Y values are constant over time. The camera is moving for-
ward and all Z values change uniformly (note how objects on the
right side become visible).

• The third pass (3DPost+1) is analogous to the sec-
ond pass, except that this time we use the subsequent
frame t+1 instead of the previous frame t−1.

These three data structures contain all information about
the 3D structure and 3D motion of the scene as seen from
the current viewpoint. From the 3DPos data we generate the



scene flow data. Fig. 3 describes the data conversion steps
from the blender output to the resulting dataset. Note that
color images and segmentation masks are directly produced
by Blender and do not need any post-processing. Together
with the camera intrinsics and extrinsics, various data can
be generated, including calibrated RGBD images.

Fig. 4 shows example segmentation masks for a frame
from one of our datasets. Materials can be shared across
objects, but the combination of object indices and material
indices yields a unique oversegmentation of a scene (consis-
tent across all frames of the scene). While our experiments
do not make use of these data, for other applications we also
include the object and material IDs in our dataset.

With this supplemental material, we also provide a video
that demonstrates the datasets we created and the final out-
come of the pipeline, i.e. optical flow, disparity, disparity
change and object and material index ground truth.

3. DispNetCorr

Intuitively, the simple DispNet disparity estimation ar-
chitecture (as described in the main paper) has to learn the
concept of matching parts of different images in rectified
stereo images from scratch. Since the structure of the prob-
lem is well known (correspondences can only be found in
accordance with the epipolar geometry [2]), we introduced
an alternative architecture – the DispNetCorr – in which we
explicitly correlate features along horizontal scanlines.

While the DispNet uses two stacked RGB images as a
single input (i.e. one six-channel input blob), the Disp-
NetCorr architecture first processes the input images sepa-
rately, then correlates features between the two images and
further processes the result. This behavior is similar to the
correlation architecture used in [1] where Dosovitskiy et al.
constructed a 2D correlation layer with limited neighbor-
hood size and different striding in each of the images. For
disparity estimation, we can use a simpler approach with-
out striding and with larger neighborhood size, because the
correlation along one dimension is computationally less de-
manding. One can additionally reduce the amount of com-
parisons by limiting the search to only one direction. For
example, if we are given a left camera image and look for
correspondences within the right camera image, then all dis-
parity displacements are to the left.

Given two feature blobs a and b with multiple channels
and identical sizes, we compute a correlation map of the
same width and height, but with D channels, where D is
the number of possible disparity values. For one pixel at
location (x, y) in the first feature blob a, the resulting cor-
relation entry at channel d∈ [0, D − 1] is the scalar product
of the two feature vectors a(x,y) and b(x−d,y).
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Figure 4. Segmentation data: object indices are unique per scene.
Material indices can be shared across objects, but can be combined
with the object indices to yield an oversegmentation into parts.

4. Qualitative examples
We show a qualitative evaluation of our networks for dis-

parity estimation and compare them to other approaches in
Figures 5 to 10.
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Figure 3. Data generation overview for a single view at frame time t: Blender directly outputs the Final pass and Clean pass images, as
well as the object-level and material-level segmentation masks. Disparity is directly obtained from depth, which is given by the Z channel
of the current 3DPos map as described in Fig. 2 (b is the stereo baseline, f denotes the focal length). Subtracting the current disparity map
from the future/past disparity map results in the disparity change in future/past direction. The original 3DPos images are projected from
camera space into pixel space using the camera intrinsics matrix K. Subtracting the current pixel position image from the future/past pixel
position images yields the optical flow into the future/past.
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Figure 5. Disparities on a Sintel frame: DispNet and DispNetCorr1D fill the occluded regions in a much more reasonable way compared
to other approaches.
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Figure 6. Disparities on a Sintel frame: DispNetCorr1D provides sharper estimates and the smooth areas on the dragon head are estimated
better than with DispNet.
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Figure 7. Disparities on a Sintel frame: The networks finetuned on the KITTI 2015 dataset cannot estimate large disparities anymore
(large disparities are not present in KITTI). MC-CNN-fst has problems with large disparities, too.
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Figure 8. Disparities on a Sintel frame: DispNet and DispNetCorr1D can handle occluded regions in a nice way. After finetuning on
KITTI 2015 the networks fail in the sky region (ground truth for sky and other small disparities is not available in KITTI).
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Figure 9. Disparities on a KITTI 2015 frame: The sparsity of the KITTI 2015 dataset leads to very smooth predictions when finetuning
a network with such ground truth. While the non-finetuned DispNet and DispNetCorr1D estimate fine details accurately, they are less
accurate in the smooth road and ground regions which are very common in KITTI.

RGB image (L) DispNet DispNetCorr1D

RGB image (R) DispNet-K DispNetCorr1D-K

ground truth MC-CNN-fst SGM

Figure 10. Disparities on a KITTI 2015 frame: Finetuning the networks on KITTI leads to much smoother estimates. However, DispNet-K
and DispNetCorr1D-K can still recognize the delineator posts in the bottom left, which DispNet and DispNetCorr1D ignore completely.
This shows that the finetuned networks do not simply oversmooth, but are still able to find small structures and disparity discontinuities.


