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Abstract. Semantic scene understanding of unstructured environments is a
highly challenging task for robots operating in the real world. Deep Convolu-
tional Neural Network (DCNN) architectures define the state of the art in vari-
ous segmentation tasks. So far, researchers have focused on segmentation with
RGB data. In this paper, we study the use of multispectral and multimodal im-
ages for semantic segmentation and develop fusion architectures that learn from
RGB, Near-InfraRed (NIR) channels, and depth data. We introduce a first-of-
its-kind multispectral segmentation benchmark that contains 15,000 images and
325 pixel-wise ground truth annotations of unstructured forest environments. We
identify new data augmentation strategies that enable training of very deep mod-
els using relatively small datasets. We show that our UpNet architecture exceeds
the state of the art both qualitatively and quantitatively on our benchmark. In ad-
dition, we present experimental results for segmentation under challenging real-
world conditions.

Keywords: Semantic Segmentation, Convolutional Neural Networks, Scene Un-
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1 Introduction

Semantic scene understanding is a cornerstone for autonomous robot navigation in real-
world environments. Thus far, most research on semantic scene understanding has been
focused on structured environments, such as urban road scenes and indoor environ-
ments, where the objects in the scene are rigid and have distinct geometric properties.
During the DARPA grand challenge, several techniques were developed for offroad per-
ception using both cameras and lasers [13]. However, for navigation in forested envi-
ronments, robots must make more complex decisions. In particular, there are obstacles
that the robot can drive over, such as tall grass or bushes, but these must be distinguished
safely from obstacles that the robot must avoid, such as boulders or tree trunks.

In forested environments, one can exploit the presence of chlorophyll in certain ob-
stacles as a way to discern which obstacles can be driven over [1]. However, the caveat
is the reliable detection of chlorophyll using monocular cameras. This detection can be
enhanced by additionally using the NIR wavelength (0.7− 1.1µm), which provides a
high fidelity description on the presence of vegetation. Potentially, NIR images can also
enhance border accuracy and visual quality. We aim to explore the correlation and de-
correlation of visible and NIR images frequencies to extract more accurate information
about the scene.

Benchmark and demo are publicly available at http://deepscene.cs.uni-freiburg.de
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In this paper, we address this problem by leveraging deep up-convolutional neural
networks and techniques developed in the field of photogrammetry using multispectral
cameras to obtain a robust pixel-accurate segmentation of the scene. We developed an
inexpensive system to capture RGB, NIR, and depth data using two monocular cameras,
and introduce a first-of-a-kind multispectral and multimodal segmentation benchmark.
We first evaluate the segmentation using our UpNet architecture, individually trained on
various spectra and modalities contained in our dataset, then identify the best perform-
ing modalities and fuse them using various DCNN fusion architecture configurations.
We show that the fused result outperforms segmentation using only RGB data.

2 Multispectral Segmentation Benchmark

We collected the dataset using our Viona autonomous mobile robot platform equipped
with a Bumblebee2 stereo vision camera and a modified dashcam with the NIR-cut
filter removed for acquiring RGB and NIR data respectively. We use a Wratten 25A
filter in the dashcam to capture the NIR wavelength in the blue and green channels. Both
cameras are time synchronized and frames were captured at 20Hz. In order to match the
images captured by both cameras, we first compute SIFT [9] correspondences between
the images using the Difference-of-Gaussian detector to provide similarity-invariance
and then filter the detected keypoints with the nearest neighbours test, followed by
requiring consistency between the matches with respect to an affine transformation.
The matches are further filtered using Random Sample Consensus (RANSAC) [2] and
the transformation is estimated using the Moving Least Squares method by rendering
through a mesh of triangles. We then transform the RGB image with respect to the NIR
image and crop to the intersecting regions of interest. Although our implementation
uses two cameras, it is the most cost-effective solution compared to commercial single
multispectral cameras.

We collected data on three different days to have enough variability in lighting con-
ditions as shadows and sun angles play a crucial role in the quality of acquired images.
Our raw dataset contains over 15,000 images sub-sampled at 1Hz, which corresponds to
traversing about 4.7km each day. Our benchmark contains 325 images with pixel level
groundtruth annotations which were manually annotated. As there is an abundant pres-
ence of vegetation in our environment, we can compute global-based vegetation indices
such as Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation In-
dex (EVI) to extract consistent spatial and global information. NDVI is resistant to noise
caused due to changing sun angles, topography and shadows but is susceptible to error
due to variable atmospheric and canopy background conditions [4]. EVI was proposed
to compensate for these defects with improved sensitivity to high biomass regions and
improved detection though decoupling of canopy background signal and reduction in
atmospheric influences. For all the images in our dataset, we calculate NDVI and EVI
as shown by Huete et al. [4].

(a) RGB (b) NIR (c) NDVI (d) NRG (e) EVI (f) DEPTH
Fig. 1. Sample images from our benchmark showing various spectra and modalities.
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Although our dataset contains images from the Bumblebee stereo pair, the processed
disparity images were substantially noisy due to several factors such as rectification ar-
tifacts, motion blur, etc. We compared the results from semi-global matching [3] to a
DCNN approach that predicts depth from single images and found that for an unstruc-
tured environment such as ours, the DCNN approach gave better results. In our work,
we use the approach from Liu et. al, [6] that employs a deep convolutional neural field
model for depth estimation by constructing unary and pairwise potentials of conditional
random fields. Fig. 1 shows some examples from our benchmark from each spectrum
and modality.

3 Technical Approach

Recently, approaches that employ DCNNs for semantic segmentation have achieved
state-of-the-art performance on segmentation benchmarks including PASCAL VOC,
PASCAL Parts, PASCAL-Context, Sift-Flow and KITTI [8, 11]. These networks are
trained end-to-end and do not require multi-stage techniques. Due to their special ar-
chitecture they take the full context of the image into account while providing pixel-
accurate segmentations. Our UpNet architecture follows this general architecture with
two main components: contraction and expansion. Given an input image, the contrac-
tion is responsible for generating a low resolution segmentation mask. We use the
13-layer VGG [12] architecture as basis on the contraction side. The expansion side
consists of 5 up-convolutional refinement segments that refine the coarse segmentation
masks generated by the contraction segment. Each up-convolutional refinement is com-
posed of one up-sampling layer followed by a convolution layer.

We represent the training set as S = {(Xn,Yn),n = 1, . . . ,N}, where Xn = {x j, j =
1, . . . , |Xn|} denotes the raw image, Yn = {yi, j = 1, . . . , |Xn|},y j ∈ {0,C} denotes the
corresponding groundtruth mask with C classes, θ are the parameters of the network
and f (x j;θ) is the activation function. The goal of our network is to learn features
by minimizing the cross-entropy (so f tmax) loss that can be computed as L(u,y) =
−∑

k
ykloguk. Using stochastic gradient decent, we then solve

argmin
θ

N

∑
i=1
L(( f (xi;θ)),yi).

We tested two strategies to make the network learn the integration of multiple spec-
tra and modalities: (i) one that stacks all channels directly at the input; (ii) a Late-fused–
convolution of separate networks that are trained individually on each input modality.
The most intuitive paradigm of fusing data using DCNNs is by stacking them into
multiple channels and learning combined features end-to-end. However, previous ef-
forts have been unsuccessful due to the difficulty in propagating gradients through the
entire length of the model [8]. Contrastingly, in the late-fused-convolution approach,
each model is first learned to segment using a specific spectrum/modality. Afterwards,
the feature maps are summed up element-wise before a series of convolution, pooling
and up-convolution layers. The later approach has the advantage as features in each
model may be good at classifying a specific class and combining them may yield a
better throughput, even though it necessitates heavy parameter tuning. Our experiments
provide an in-depth analysis of the advantages and disadvantages of each of these ap-
proaches in the context of semantic segmentation.
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4 Results and Insights

In this section, we report results using the various spectra and modalities in our bench-
mark. We use the Caffe [5] deep learning framework for the implementation. Training
on an NVIDIA Titan X GPU took about 7 days.

Comparison to the state of the art To compare with the state-of-the-art, we train
models using the RGB RSC set from our benchmark which contains 60,900 RGB im-
ages with Rotation, Scale and Color augmentations applied. We selected the baseline
networks by choosing the top three end-to-end deep learning approaches from the PAS-
CAL VOC 2012 leaderboard. We explored the parameter space to achieve the best
baseline performance. We trained our network with both fixed and poly learning rate
policies, which can be given as base lr×

( 1−iter
max iter

)power
. We found the poly learning

rate policy to converge much faster and yield a slight improvement in performance. The
metrics shown in Tab. 1 correspond to Mean Intersection over Union (IoU), Mean Pixel
Accuracy (PA), Precision (PRE), Recall (REC), False Positive Rate (FPR), False Neg-
ative Rate (FNR) and the time reported is for a forward pass through the network. The
results demonstrate that our network outperforms all the state-of-the-art approaches and
with a runtime of almost twice as fast as the second best technique.

Table 1. Performance of our proposed model in comparison to the state-of-the-art

Baseline IoU PA PRE REC FPR FNR Time

FCN-8 [8] 77.46 90.95 87.38 85.97 10.32 12.12 ∼ 255ms
SegNet [10] 74.81 88.47 84.63 86.39 13.53 11.65 ∼ 156ms
ParseNet [7] 83.65 93.43 90.07 91.57 8.94 7.41 ∼ 90ms

Ours 85.31 94.47 91.54 91.91 7.40 7.30 ∼ 54ms

Parameter Estimation and Augmentation To increase the effective number of train-
ing samples, we employ data augmentations including scaling, rotation, color, mir-
roring, cropping, vignetting, skewing, and horizontal flipping. We evaluated the ef-
fect of augmentation using three different subsets in our benchmark: RSC (Rotation,
Scale, Color), Geometric augmentation (Rotation, Scale, Mirroring, Cropping, Skew-
ing, Flipping) and all aforementioned augmentations together. Tab. 2 shows the results
from these experiments. Data augmentation helps train very large networks on small
datasets. However, on the present dataset it has a smaller impact on performance than
on PASCAL VOC or human body part segmentation [11]. In our network, we replace
the dropout in the VGG architecture with spatial dropout which gives us an improve-
ment of 5.7%. Furthermore, we initialize the convolution layers in the expansion part
of the network with Xavier initialization, which makes the convergence faster and also
enables us to use a higher learning rate. This yields a 1% improvement.

Table 2. Comparison on the effects of augmentation on our benchmark.

Sky Trail Grass Veg Obst IoU PA

Ours Aug.RSC 90.46 84.51 86.72 90.66 44.39 84.90 94.47
Ours Aug.Geo 89.60 84.47 86.03 90.40 42.23 84.39 94.15
Ours Aug.All 90.39 85.03 86.78 90.90 45.31 85.30 94.51
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Evaluations on Multi-Spectrum/Modality Benchmark Segmentation using RGB
yields best results among all the individual spectra and modalities we experimented
with. The low representational power of depth images causes poor performance in the
grass, vegetation and trail classes, bringing down the mean IoU. The results in Tab. 3
demonstrate the need for fusion. Multispectrum channel fusion such as NRG (Near-
Infrared, Red, Green) shows greater performance when compared to their individual
counterparts and better recognition of obstacles. The best channel fusion we obtained
was using a three channel input, composed of grayscaled RGB, NIR and depth data. It
achieved an IoU of 86.35% and most importantly a considerable gain (over 13%) on the
obstacle class, which is the hardest to segment in our benchmark. The overall best per-
formance was from the late-fused-convolution of RGB and EVI, achieving a mean IoU
of 86.9% and comparably top results in individual class IoUs as well. This approach
also had the lowest false positive and false negative rates.

Table 3. Comparison of deep multispectrum and multimodal fusion approaches. D, N, E refer to
depth, NIR and EVI respectively. CF and LFC refer channel fusion and late-fused-convolution.

Sky Trail Grass Veg Obst IoU FPR FNR

RGB 90.46 84.51 86.72 90.66 44.39 84.90 7.80 7.40
NIR 86.08 75.57 81.44 87.05 42.61 80.22 10.22 9.60
DEPTH 88.24 66.47 73.35 83.13 46.13 76.10 12.76 11.14

NRG 89.88 85.08 86.27 90.55 47.56 85.23 7.70 7.10
EVI 88.00 83.40 84.59 87.68 44.9 83.25 8.70 8.10
NDVI 87.79 83.86 83.57 87.45 48.19 83.39 8.62 8.00
3CF RGB-N-D 89.23 888555...888666 86.08 90.32 666111...666888 86.35 7.50 6.20
4CF RGB-N 89.64 83.37 85.83 999000...666777 59.85 85.79 777...000000 7.20
5CF RGB-N-D 89.40 84.30 85.84 89.40 60.62 86.00 7.20 6.80

LFC RGB-N 90.67 83.31 86.19 90.30 58.82 85.94 7.50 6.56
LFC RGB-D 90.21 79.14 83.46 88.67 57.73 84.04 9.40 6.55
LFC RGB-E 999000...999222 85.75 888777...000333 90.50 59.44 888666...999000 777...000000 555...777666
LFC NRG-D 90.34 80.64 84.81 89.08 56.60 84.77 7.58 7.65

Robustness Analysis We collected an additional dataset in a previously unseen place
in low lighting, extreme shadows and snow. Fig. 2 shows some qualitative results from
this subset. It can be seen that each of the spectra performs well in different conditions.
Segmentation using RGB images shows remarkable detail, although being easily sus-
ceptible to lighting changes. NIR images on the other hand show robustness to lighting
changes but often show false positives between the sky and trail classes. EVI images
are good at detecting vegetation but show a large amount of false positives for the sky.

5 Conclusions and Scheduled Experiments

Our best performing late-fused-convolution approach currently only has one convolu-
tion layer after the fusion, adding a pooling and up-convolution layer to it would provide
more invariance and discriminability to the filters learned after the fusion layer. Re-
cently, adaptive fusion approaches have achieved state-of-the-art performance for fus-
ing multiple modalities for detection tasks, however they have not been explored in the
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(a) RGB (b) NIR (c) EVI
Fig. 2. Segmented examples from our benchmark. Each spectrum provides valuable information.
The first row shows the image and the corresponding segmentation in highly shadowed areas.
The second row shows the performance in the presence of glare and snow.

context of semantic segmentation. It would be interesting to evaluate the performance
of such architectures in comparison to channel fusion and late-fused-convolution.

While evaluating our benchmark, we realized the need to add more testing images
containing extreme conditions such as severely shadowed areas and glare, which would
better highlight the benefits of using different spectra and modalities. Our benchmark
also contains a subset of images with heavy snow and rain, evaluating the performance
in such conditions will be insightful. Nevertheless, we believe that the results support
our initial hypothesis of fusing the NIR wavelength with RGB to obtain a more accurate
segmentation in forested environments. In conclusion, to the best of our knowledge
this is the first benchmark that uses multispectral and multimodal data for semantic
segmentation. We believe that the results demonstrate the benefits of fusing multiple
spectrums and modalities to achieve robust segmentation in real-world environments.
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