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Abstract. Many tasks in image processing and computer vision are
modelled by diffusion processes, variational formulations, or constrained
optimisation problems. Basic iterative solvers such as explicit schemes,
Richardson iterations, or projected gradient descent methods are sim-
ple to implement and well-suited for parallel computing. However, their
efficiency suffers from severe step size restrictions. As a remedy we in-
troduce a simple and highly efficient acceleration strategy, leading to
so-called Fast Semi-Iterative (FSI) schemes that extrapolate the basic
solver iteration with the previous iterate. To derive suitable extrapola-
tion parameters, we establish a recursion relation that connects box filter-
ing with an explicit scheme for 1D homogeneous diffusion. FSI schemes
avoid the main drawbacks of recent Fast Explicit Diffusion (FED) and
Fast Jacobi techniques, and they have an interesting connection to the
heavy ball method in optimisation. Our experiments show their benefits
for anisotropic diffusion inpainting, nonsmooth regularisation, and Nes-
terov’s worst case problems for convex and strongly convex optimisation.

1 Introduction

In the present paper we propose efficient numerical solvers for three problem
classes in image processing and computer vision: (i) diffusion evolutions, (ii) vari-
ational models leading to elliptic partial differential equations (PDEs), (iii) con-
strained convex optimisation problems.

Diffusion processes have applications e.g. as linear or nonlinear scale-spaces [8,
11,21]. In the space-discrete case, they are given by dynamical systems of type

∂tu = A(u)u , (1)
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where the vector u ∈ RN contains the grey values in N different pixel locations,
t ∈ (0,∞) denotes the diffusion time, and A ∈ RN×N is a symmetric negative
semi-definite matrix that may depend in a nonlinear way on the evolving image
u. This abstract model holds in any dimension and includes isotropic as well as
anisotropic diffusion models with differential operators of second or higher order.

Elliptic problems frequently arise as steady states of diffusion evolutions or as
Euler-Lagrange equations of variational models [2]. Space-discrete formulations
lead to systems of equations in the form of

B(u)u = d(u) , (2)

where B ∈ RN×N is symmetric positive definite, and d ∈ RN is the known right
hand side. In case of nonlinear evolutions or nonquadratic variational models,
the system matrix B and the vector d may depend on the evolving image u.

Constrained convex optimisation problems appear e.g. in dual formulations
of certain nonsmooth minimisation tasks such as total variation (TV) regulari-
sation [1, 14]. A general framework can be cast as

min
u∈C

F (u) , (3)

where F : RN → R is a smooth convex function, and C denotes a convex set
that models the constraint. Such constrained optimisation methods are flexible
modelling tools that have a broad range of applications.

For all three problem classes there exist basic iterative schemes, namely
(i) explicit finite difference schemes, (ii) Richardson iterations, and (iii) pro-
jected gradient descent methods. These schemes are easy to implement and well-
suited for parallel architectures such as GPUs. Unfortunately, severe restrictions
of the time step sizes or the relaxation parameters render such algorithms rather
inefficient. Hence, it would be highly desirable to find acceleration strategies that
improve the efficiency of those basic schemes while preserving their advantages.

Our Contributions. We propose an acceleration strategy that consists of a
semi-iterative approach in the sense of Varga [19]. It computes the new iterate
uk+1 by applying the basic iterative scheme to uk and extrapolating the result
by means of uk−1. Here, the extrapolation step is responsible for a substan-
tial acceleration. We call such techniques Fast Semi-Iterative (FSI) schemes. In
contrast to classical semi-iterative approaches from the numerical literature, we
obtain different extrapolation parameters that can be derived in an intuitive
way from box filter recursions. Box filters are known to give a good compromise
between efficiency and numerical stability [22]. On top of that, we uncover the-
oretical connections of our FSI schemes to well-performing iterative procedures
such as Fast Explicit Diffusion (FED) [22] or Polyak’s heavy ball method [12].
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Paper Organisation. After a discussion of related work, we review 1D linear
diffusion and expose its relation to box filtering in Sec. 2. Subsequently, we trans-
fer this concept to iterative schemes and present our novel FSI techniques for
diffusion evolutions (Sec. 3), elliptic problems (Sec. 4), and constrained optimisa-
tion (Sec. 5). Our experiments in Sec. 6 illustrate the benefits of our algorithms.
Finally, we conclude our paper with a summary and outlook in Sec. 7.

Related Work. Our schemes are closely related to nonstationary iterative
schemes, where the algorithmic parameters vary from iteration to iteration. In
this context, already in 1911, Richardson discussed possible benefits of varying
relaxation parameters in his iterative scheme [13]. Later, based on Chebyshev
polynomials of the first kind, cyclic parameter choices were proposed that allow
substantial speed-ups; see e.g. [24]. Inherently, the Richardson method in [13] is
closely related to gradient descent schemes, and thus to the solution of parabolic
PDEs. In this context, similar ideas have been proposed by Yaun’Chzhao-Din [25]
and Saul’yev [16]. They are known under the name super time stepping [4]. Re-
cently, motivated by box filter factorisations, Weickert et al. [22] propose cycli-
cally varying parameters that substantially improve the damping properties of
the resulting schemes. Additionally, the authors introduce a Jacobi-like scheme
for elliptic problems. Setzer et al. [17] base on the work of [22] and provide an
extension to projection methods with application to nonsmooth optimisation.
Furthermore, we can relate such cyclic Richardson approaches to so-called semi-
iterative procedures that rely on Chebyshev recursion formulas [5, 19]. Interest-
ingly, these semi-iterative schemes additionally share similarities with Polyak’s
heavy ball method [12], where Ochs et al. [10] recently proposed an extension
that includes proximal mappings. Similarly, our technique relates to the so-called
momentum method that is frequently applied in machine learning approaches;
see e.g. [15, 18].

2 How to Benefit from Box Filtering

2.1 Explicit Scheme for 1D Linear Diffusion

As starting point of our work we consider linear diffusion of a 1D signal u(x, t):

∂tu = ∂xxu . (4)

With grid size h and time step size τ , an explicit scheme for (4) is given by

uk+1
i = (I + τ ∆h)uki , (5)

where I denotes the identity operator,∆h := (1,−2, 1)/h2 the discrete Laplacian,
and uki approximates u in pixel i at time level k. For stability reasons, all stencil
weights should be nonnegative. This implies that the time step size must satisfy
τ ≤ h2/2. Obviously, this restriction makes such an explicit scheme inefficient:
With n explicit diffusion steps, we can only reach a stopping time of O(n).
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2.2 Box Filtering via Iterative Explicit Diffusion

In order to use explicit schemes more efficiently, let us make a didactic excursion
to box filters. A box filter B2n+1 of length (2n+ 1)h is given by

[B2n+1 u]i =
1

2n+ 1

n∑
j=−n

ui+j . (6)

It is well-known [6] that linear diffusion with stopping time T is equivalent to
a convolution with a Gaussian of variance σ2 = 2T . Moreover, the central limit
theorem tells us that iterated box filtering approximates Gaussian convolution.
Indeed, an m-fold iteration of a box filter B2n+1 with variance σ2

n approximates
a Gaussian with variance mσ2

n. The variance of B2n+1 is given by (cf. also [23])

σ2
n =

1

2n+ 1

n∑
j=−n

(jh− 0)2 =
2h2

2n+ 1

n(n+ 1)(2n+ 1)

6
=

n(n+ 1)

3
h2 . (7)

This implies that a single application of a box filter B2n+1 approximates linear

diffusion with stopping time Tn = σ2
n/2 = n(n+1)

3
h2

2 . Note that this stopping time
is O(n2). Hence, if we were able to implement B2n+1 by means of n explicit linear
diffusion steps, we could accelerate the explicit scheme from O(n) to O(n2). To
this end, we introduce the following theorem which can be proven by induction:

Theorem 1 (Connection of Box Filters and Explicit Diffusion).
A box filter B2n+1 of length (2n+ 1)h can be constructed iteratively by n explicit
linear diffusion steps:

B2k+3 = αk · (I + τ∆h)B2k+1 + (1− αk) ·B2k−1 (k = 0, . . . , n− 1)

with τ := h2/2, αk := (4k + 2)/(2k + 3), and B−1 := I.

Note that for k = 0 we have B3 = I+ h2

3 ∆h, which is a single diffusion step with
time step size 2

3τ .

2.3 Accelerating the Explicit Scheme for 1D Linear Diffusion

To apply Theorem 1 for accelerating the explicit diffusion scheme (5), let us first
rewrite it in matrix-vector notation:

uk+1 = (I + τ L)uk , (8)

where the vector u ∈ RN contains the discrete entries of u, I ∈ RN×N is the
identity matrix, and the symmetric negative semi-definite matrix L ∈ RN×N
implements the Laplacian. The box filter relation in Theorem 1 suggests the
following scheme to accelerate the explicit diffusion scheme (8) such that uk

corresponds to an application of a box filter B2k+1:

uk+1 = αk · (I + τ L)uk + (1− αk) · uk−1 (9)
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with τ = h2/2, αk = (4k + 2)/(2k + 3), and u−1 := u0. As we have seen,
n iterations of this scheme implement a box filter B2n+1 of length (2n + 1)h.
However, a single box filter might be a poor approximation for the actual linear
diffusion process that is equivalent to Gaussian convolution. To improve the
approximation quality, we should iterate the box filter. Hence, we propose a
cyclic application of (9), where the m-th cycle with cycle length n is given by

um,k+1 = αk ·
(
I + τ L

)
um,k + (1− αk) · um,k−1

with um,−1 := um,0 and αk = (4k + 2)/(2k + 3) for k = 0, . . . , n− 1.
(10)

Here, the number of cycles is responsible for the accuracy, while the cycle length
n accounts for the O(n2) efficiency. For the next cycle, we set um+1,0 := um,n.

3 FSI Schemes for Diffusion Evolutions

Our discussion so far was for didactic reasons only, since linear diffusion can
be implemented directly as an efficient box filter without explicit iterations.
However, it suggests how we could generalise these ideas to arbitrary isotropic
or anisotropic nonlinear diffusion processes (1) that have explicit schemes of type

uk+1 =
(
I + τ A(uk)

)
uk . (11)

Since A is negative semi-definite, stability in the Euclidean norm requires the
time step size restriction 0<τ <2/ρ(A(uk)), where ρ denotes the spectral radius.
Obviously, there is a strong similarity of (11) to the linear diffusion scheme in (8).
Hence, it appears to be natural to formulate, in analogy to (10), the following
Fast Semi-Iterative (FSI) scheme:

um,k+1 = αk ·
(
I + τ A(um,k)

)
um,k + (1− αk) · um,k−1

with um,−1 := um,0 and αk = (4k + 2)/(2k + 3) for k = 0, . . . , n− 1.
(12)

This scheme describes the m-th cycle with length n of our FSI algorithm. We
repeat it several times to reach a specific stopping time. Similar to [7], one can
conduct an analysis of the internal stability of this iterative scheme. This way,
one can show that for every iteration our scheme is stable in a suitable norm.
This stability analysis requires the symmetry of A.

Connection to Fast Explicit Diffusion (FED). As discussed in Sec. 2, we
base on the connection between box filtering and explicit schemes. This was in-
spired by the cyclic FED approach of Weickert et al. [22] which demonstrates the
benefits of a reliance on box filters. More specifically, they exploit a factorisation
of a box filter into several explicit diffusion steps to construct their algorithms.
In case of linear problems, one can even show that FED and FSI schemes yield
identical results after each cycle. However, in case of nonlinear problems, the
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discussed semi-iterative structure of our FSI scheme is highly beneficial since
it allows to perform nonlinear updates within one cycle. We illustrate this by
means of our experiments in Sec. 6. Moreover, FED schemes are highly sensitive
to numerical inaccuracies. Thus, sophisticated rearrangements of possibly unsta-
ble time steps are required to avoid the explosion of rounding errors; see e.g. [22]
and references therein. We eliminate this drawback by our FSI technique.

4 FSI Schemes for Elliptic Problems

So far, we have considered diffusion-like processes that correspond to parabolic
PDEs. Next we explain how to transfer this concept to discretised elliptic PDEs,
or more generally to the solution of equation systems in the form of (2). In the
linear case, formulating (2) as u = u− ω(Bu− d) gives rise to the Richardson
scheme [13]

uk+1 = (I − ωB)uk + ω d . (13)

Choosing 0<ω< 2/ρ(B) guarantees stability in the Euclidean norm, since the
eigenvalues of I − ωB lie in (−1, 1]. Considering the error vector ek = uk − u∗

between the current estimate uk and the unknown exact solution u∗ yields

ek+1 = (I − ωB) ek . (14)

We observe a strong similarity of (14) to the explicit diffusion scheme in (8).
Hence, we propose the following FSI scheme for elliptic problems:

um,k+1 = αk ·
(
(I − ωB)um,k + ω d

)
+ (1− αk) · um,k−1

with um,−1 := um,0 and αk = (4k + 2)/(2k + 3) for k = 0, . . . , n− 1.
(15)

To extend (15) to nonlinear systems of equations in the form of (2), we replace
B and d by their nonlinear counterparts B(um,k) and d(um,k), and choose
0<ω<2/L, where L>0 is the Lipschitz constant of B(u)u− d(u).

Preconditioning. The discussed FSI method yields fast convergence for prob-
lems where the coefficients of the equation system have a similar value of magni-
tude. However, in case of strongly differing coefficients a preconditioning or, in
other words, a different splitting of the system matrix B, is highly beneficial. As
an example, we consider the Jacobi overrelaxation splitting B = 1

ωD+(B− 1
ωD),

where D denotes a positive definite diagonal matrix. This leads to

um,k+1 = αk ·
(
(I − ωD−1B)um,k + ωD−1d

)
+ (1− αk) · um,k−1 . (16)

Assuming a symmetric positive definite matrix B, this process is stable with a
suitable ω such that the eigenvalues of I − ωD−1B lie in (−1, 1].
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Connection to Fast Jacobi. Similar to the connection to FED in the parabolic
case, we can show a relation of our FSI scheme to the recent Fast Jacobi solver
of Weickert et al. [22] for elliptic problems. As before, we eliminate the drawback
of rearranging the relaxation parameters and provide an internal stability that
allows for intermediate nonlinear updates.

5 FSI Schemes for Constrained Optimisation

Often, the elliptic problem from the previous section can be interpreted as the
minimality condition of a suitable optimisation problem. In fact, the gradient
descent scheme to compute a minimiser of the optimisation problem (3) without
side-constraints is given by

uk+1 = uk − ω∇F (uk) . (17)

This scheme is stable for 0<ω< 2/L, where L> 0 is the Lipschitz constant of
∇F . Again, the structural similarity to (8) suggests the following FSI iteration:

um,k+1 = αk ·
(
uk − ω∇F (um,k)

)
+ (1− αk) · um,k−1 . (18)

Adaptation to Constrained Problems. As it turns out, the provided in-
ternal stability of our algorithm enables us to perform projections onto convex
sets in every iteration step. Thus, our technique is additionally well-suited for
constrained optimisation problems in the form of (3), where the solution u is
constrained to some convex set C. With the corresponding orthogonal projection
operator PC , our FSI scheme for constrained optimisation is given by

um,k+1 = PC

(
αk ·

(
uk − ω∇F (um,k)

)
+ (1− αk) · um,k−1

)
with um,−1 := um,0 and αk = (4k + 2)/(2k + 3) for k = 0, . . . , n− 1.

(19)

Adaptation to Strongly Convex Problems. So far, we have considered the
case where the Lipschitz constant L is assumed to be known. However, strongly
convex problems additionally provide information about the strong convexity
parameter `. To make use of this additional knowledge, we propose the following
recursive parameter choice to accelerate our iterative scheme:

αk =
1

1− αk−1

4 ·
(
L−`
L+`

)2 (k = 1, . . . , n− 1) , (20)

where α0 =2(L+ `)/(3L+ `) and ω=2/(L+ `). It can be derived using classical
Chebyshev reasonings. With ` = 0, these parameters come down to (18). We
present a full description of our FSI method in Algorithm 1. Also in the elliptic
case (Sec. 4) we can apply such a parameter choice. Here, ` and L correspond
to the smallest and largest eigenvalues of the positive definite system matrix B.
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Algorithm 1: FSI scheme with projection operator PC and 0 ≤ ` < L.

input : ∇F , PC , L, `, n, u0

1 ω = 2
L+`

, α0 = 2(L+ `)/(3L+ `) , αk = 1
/(

1− αk−1

4
·
(
L−`
L+`

)2)
2 u0,−1 = u0,0 = u0

3 for m = 0, 1, . . . do
4 for k = 0, 1, . . . , n− 1 do

5 um,k+1 = PC
(
αk
(
uk − ω∇F (um,k)

)
+ (1− αk)um,k−1

)
6 um+1,−1 = um+1,0 = um,n

Connection to Heavy Ball Method. Let us now derive a close relation of
the proposed FSI scheme to Polyak’s heavy ball method [12]

uk+1 = uk − α̃ ·∇F (uk) + β̃ · (uk − uk−1) . (21)

The first part of this iterative scheme can be seen as a gradient descent step,
while the second part represents an inertial term. It relates the current iterate
uk to the old time step uk−1. This allows significant speed-ups. Interestingly, we
can connect (21) to our FSI approach by applying cyclically varying parameters
α̃k = ωαk and β̃k = αk − 1 with αk given by (18), combined with a restart
um,−1 := um,0 after each cycle. We illustrate benefits of our approach in Sec. 6.

6 Experiments

6.1 Inpainting with Edge-Enhancing Anisotropic Diffusion

In our first experiment, we consider image inpainting by means of edge-enhancing
anisotropic diffusion [20]:

∂tu = (1− c(x)) · div (D(∇uσ)∇u) − c(x) · (u− f) , (22)

where c : Ω → [0, 1] is a binary mask that indicates known data, and Ω ⊂ R2

denotes the rectangular image domain. Furthermore, D(∇uσ) := µ1 · v1v
>
1 +

µ2 · v2v
>
2 is the so-called diffusion tensor, where the first eigenvector v1 ‖ ∇uσ

points across image edges, and the second one v2 ⊥ ∇uσ along them. Here,
uσ denotes convolution of u with a Gaussian of standard deviation σ. Since we
want to perform full diffusion along edges but reduced smoothing across them,
we set µ2 = 1 and determine µ1 by means of the Charbonnier diffusivity with a
contrast parameter λ > 0, i.e. µ1 = 1/

√
1+|∇uσ|2/λ2.

Fig. 1 depicts the sparse input data as well as our inpainting results. First,
the provided speed-up by our FSI technique compared to the baseline explicit
diffusion (ED) scheme is obvious. Moreover, we perform nonlinear updates after
each iteration step. As discussed in [22], FED schemes inherently do not allow
for such intermediate updates within one cycle. Hence, we offer more flexibility
in this regard which further allows for a better performance.
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(a) input (b) reference
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FED

FSI
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Fig. 1. Inpainting with edge-enhancing anisotropic diffusion, initialised with a black
image. (a) Input with inverted colours for visibility reasons. (b) Converged reference
result of a standard explicit diffusion (ED) scheme. (c) Result of ED after 600 iterations.
(d) Result of FSI after three cycles with length n = 200. (e) Mean squared error (MSE)
between current estimates and reference solution. The grey value range is [0, 1].

6.2 Total Variation Regularisation

In this experiment, we consider image regularisation by means of the following
energy functional [1, 14]:

E(u) =
1

2

∫
Ω

(u− f)2 dx + γ TV(u) , (23)

where f : Ω → R represents a noisy input image, and the parameter γ > 0 steers
the amount of smoothness. The regulariser TV(u) := sup‖p‖∞≤1

∫
Ω
udiv pdx

penalises the total variation of u, and p : Ω → R2 is a smooth vector field with
compact support on Ω. To compute the minimiser of (23), we solve the dual
problem [3]

min
‖p‖∞≤γ

1

2

∫
Ω

(f − div p)2 dx . (24)

We discretise this constrained optimisation problem and solve it with the pro-
posed FSI scheme in Algorithm 1. In this example, the projection operator is
given point-wise by PC(p) = p/max{1,|p|/γ}.

Fig. 2 shows the noisy input image and our smoothed results. Also here, the
provided acceleration of the baseline projected gradient (PG) scheme by our FSI
approach is obvious. The comparison to the cyclic FED-like projection method
by Setzer et al. [17] (CPG) demonstrates that our FSI scheme is stable under
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Fig. 2. Total variation (TV) regularisation. (a) Input with white Gaussian noise.
(b) Converged reference result of standard projected gradient (PG) approach. (c) Re-
sult of PG after 200 iterations. (d) Result of FSI after one cycle with length n = 200.
(e) Mean squared error (MSE) between current estimates and reference solution.

the applied projections within each iteration, while the standard CPG approach
without backtracking does not converge properly for such large cycle lengths.

6.3 Performance on Nesterov’s Worst Case Problems

In our last experiment, we evaluate the performance of our FSI techniques w.r.t.
related iterative schemes on Nesterov’s worst case problems for smooth convex
and strongly convex optimisation [9]. These are quadratic minimisation problems
which are difficult for any algorithm that can solve all instances of the respective
class of problems. In [9, Thm. 2.1.13], Nesterov provides a lower bound for all
iterations and predicts a linear convergence rate on the class of smooth strongly
convex problems. The lower bound for smooth convex problems derived in [9,
Thm. 2.1.7] is only valid for one specific iteration count k ∈ N (here: k = 50).
Nothing is said about the error before and after the k-th iteration.

Fig. 3 plots for both problems the resulting error curves of different solvers.
While our FSI scheme offers state-of-the-art performance for the strongly convex
problem, it even outperforms competing methods in case of convex optimisation.
In particular, this illustrates the benefits of our non-stationary cyclic parameter
choice compared to Polyak’s heavy ball method.
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Fig. 3. Numerical comparisons by means of worst case functions of Nesterov [9].
Left : Strongly convex optimisation. Right : Convex optimisation. Here, the lower bound
only holds for k = 50 (grey line). In both cases, the problem dimension is N = 105.

7 Conclusions and Future Work

We have presented Fast Semi-Iterative (FSI) schemes that offer efficient solu-
tions for diffusion evolutions, elliptic problems, and constrained optimisation.
The proposed schemes are simple to implement and well-suited for parallel im-
plementations. Hence, they are applicable for a wide range of image processing
and computer vision tasks. More specifically, we investigated the relation be-
tween box filtering and explicit schemes. It is fascinating to see how this simple
concept generalises to flexible and highly efficient algorithms. In contrast to
FED-like approaches, the provided internal stability of our techniques allows for
performing nonlinear updates and projections within each iteration. Our exper-
iments demonstrate these benefits w.r.t. related iterative procedures. In future
work, we plan to conduct a deeper theoretical analysis of the presented ap-
proaches which may allow us to state precise convergence rates. Furthermore,
we plan to extend and generalise our schemes, e.g. to general non-expansive
proximal operators and nonsymmetric system matrices.
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