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Abstract

An abstract convergence theorem for a class of descent method that explicitly models relative errors
is proved. The convergence theorem generalizes and unifies several recent abstract convergence theorems,
and is applicable to possibly non-smooth and non-convex lower semi-continuous functions that satisfy
the Kurdyka– Lojasiewicz inequality, which comprises a huge class of problems. The descent property is
measured with respect to a function that is allowed to change along the iterations, which makes block
coordinate and variable metric methods amenable to the abstract convergence theorem. As a particularly
algorithm, the convergence of a block coordinate variable metric version of iPiano (an inertial forward–
backward splitting algorithm) is proved. The newly introduced algorithms perform favorable on an
inpainting problem with a Mumford–Shah-like regularization from image processing.

Keywords — abstract convergence theorem, Kurdyka– Lojasiewicz inequality, descent method, relative errors, block coordinate

method, variable metric method, inertial method, iPiano, inpainting, Mumford–Shah regularizer

1 Introduction

In this work, we propose a convergence analysis for inexact abstract descent methods for the minimization of
a proper lower semi-continuous (possibly non-smooth and non-convex) extended-valued function. The goal
of this paper is to unify and extend the frameworks introduced by Attouch et al. [5] (and extended in [16])
and Ochs et al. [28]. Their convergence analysis is driven by two central assumptions a sufficient decrease
condition and a relative error condition. While, in the former work, the idea of a decrease condition of an
algorithm is to guarantee a strict decrease of the objective value until an optimal point is reached, in the
latter work, this condition is applied to a Lyapunov-type function that is only known to majorize the original
function. Although, the function values along the iterates of an algorithm can increase, the descent property
of the majorizer enforces their convergence. Both convergence theorems are recovered as special cases of the
one that is proposed in this paper.

The design of the descent property in this paper is motivated by the observation that a lot of flexibility
is gained by allowing the function to change along the iterations. This can either be achieved by a “blind”
change of the function as a sequence of functions, or by a more controlled version, where the function is
parameter dependent. The abstract convergence results mentioned above rely on the fact that convergence
of (F (xn))n∈N implies convergence of the sequence (xn)n∈N. However, in the framework presented here
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Introduction

convergence of (F (xn, un))n∈N implies convergence only for (xn)n∈N, while—under some mild restrictions—
the sequence of “parameters” (un)n∈N allows for a change of the function along the iterations. Using the
gained flexibility, we formulate a block coordinate variable metric version of iPiano [28], an inertial forward–
backward splitting algorithm.

Like in the papers mentioned above, the convergence theory relies on a non-smooth version of the so-
called Kurdyka– Lojasiewicz (KL) inequality [7, 8, 3]. It is a generalization of the  Lojasiewicz inequality for
real analytic functions, which was used to show convergence of bounded trajectories of a gradient dynamical
system. For a real analytic function f : RN → R, it bounds |f − f(a)|θ/‖∇f‖ around a critical point a ∈ RN
for some θ ∈ [ 1

2 , 1). Kurdyka extends this result to smooth functions definable in an o-minimal structure
[19], and Bolte et al. [7, 8] to non-smooth functions definable in an o-minimal structure, which comprises
a huge class of functions—nearly all functions appearing in practice. A “small” subclass of those functions
are semi-algebraic functions (which in practice is usually big enough). In fact, o-minimal structures are an
axiomatic construction that preserves the favorable properties of the semi-algebraic structure [15].

The convergence of several algorithm has been shown in recent years for possibly non-smooth and non-
convex functions. Several of these results are analyzed in the general framework of KL function, and many
convergence results can be put into the abstract framework of descent methods in [5]. Convergence of
the gradient method is proved in [1, 5], and can be extended to proximal gradient descent (resp. forward–
backward splitting method) [5], which applies to a class of problems that is given as the sum of a (possibly non-
smooth and non-convex) function and a smooth (possibly non-convex) function (see also [21]). Accelerations
by means of a variable metric are considered in [13, 16]. Since the proximal gradient descent method reduces
to the well-known projected gradient descent method when the non-smooth function is the indicator function
of a set, these results directly imply convergence of the projected gradient descent. In [26] the convergence of
a subgradient-oriented method is analyzed, where the KL-inequality is observed to be in general not sufficient
to guarantee convergence to a single critical point.

The convergence of proximal methods is inspected in [3, 5, 9, 24], and an alternating proximal method is
considered in [4]. Extensions to block coordinate methods are given, e.g. in [5] under the name regularized
Gauss–Seidel method, which is actually a variable metric version of the block coordinate methods in [4, 6, 18].
The combination of the ideas of alternating proximal minimization and forward–backward splitting can be
found in [10], where the algorithm is called proximal alternating linearized minimization (PALM) (see also
[31]). For an extension that allows the metric to change in each iteration with a flexible order of the block
iterations we refer to [14].

Another possibility to accelerate descent methods (instead of using a variable metric) are so-called inertial
methods. In convex optimization inertial or overrelaxation methods are known to be optimal [25]. Although
it is hard to obtain sharp lower complexity bounds in the non-convex setting, hence to argue about optimal
methods, experiment indicate that inertial algorithms are favorable. In [28, 27] an extension of inertial
gradient descent (also known as Heavy-ball method or gradient descent with momentum), which includes
an additional non-smooth term in the objective function alike forward–backward splitting, is analyzed in
the KL framework. The proposed algorithm is called iPiano and shows good performance in applications.
An abstract convergence theorem is proved that reveals similarities to the one in [5], however requires to
consider three iterates at the same time instead of only the current and preceding one. In [27, 12] the
original problem class “non-smooth convex plus smooth non-convex” was extended to “non-smooth non-
convex plus smooth non-convex”. See [11] for a slight variant of this algorithm. The algorithm iPiano relies
on a hyperparameter that has the advantage of an explicit construction of feasible step sizes, which is not
considered in [11, 12] where pure existence of feasible step sizes is asserted. [12] considers Bregman proximity
functions in the update step. A variable metric method has not been proposed yet. The inertial term of the
algorithm complicates the change of parameters or step sizes, thus in [28] the hyperparameter was required
to be stationary after a finite number of iterations. Though it is not a severe restriction in practice, in this
paper the issue is resolved and even a variable metric (whose convergence need not be inferred a priori) can
be used. The abstract convergence theorem that we prove in this paper reveals the extension of variable
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metric iPiano to a block coordinate variable metric version more or less for free—it operates like PALM but
with inertial term and a variable metric. The block coordinate updates are required to be essentially cyclic,
i.e., the ordering of the updates is arbitrary up to the restriction that each block must be updated infinitely
often.

Like in [28], our convergence analysis relies on a Lyapunov-type function that majorizes the actual ob-
jective function. This concept of proving a descent property and a relative error condition for a majorizing
function was first proposed in [28]. Then, it has been used in [11, 12] for a quite similar inertial algorithm.
However, this concept is important beyond inertial methods. It is used to prove convergence of Douglas–
Rachford splitting [20] and Peaceman–Rachford splitting [22] for non-convex optimization problems.

The newly introduced block coordinate variable metric version of iPiano is applied to an image inpaint-
ing/compression problem, where the goal is to recover the original image from a small number of pixels.
The algorithm solves a minimization problem which keeps the known pixel values unchanged and fills the
missing data according to the minimization of a regularization term. Usually linear diffusion is used in this
context. However, here, we consider a more general method and regularize with the Ambrosio–Tortorelli
approximation of the Mumford–Shah model.

Section 2 introduces the basic notation and results from (non-smooth) variational analysis [29] and the
Kurdyka– Lojasiewicz inequality. Section 3 formulates the basic assumptions for the abstract convergence
theorem, which is motivated by the results in [5, 16, 28, 10]. Section 3.4 reveals the relation of our abstract
convergence theorem and the ones that are generalized. The flexibility that our convergence theorem gains
as compared to [5, 16, 28] is used in Section 4 to prove convergence of a variable metric version of iPiano
[28] and in Section 5 of a block coordinate variable metric version of iPiano. Thanks to the formulation
of the abstract convergence theorem, the block coordinate version does not require much extra work for
proving its convergence. Several block coordinate, variable metric, and inertial versions of forward–backward
splitting/iPiano are applied to an image inpainting problem in Section 6, which emphasizes the importance
of a variable metric and block coordinate methods.

2 Preliminaries

2.1 Notation and definitions

Throughout this paper, we will always work in a finite dimensional Euclidean vector space RN of dimension
N ∈ N, where N := {1, 2, . . .}. The vector space is equipped with the standard Euclidean norm ‖ · ‖ := ‖ · ‖2
that is induced by the standard Euclidean inner product ‖ · ‖ =

√
〈·, ·〉. If specified explicitly, we work in

a metric induced by a symmetric positive definite matrix A ∈ S++(N) ⊂ RN×N , represented by the inner
product 〈x, y〉A := 〈Ax, y〉 and the norm ‖x‖A :=

√
〈x, x〉A. For A ∈ S++(N) we define ς(A) ∈ R as the

largest value that satisfies ‖x‖2A ≥ ς(A)‖x‖22 for all x ∈ RN .
As usual, we consider extended read-valued functions f : RN → R, R := R ∪ {±∞}, that are defined on

the whole space with domain given by dom f := {x ∈ RN | f(x) < +∞}. A function is called proper if it
is nowhere −∞ and not everywhere +∞. We define the epigraph of the function f as epi f := {(x, µ) ∈
RN+1|µ ≥ f(x)}. We will also need to consider set-valued mappings F : RN ⇒ RM defined by the graph

GraphF := {(x, y) ∈ RN × RM | y ∈ F (x)} ,

where the domain of a set-valued mapping is given by domF := {x ∈ RN |F (x) 6= ∅}. For a proper function
f : RN → R we define the set of (global) minimizers as

arg min f := arg min
x∈RN

f := {x ∈ RN | f(x) = inf f} , inf f := inf
x∈RN

f(x) .
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The Fréchet subdifferential of f at x̄ ∈ dom f is the set ∂̂f(x̄) of those elements v ∈ RN such that

lim inf
x→x̄
x 6=x̄

f(x)− f(x̄)− 〈v, x− x̄〉
‖x− x̄‖ ≥ 0

For x̄ 6∈ dom f , we set ∂̂f(x̄) = ∅. For convenience, we introduce f -attentive convergence: A sequence
(xn)n∈N is said to f -converge to x̄ if

xn → x̄ and f(xn)→ f(x̄) as n→∞ ,

and we write xn
f→ x̄. The so-called (limiting) subdifferential of f at x̄ ∈ dom f is defined by

∂f(x̄) := {v ∈ RN | ∃xn f→ x̄, vn ∈ ∂̂f(xn), vn → v} ,
and ∂f(x̄) = ∅ for x̄ 6∈ dom f . A point x̄ ∈ dom f for which 0 ∈ ∂f(x̄) is a called a critical points. As a
direct consequence of the definition of the limiting subdifferential, we have to following closedness property:

xn
f→ x̄, vn → v̄, and for all n ∈ N : vn ∈ ∂f(xn) =⇒ v̄ ∈ ∂f(x̄) .

[29, Ex. 8.8] shows that at a point x̄ ∈ RN , for the sum of an extended-valued function g that is finite at x̄
and a function that is continuously differentiable (smooth) function f around x̄ it holds that ∂(g + f)(x̄) =
∂g(x̄) +∇f(x̄). Moreover for a function f : RN × RM → R with f(x, y) = f1(x) + f2(y) the subdifferential
satisfies ∂f(x, y) = ∂f1(x)× ∂f2(y) [29, Prop. 10.5].

Finally, the distance of x̄ ∈ RN to a set ω ⊂ RN as is given by dist(x̄, ω) := infx∈ω ‖x̄ − x‖ and we
introduce ‖∂f(x̄)‖− := infv∈∂f(x̄) ‖v‖ = dist(0, ∂f(x̄)) what is known as the lazy slope of f at x̄. Note that
inf ∅ := +∞ by definition. Furthermore, we have (see [16]):

Lemma 1. If xn
f→ x̄ and lim infn→∞ ‖∂f(xn)‖− = 0, then 0 ∈ ∂f(x̄).

For a function f , we use the notation (analogously for other constraints)

[f < µ] := {x ∈ RN | f(x) < µ} .

2.2 The Kurdyka– Lojasiewicz property

Definition 2 (Kurdyka– Lojasiewicz property / KL property). Let f : RN → R be an extended real valued
function and let x̄ ∈ dom ∂f . If there exists η ∈ (0,∞], a neighborhood U of x̄ and a continuous concave
function ϕ : [0, η)→ R+ such that

ϕ(0) = 0, ϕ ∈ C1((0, η)), and ϕ′(s) > 0 for all s ∈ (0, η),

and for all x ∈ U ∩ [f(x̄) < f(x) < f(x̄) + η] holds the Kurdyka– Lojasiewicz inequality

ϕ′(f(x)− f(x̄))‖∂f(x)‖− ≥ 1 , (1)

then the function has the Kurdyka– Lojasiewicz property at x̄.
If, additionally, the function is lower semi-continuous and the property holds for each point in dom ∂f ,

then f is called a Kurdyka– Lojasiewicz function.

Figure 1, which is taken from [27], shows the idea and the variables appearing in the definition of the KL
property for a smooth function. For smooth functions (assume f(x̄) = 0), (1) reduces to ‖ϕ ◦ f‖ ≥ 1 around
the point x̄, which means that after reparametrization with a desingularization function ϕ the function is
sharp. “Since the function ϕ is used here to turn a singular region—a region in which the gradients are
arbitrarily small—into a regular region, i.e. a place where the gradients are bounded away from zero, it
is called a desingularization function for f .” [5]. It is easy to see that the KL property is satisfied for all
non-stationary points [4].

The KL property is satisfied by a large class of functions, namely functions that are definable in an
o-minimal structure (see [4, Thm. 14] and [8, Thm. 14]).
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f

f(x)− f(x̄)

(x̄, f(x̄))
U

U ∩ [f(x̄) < f(x) < f(x̄) + η]

f(x̄) + η

ϕ

ϕ ◦ f

x
(x̄, f(x̄))

Figure 1: Example of the KL property for a smooth function. The composition ϕ ◦ f has a slope of magnitude 1
except at x̂.

Theorem 3 (Nonsmooth Kurdyka– Lojasiewicz inequality for definable functions). Any proper lower semi-
continuous function f : X → R which is definable in an o-minimal structure O has the Kurdyka– Lojasiewicz
property at each point of dom ∂f . Moreover the function ϕ in Definition 2 is definable in O.

In particular, semi-algebraic and globally subanalytic sets and functions are definable in such a structure.
There is even an o-minimal structure that extends the one of globally subanalytic functions with the expo-
nential function (thus also the logarithm is included) [30, 15]. As mentioned in the introduction, o-minimal
structures can be seen as an axiomatization of the nice properties of semi-algebraic functions, and are there-
fore designed such that the structure is preserved under many operations, for example, pointwise addition
and multiplication, composition and inversion. A brief summary of the concepts that are important for this
paper can be found in [4] (or [27, Section 4.5]).

Before we introduce the general framework and the convergence analysis in the next sections, let us first
consider a so-called uniformization results, which was proved in [3] for the  Lojasiewicz property and adjusted
in [10] for the KL property. Its main implication for this paper—like in [10]—is that it allows for a direct
proof of the main convergence theorem without the need of an induction argument.

Lemma 4 (Uniformization result [10]). Let ω be a compact set and let f : Rd → R be a proper and lower
semi-continuous function. Assume that f is constant on ω and satisfies the KL property at each point of ω.
Then, there exist ε > 0, η > 0, and a continuous concave function ϕ : [0, η)→ R+ such that

ϕ(0) = 0, ϕ ∈ C1((0, η)), and ϕ′(s) > 0 for all s ∈ (0, η),

such that for all x̄ ∈ ω and all x in the following intersection

[dist(x, ω) < ε] ∩ [f(x̄) < f(x) < f(x̄) + η] (2)

one has,
ϕ′(f(x)− f(x̄))‖∂f(x)‖− ≥ 1 .

3 An abstract inexact convergence theorem

In this section, let F : RN × RP → R be a proper, lower semi-continuous function that is bounded from
below. We analyze convergence of an abstract algorithm that generates a sequence (xn)n∈N in RN under the
following assumptions:

Assumption 5. Let (un)n∈N be a sequence of parameters in RP , and let (εn)n∈N be an `1-summable sequence
of non-negative real numbers. Moreover, we assume there are sequences (an)n∈N, (bn)n∈N, and (dn)n∈N of
non-negative real numbers such that the following holds:
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(H1) (Sufficient decrease condition) For each n ∈ N, it holds that

F (xn+1, un+1) + and
2
n ≤ F (xn, un) .

(H2) (Relative error condition) For each n ∈ N, the following holds:

bn+1‖∂F (xn+1, un+1)‖− ≤
b

2
(dn+1 + dn) + εn+1 .

(H3) (Continuity condition) There exists a subsequence ((xnj , unj ))j∈N and (x̃, ũ) ∈ RN such that

(xnj , unj )
F→ (x̃, ũ) as j →∞ .

(H4) (Contraction condition) It holds that

‖xn+1 − xn‖2 ∈ o(dn) and (bn)n∈N 6∈ `1 , sup
n∈N

bnan <∞ , inf
n
an =: a > 0 .

Remark 1. (H4) implies that if an = 0 for all n ≥ n0 for some n0 ∈ N, then (due to ‖xn+1 − xn‖2 ≤ can for
some c ∈ R) we have xn+1 = xn for all n ≥ n0.

Remark 2. • The parametrization of an and bn in the conditions (H1) and (H2) is inspired by [16].

• Note that (an)n∈N is not a priori assumed to be bounded. We obtain feasible sequences (an)n∈N and
(bn)n∈N when an →∞ and bn → 0 (not too fast due to (bn)n∈N 6∈ `1) such that supn∈N bnan <∞.

• Let us intuitively consider the interaction between the conditions. The situation an → ∞ results in
either an (asymptotically) fast decrease of (F (xn, un))n∈N or of (‖xn+1−xn‖2)n∈N (by the decrease of
(dn)n∈N) due to (H1). A fast decrease of (dn)n∈N implies a fast decrease of (bn+1‖∂F (xn+1, un+1)‖−)n∈N
due to (H2). Nevertheless as bn → 0, the relative error given by (‖∂F (xn+1, un+1)‖−)n∈N can grow
(slowly) towards infinity.

3.1 Direct consequences of the descent property

Sufficient decrease (H1) of a certain quantity that can be related to the objective function value is key for
the convergence analysis. The following lemma lists a few simple but favorable properties for such sequences.

Lemma 6. Let Assumption 5 hold. Then

(i) (F (xn, un))n∈N is monotonically non-increasing,

(ii) (F (xn, un))n∈N converges,

(iii)
∑n
k=1 d

2
k < +∞ and, therefore, dn → 0 and ‖xn+1 − xn‖2 → 0, as n→∞.

Proof. (i) and (ii) follow from (H1) and the boundedness from below of F . (iii) is shown by summing (H1)
from k = 1, . . . , n and then applying (H4):

a

n∑
k=1

d2
k ≤

n∑
k=1

akd
2
k ≤

n∑
k=1

F (xk, uk)− F (xk+1, uk+1) = (F (x1, u1)− inf
(x,u)∈RN×RP

F (x, u)) < +∞ .
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3.2 Direct consequences for the set of limit points

Like in [10], we can verify some results about the set of limit points (that depends on a certain initialization)
of a bounded sequence ((xn, un))n∈N

ω(x0, u0) := lim sup
n→∞

{(xn, un)} .

This definition uses the outer set-limit of a sequence of singletons, which is the same as the set of cluster
points in a different notation. Moreover, we denote by ω(x0, u0) the subset of limit points that allow for
subsequences along which F is continuous, i.e.,

ω(x0, u0) := {(x̄, ū) ∈ ω(x0, u0)| (xnj , unj ) F→ (x̄, ū) for j →∞} .

We collect a few results that are of independent interest, but are required for proving our convergence result.

Lemma 7. Let Assumption 5 hold and let ((xn, un))n∈N be a bounded sequence.

(i) The set ω(x0, u0) is non-empty and the set ω(x0, u0) is non-empty and compact.

(ii) F is constant and finite on ω(x0, u0).

Proof. (i) By (H3), there exist a subsequence ((xnj , unj ))j∈N of ((xn, un))n∈N that converges to (x̃, ũ),
where at the same time the function values along this subsequence converge to F (x̃, ũ), therefore
limj→∞(xnj , unj ) ∈ ω(x0, u0), thus ω(x0, u0) is non-empty. The non-emptyness of ω(x0, u0) is clear
and the compactness of ω(x0, u0) is direct consequence of its definition as an outer set-limit and the
boundedness of ((xn, un))n∈N.

(ii) By Lemma 6(ii) (F (xn, un))n∈N converges to some F̃ ∈ R. For any (x̄, ū) ∈ ω(x0, u0) there exists a
subsequence ((xnj , unj ))j∈N that F -converges to (x̄, ū), therefore,

F̃ = lim
j→∞

F (xnj , unj ) = F (x̄, ū) ,

which shows that F is constant on ω(x0, u0).

Lemma 8. Let Assumption 5 hold, let ((xn, un))n∈N be a bounded sequence and denote by Πx(ω) = {x ∈
RN | (x, u) ∈ ω} the projection of ω ∈ RN × RP onto the first N coordinate dimensions. Then, we have the
following results:

(i) The set Πx

(
ω(x0, u0)

)
is connected.

(ii) If (un)n∈N converges, then the set ω(x0, u0) is connected.

(iii) It holds that
lim
n→∞

dist((xn, un), ω(x0, u0)) = 0 .

Proof. (i) is a simple application of the connectedness results [10, Lemma 3.5] and the fact that ‖xn+1 −
xn‖2 → 0 for n→∞. (ii) follows in almost the same manner, as convergence of un implies ‖un+1−un‖2 → 0
as n→∞. (iii) is a direct consequence of the definition of the set of limit points.

Lemma 9. Let Assumption 5 hold, let ((xn, un))n∈N be a bounded sequence and let
∑∞
n=1 dn < ∞. Then,

the set ω(x0, u0) ⊂ critF .
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Proof. Let (x̄, ū) ∈ ω(x0, u0). Then, since (bn)n∈N 6∈ `1 from (H2), (εn)n∈N ∈ `1 and

∞∑
n=0

bn‖∂F (xn, un)‖− ≤
b

2

∞∑
n=0

(dn + dn−1) +

∞∑
n=0

εn <∞

follows lim infn→∞ ‖∂F (xn, un)‖− = 0 and Lemma 1 yields 0 ∈ ∂F (x̄, ū). For (x̄, ū) ∈ ω(x0, u0) the subse-
quence ((xnj , unj ))j∈N F -converges to (x̄, ū) as j →∞ and thus the statement follows.

Corollary 10. Let Assumption 5 hold and let ((xn, un))n∈N be a bounded sequence. Suppose F is continuous
on the set C ∩ domF with an open set C ⊃ ω(x0, u0) (e.g. F is continuous on domF ), then

ω(x0, u0) = ω(x0, u0) .

Proof. Let (xnj , unj )→ (x̄, ū) ∈ ω(x0, u0) as j →∞. There is a neighborhood V ⊂ C with (x̄, ū) ∈ V such

that (xnj , unj ) ∈ V ∩ domF for sufficiently large j ∈ N and continuity of F implies (xnj , unj )
F→ (x̄, ū), thus

ω(x0, u0) ⊂ ω(x0, u0). The converse inclusion holds by definition.

3.3 The convergence theorem

Theorem 11. Suppose F is a proper lower semi-continuous Kurdyka– Lojasiewicz function that is bounded
from below. Let (xn)n∈N be a bounded sequence generated by an abstract algorithm parametrized by a sequence
(un)n∈N that satisfies Assumption 5. Let ω(x0, u0) = ω(x0, u0).
Then, the following holds:

(i) The sequence (xn)n∈N satisfies
∞∑
k=0

‖xk+1 − xk‖2 < +∞ , (3)

and (xn)n∈N converges to x̃.

(ii) Moreover, if (un)n∈N is a converging sequence, then ((xn, un))n∈N F -converges to (x̃, ũ), and (x̃, ũ) is
a critical point of F .

Proof. By (H3) there exists a subsequence ((xnj , unj ))j∈N such that (xnj , unj )
F→ (x̃, ũ) as j →∞. If there

is n′ such that F (xn
′
, un

′
) = F (x̃, ũ), then (H1) implies that F (xn, un) = F (x̃, ũ), thus also an = 0, for all

n ≥ n′. Therefore, (H4) shows that xn+1 = xn for all n ≥ n′, and by induction (xn)n∈N gets stationary and
the statement is obvious (cf. Remark 1).

Now, we can assume that F (xn, un) > F (x̃, ũ) for all n ∈ N. Moreover, non-increasingness of (F (xn, un))n∈N
by (H1) implies that for all η > 0 there exists n1 ∈ N such that F (x̃, ũ) < F (xn, un) < F (x̃, ñ) + η for all
n ≥ n1. By definition there is also a region of attraction for the sequence (xn, un)n∈N, i.e., for all ε > 0
there exists n2 ∈ N such that dist((xn, un), ω(x0, u0)) < ε holds for all n ≥ n2. In total, we know that for
all n ≥ n0 := max{n1, n2} the sequence ((xn, un))n∈N lies in the set

[F (x̃, ũ) < F (x, u) < F (x̃, ũ) + η] ∩ [dist((x, u), ω(x0, u0)) < ε] .

Combining the facts that ω(x0, u0) = ω(x0, u0) is nonempty and compact from Lemma 7(i) with F
being finite and constant on ω(x0, u0) from Lemma 7(ii), allows us to apply Lemma 4 with ω = ω(x0, u0).
Therefore, there are ϕ, η, ε as in Lemma 4 such that for n > n0

ϕ′(F (xn, un)− F (x̃, ũ))‖∂F (xn, un)‖− ≥ 1 (4)

holds on ω. Plugging (H2) into (4) yields

ϕ′(F (xn, un)− F (x̃, ũ)) ≥ bn
(
b

2
(dn + dn−1) + εn

)−1

. (5)
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Relation to other abstract convergence theorems

By concavity of ϕ, i.e., (let m > n)

Dϕ
n,m := ϕ(F (xn, un)−F (x̃, ũ))−ϕ(F (xm, um)−F (x̃, ũ)) ≥ ϕ′(F (xn, un)−F (x̃, ũ))(F (xn, un)−F (xm, um)) ,

using (5) and (H1), we infer

Dϕ
n,n+1 ≥

bnand
2
n

b
2 (dn + dn−1) + εn

⇔ d2
n ≤

(
1

2
(dn + dn−1) +

εn
b

)(
b

anbn
Dϕ
n,n+1

)
.

Applying 2
√
αβ ≤ α+ β for all α, β ≥ 0, we obtain (set ε′n := εn/b and c := supn

b
anbn

<∞ (by (H4)))

2dn ≤
b

anbn
Dϕ
n,n+1 +

1

2
(dn + dn−1) + ε′n ≤ cDϕ

n,n+1 +
1

2
(dn + dn−1) + ε′n .

Now summing this inequality from k = n0 + 1, . . . , n shows

2

n∑
k=n0+1

dk ≤
1

2

n∑
k=n0+1

(
dk + dk−1

)
+ c

n∑
k=n0+1

Dϕ
k,k+1 +

n∑
k=n0+1

ε′k

≤ 1

2
dn0 +

n∑
k=n0+1

dk + cDϕ
n0+1,n+1 +

n∑
k=n0+1

ε′k .

Rearranging terms and bounding Dϕ
n0+1,n+1 ≤ ϕ(Fn0+1(xn0+1)− F (x̃)) due to ϕ ≥ 0 results in

n∑
k=n0+1

dk ≤
1

2
dn0

+ cϕ(Fn0+1(xn0+1)− F (x̃)) +

n∑
k=n0+1

ε′k .

By assumption (εn)n∈N ∈ `1 and therefore the right hand side is finite for any n ≥ n0 + 1, i.e.

lim
n→∞

n∑
k=0

dk < +∞ .

Thanks to (H4), for any fixed ε > 0 there exists n0 ∈ N such that ‖xn+1 − xn‖2 ≤ εdn for all n ≥ n0.
Combining this property with the preceding bound for the series over dn, we infer for any n ≥ n0

n0∑
k=0

‖xn+1 − xn‖2 +

n∑
k=n0+1

‖xn+1 − xn‖2 ≤
n0∑
k=0

‖xn+1 − xn‖2 + ε

n∑
k=n0+1

dn < +∞ .

This property obviously shows that (xn)n∈N is a Cauchy sequence, and therefore xn → x̃ as n→∞, which
verifies Item (i). Item (ii) is a direct consequence of Lemma 9.

3.4 Relation to other abstract convergence theorems

The abstract inexact convergence theorem in this paper generalizes [28] at least as much as [16] generalizes
[5]. Moreover, our generalization comprises the results of [16].

Relation to [5]. Our abstract convergence theorem generalizes the one from Attouch et al. [5], i.e., if
a sequence (xn)n∈N satsifies conditions (H1)–(H3) from [5] for a proper lsc function f : RN → R, then our
Assumption 5 is also valid. Set F (xn, un) = f(xn), un = 0, an = a ∈ R, bn = 1, εn = 0 for all n ∈ N, and
dn = ‖xn+1 − xn‖2, then

F (xn+1, un+1) + and
2
n = f(xn+1) + a‖xn+1 − xn‖22 ≤ f(xn) = F (xn)
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Variable metric iPiano

and the existence of wn+1 ∈ ∂f(xn+1) for all n ∈ N implies (replace b of our (H2) by b′ := 2b)

‖∂F (xn+1, un+1)‖− ≤ ‖wn+1‖2 ≤ b‖xn+1−xn‖2 ≤ b(‖xn+1−xn‖2+‖xn+2−xn+1‖2) =
b′

2
(dn+dn+1)+εn+1 .

Finally, the continuity assumption transfers easily (by definition of F )

xnj → x̃ and f(xnj )→ f(x̃) ⇒ xnj → x̃ and F (xnj , unj )→ F (x̃, ũ) .

Relation to [16]. This relation follows immediately from the relation to [5] and the design of our param-
eters like in [16]. Our relative error condition (H2) is more general and we allow for a second argument of
the objective function un whose convergence is not sought in the end, thus we allow for a controlled change
of the objective function along the iterations.

Relation to [28]. The abstract convergence theorem of [28] applies to a sequence (zn)n∈N given by zn =
(xn, xn−1) for a function f : R2N → R. It is recovered from our framework by setting F (zn, un) = f(zn),
dn = ‖xn − xn−1‖2, an = a ∈ R, bn = 1, and εn = 0 for all n ∈ N.

4 Variable metric iPiano

We consider a structured nonsmooth, nonconvex optimization problem with a proper lower semi-continuous
extended valued function h : RN → R, N ≥ 1:

min
x∈RN

h(x) = min
x∈RN

f(x) + g(x) . (6)

The function f : RN → R is assumed to be C1-smooth (possibly nonconvex) with L-Lipschitz continuous
gradient on dom g, L > 0. Further, let the function g : RN → R be simple (possibly nonsmooth and
nonconvex) and prox-bounded, i.e., there exists λ > 0 such that

eλg(x) := inf
y∈RN

g(y) +
1

2λ
‖y − x‖2 > −∞

for some x ∈ RN . Simple refers to the fact that the associated proximal map can be solved efficiently for the
global optimum. Furthermore, we require h to be coercive and bounded from below by some value h > −∞.

We want to obtain improved step size rules when g is, for example, convex. Therefore, if g is semi-convex
with respect to the metric induced by A ∈ S++(N), let m be the semi-convexity parameter, i.e., m ∈ R is
the largest value such that g(x) − m

2 ‖x‖2A is convex. For convex functions m = 0 and for strongly convex
functions m > 0. Our analysis allows us to treat also non-convex functions g that are not semi-convex, by
means of a “flag variable” σ ∈ {0, 1}, which is 1 if g is semi-convex and 0 otherwise. Note that if σ = 1 the
property of semi-convexity is satisfied for any A ∈ S++(N), but with possibly changing modulus. Therefore,
sometimes the metric is not explicitly specified.

The following Algorithm 1 seeks for a critical point x∗ ∈ domh of h, which in this case is characterized
by

−∇f(x∗) ∈ ∂g(x∗) ,

where ∂g denotes the limiting subdifferential.

Lemma 12. A necessary condition for the sequences (αn)n∈N and (βn)n∈N to satisfy γn ≥ c > 0 for all
n ∈ N is

αn ≤
1 + σ − 2βn
Ln − σmn + c

and βn ≤
1 + σ

2
.
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Algorithm 1. Variable metric inertial proximal algorithm for nonconvex optimization (vmiPiano)

• Parameter: Let

– (αn)n∈N be a sequence of positive step size parameters,

– (βn)n∈N be a sequence of non-negative parameters, and

– (An)n∈N be a sequence of matrices An ∈ S++(N) such that An � id and infn ς(An) > 0.

– Let σ = 1 if g is semi-convex and σ = 0 otherwise.

• Initialization: Choose a starting point x0 ∈ domh and set x−1 = x0.

• Iterations (n ≥ 0): Update:

yn = xn + βn(xn − xn−1)

xn+1 ∈ arg min
x∈RN

Gn(x;xn) , Gn(x;xn) := g(x) + 〈∇f(xn), x− xn〉+
1

2αn
‖x− yn‖2An ,

(7)

where Ln > σmn is determined such that

f(xn+1) ≤ f(xn) +
〈
∇f(xn), xn+1 − xn

〉
+
Ln
2
‖xn+1 − xn‖2An (8)

holds and αn, βn with infn αn > 0 are chosen such that

δσn :=
1

2

(
1 + σ − βn

αn
− (Ln − σmn)

)
and γn := δσn −

βn
2αn

(9)

satisfy
inf
n
γn > 0 and δσn+1‖xn+1 − xn‖2An+1

≤ δσn‖xn+1 − xn‖2An , (10)

where mn ∈ R denotes the semi-convexity modulus of g w.r.t. An ∈ S++(N) (if σ = 1).

Proof. The bounds directly follow from infn γn > 0.

Remark 3. The minimization problem in (7) is equivalent to (constant terms are dropped)

arg min
x∈RN

g(x) + 〈∇f(xn), x− xn〉 − βn
αn

〈
xn − xn−1, x− xn

〉
An

+
1

2αn
‖x− xn‖2An . (11)

The optimality condition of the minimization problem in (7) yields

0 ∈ ∂Gn(x;xn) = ∂g(x) +∇f(xn) +
1

αn
An(x− yn)

and by plugging the expression for yn and a simple rearrangement, we obtain a necessary condition for xn+1

x ∈ (id + αnA
−1
n ∂g)−1

(
xn − αnA−1

n ∇f(xn) + βn(xn − xn−1)
)
. (12)

For a convex function g, inverting the expression id + αnA
−1
n ∂g yields a unique solution and the inclusion

can be replaced by an equality. Here, the operator is still set-valued.

Remark 4. • The assumption in (8) is satisfied for example, if f has an L-Lipschitz continuous gradient
with An = id, or when a local estimate of the Lipschitz constant Ln is known (also An = id).

• Since ∇f is assumed to be Lipschitz continuous, given A ∈ S++(N), we can always find L such that
An can be “normalized” to 0 � A � id. Therefore, in practice the algorithm can be extended by a
backtracking procedure for estimating Ln.
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• The additional hyperparameters δσn and γn can be seen as an disadvantage, however, actually, they
allow for a constructive selection of the step size parameters (cf. [28]). For example in [12], such
hyperparameters do not appear and only existence of parameters that satsify certain conditions can
be guaranteed.

• Unlike in [28, 27], where the sequence δn is assumed to be stationary after a finite number of iterations
to obtain the final convergence result, here, the restrictions for δn and An are very loose: essentially
boundedness is required.

As mentioned before, we want to take advantages out of g being semi-convex. The next lemmas are
essential for that.

Lemma 13. Let g be proper semi-convex with modulus m ∈ R with respect to the metric induced by A ∈
S++(N), and fix x̃ ∈ dom g. Then, for any x̄ ∈ dom ∂g it holds that

g(x) ≥ g(x̄) + 〈v̄, x− x̄〉+
m

2
‖x− x̄‖2A , ∀x ∈ RN and v̄ ∈ ∂g(x̄) .

Proof. Apply the subgradient inequality to g(x) := g(x)− m
2 ‖x− x̃‖2A around the point x̄, i.e., it holds that

g(x) ≥ g(x̄) + 〈w̄, x− x̄〉 , ∀x ∈ RNand w̄ ∈ ∂g(x̄) .

Note that w̄ is an element from the (convex) subdifferential. Due to the smoothness of m
2 ‖x− x̃‖2A, we can

use the summation rule for the limiting subdifferential to obtain

∂g(x̄) = ∂
(
g − m

2
‖ · −x̃‖22

)
(x̄) = ∂g(x̄)−mA(x̄− x̃) ,

and, therefore, replacing w̄ by v̄−mA(x̄− x̃) with v̄ ∈ ∂g(x̄) in the subgradient inequality above, we obtain
after using

2 〈x̄− x̃, x− x̄〉A = ‖x− x̃‖2A − ‖x̄− x̃‖2A − ‖x− x̄‖2A
that the following inequality holds

g(x) +
m

2
‖x− x̃‖2A ≥ g(x̄) +

m

2
‖x̄− x̃‖2A +

m

2
‖x− x̄‖2A + 〈v̄, x− x̄〉 , ∀x ∈ RN and v̄ ∈ ∂g(x̄) ,

which implies the statement.

Lemma 14. Let σ = 1 if g is proper semi-convex with modulus m ∈ R with respect to the metric induced by
A ∈ S++(N) and σ = 0 otherwise. Then it

Gn(xn+1;xn) +
σ

2

(
m+

1

αn

)
‖xn+1 − xn‖2A ≤ Gn(xn;xn) . (13)

Proof. Apply Lemma 13 with x = xn and x̄ = xn+1 to the function x 7→ Gn(x;xn) from (7), which is
semi-convex with modulus σ (m+ 1

αn
) with respect to the metric induced by A.

Verification of Assumption 5. We define the proper lower semi-continuous function

F : RN × RN × RN×N × R→ R given by F (x, y,A, δ) := H(δ,A)(x, y) := h(x) + δ‖x− y‖2A
for some A ∈ S++(N) and δ ∈ R. Regarding the variables in Assumption 5, the u-component of F is treated
as u = (A, δ), which allows the function F to change depending on the metric A and another parameter δ.
Convergence will be derived for the x and y variables only.

The following proposition verifies (H1), with dn = ‖xn − xn−1‖2 and an = γn.
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Proposition 15 (Descent property). Let the variables and parameters be given as in Algorithm 1. Then, it
holds that

H(δσn,An)(x
n+1, xn) ≤ H(δσn,An)(x

n, xn−1)− γnς(An)‖xn − xn−1‖22 , (14)

and the sequence (H(δσn,An)(x
n, xn−1))n∈N is monotonically decreasing.

Proof. Combining (7) (in the equivalent form (11)) with (8) and (13) yields

f(xn+1) + g(xn+1) +
σ

2

(
m+

1

αn

)
‖xn+1 − xn‖2An

≤ f(xn) +
〈
∇f(xn), xn+1 − xn

〉
+
Ln
2
‖xn+1 − xn‖2An

+ g(xn)−
〈
∇f(xn), xn+1 − xn

〉
+
βn
αn

〈
xn+1 − xn, xn − xn−1

〉
An
− 1

2αn
‖xn+1 − yn‖2An

= f(xn) + g(xn) +
βn
αn

〈
xn+1 − xn, xn − xn−1

〉
+
(Ln

2
− 1

2αn

)
‖xn+1 − xn‖2An

and using 〈a, b〉M ≤ 1
2 (‖a‖2M + ‖b‖2M ) for any a, b ∈ RN and M ∈ S++(N) implies the following inequality

h(xn+1) ≤ h(xn) +
βn

2αn
‖xn − xn−1‖2An −

1

2

(
1 + σ − βn

αn
− (Ln − σm)

)
‖xn+1 − xn‖2An

and rearranging terms yields

h(xn+1) + δσn‖xn+1 − xn‖2An ≤ h(xn) + δσn‖xn − xn−1‖2An − (δσn −
βn

2αn
)‖xn − xn−1‖2An .

The parametrization of the step sizes is chosen as in [27] (see [27, Lemma 6.3] for well-definedness of the
parameters.) Therefore, we obtain the same step size restrictions here, but with the flexibility to change the
metric in each iteration.

Remark 5. The proof shows that instead of (11) we could also consider

arg min
x∈RN

g(x) + 〈∇f(xn), x− xn〉 − βn
αn

〈
xn − xn−1, x− xn

〉
+

1

2αn
‖x− xn‖2An , (15)

which yields a slightly different algorithm, but step size restrictions are the same.

Next, we prove the relative error condition (Assumption (H2)) with bn = 1 and εn = 0. First, we derive
a bound on the (limiting) subgradient of the function h and then for the function F .

Lemma 16. Let the variables and parameters be given as in Algorithm 1. Then, there exists b > 0 such that

‖∂h(xn+1)‖− ≤
b

2

(
‖xn+1 − xn‖2 + ‖xn − xn−1‖2

)
.

Proof. (12) can be used to specify an element from ∂g(xn+1), namely

An
xn − xn+1

αn
−∇f(xn) +

βn
αn

An(xn − xn−1) ∈ ∂g(xn+1) ,

which implies

‖∂h(xn+1)‖− = ‖∇f(xn+1) + ∂g(xn+1)‖− ≤
(‖An‖

αn
+ L

)
‖xn+1 − xn‖2 +

βn
αn
‖An‖‖xn − xn−1‖2

and thus, using the Lipschitz continuity of ∇f and A � id, the statement.
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Proposition 17. Let the variables and parameters be given as in Algorithm 1. Then, there exists b > 0
such that

‖∂F (xn+1, xn, An+1, δ
σ
n+1)‖− ≤

b

2

(
‖xn+1 − xn‖2 + ‖xn − xn−1‖2

)
.

Proof. Thanks to summation rule of the limiting subdifferential for the sum of (x, y,A, δ) 7→ h(x) and the
smooth function (x, y,A, δ) 7→ δ‖xn+1−xn‖2A, we can compute the limiting subdifferential by estimating the
partial derivatives. We obtain

∂xF (x, y,A, δ) = ∂h(x) + 2δA(x− y) , ∂yF (x, y,A, δ) = ∇yF (x, y,A, δ) = −2AδA(x− y) (16)

∂AF (x, y,A, δ) = ∇AF (x, y,A, δ) = δ(x− y)⊗ (x− y) , ∂δF (x, y,A, δ) = ∇δF (x, y,A, δ) = ‖x− y‖2A .
(17)

In order to verify (H2), let Fn+1 := F (xn+1, xn, An+1, δ
σ
n+1) and we use ‖wn+1‖2 ≤ ‖wn+1

x ‖2 + ‖wn+1
y ‖2 +

‖wn+1
A ‖2 + ‖wn+1

δ ‖2 where wn+1
x ∈ ∂xFn+1, wn+1

y = ∇yFn+1, wn+1
A = ∇AFn+1, and wn+1

δ = ∇δFn+1. We
obtain the relative error bound (H2) using An+1 � id and boundedness of δσn+1, Lemma 16, and the fact
that for a sequence rn → 0 for some n0 ∈ N it holds that r2

n ≤ rn for all n ≥ n0. In detail, we use

‖wn+1
A ‖2 ≤ δσn+1

∑
i,j

|xn+1
i −xni | · |xn+1

j −xnj | ≤ c
∑
i,j

|xn+1
j −xnj | ≤ cc′

∑
i

‖xn+1−xn‖2 ≤ cc′c′′‖xn+1−xn‖2 ,

where c is the maximal (over the coordinates i) bound for the converging sequences |xn+1
i − xni | → 0 as

n → ∞, the dimensionally dependent constant c′ =
√
N provides the norm equivalence of ‖ · ‖1 and ‖ · ‖2,

and c′′ = N simplifies the summation.

Eventually, we verify the continuity Condition (H3).

Proposition 18. Let the variables and parameters be given as in Algorithm 1. Then, there exists a sub-
sequence ((xnj+1, xnj , Anj , δ

σ
nj ))j∈N that F -converges to a point (x∗, x∗, A∗, δσ∗ ). Moreover, any convergent

subsequence is F -convergent.

Proof. The existence is of a converging subsequence is immediate from (H(δσn,An)(x
n, xn−1))n∈N begin non-

increasing and the coercivity of h, which implies compact lower level sets for H, and the boundedness of
(An)n∈N and (δσn)n∈N.

Now, let (xnj+1, xnj , Anj , δ
σ
nj ) be a subsequence converging to some (x∗, x∗, A∗, δσ∗ ).

The continuity statement follows (Gn(xn+1;xn) ≤ Gn(x;xn) for all x ∈ RN from (7)) from

g(xnj+1)+
〈
∇f(xnj ), xnj+1 − xnj

〉
+

1

2αnj
‖xnj+1−ynj‖2Anj ≤ g(x)+〈∇f(xnj ), x− xnj 〉+ 1

2αnj
‖x−ynj‖2Anj .

Due to Lemma 6(iii) ‖xnj+1 − xnj‖ → 0, hence ‖ynj − xnj‖ → 0, which shows that ynj → x∗, as j →
∞. Therefore considering the limit superior of j to infinity of both sides of the inequality shows that
lim supj→∞ g(xnj+1) ≤ g(x∗), which combined with the lower semi-continuity of g and differentiability of f
implies limj→∞ g(xnj+1) = g(x∗), and thus the statement follows.

Using the results that we just derived, we can prove convergence of the variable metric iPiano method
(Algorithm 1) to a critical point. Unlike the abstract convergence theorems in [5, 16, 28], the finite length
property is derived for the coordinates from a subspace only, which allows for a lot of flexibility. Critical
points are characterized in the proof of Proposition 17 (see (16)), where zero in the partial subdifferential
(actually the partial derivative) with respect to y, A, or δ implies x = y without imposing conditions on the
δ- or A-coordinate. Thus, the we have

0 ∈ ∂F (x, y,A, δ)⇔
(

0 ∈ ∂h(x)× 0y × 0A × 0δ and x = y
)
⇔
(

0 ∈ ∂h(x) and x = y
)
,

where we indicate the size of the zero variables by the respective coordinate variable. As a consequence,
0 ∈ F (x∗, x∗, δ, A)⇔ 0 ∈ ∂h(x∗). These considerations lead to the following convergence theorem.
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Theorem 19. Suppose F is a proper lower semi-continuous Kurdyka– Lojasiewicz function that is bounded
from below. Let (xn)n∈N be generated by Algorithm 1 with valid variables and parameters as in the description
of this algorithm. Then, the sequence (xn)n∈N satisfies

∞∑
k=0

‖xk+1 − xk‖2 < +∞ , (18)

and (xn)n∈N converges to a critical point of (6).

Proof. Verify the condition in Assumption 5 and apply Theorem 11. Set dn = ‖xn− xn−1‖2, an = γnς(An),
bn = 1, εn = 0, then (H1), (H2), and (H3) are proved in Propositions 15, 17, and 18, and (H4) is immediate
from the bounds on the parameters.

Remark 6. Thanks to [7, 8] the KL property holds for proper lower semi-continuous functions that are defin-
able in an o-minimal structure, e.g., semi-algrabraic functions. Since o-minimal structures are stable under
various operations, F is a KL function if h is definable in an o-minimal structure. Therefore, Theorem 19
can be applied to, for instance, a proper lower semi-continuous semi-algebraic function h in (6).

5 Block coordinate variable metric iPiano

We consider a structured nonsmooth, nonconvex optimization problem with a proper lower semi-continuous
extended valued function h : RN → R, N ≥ 1:

min
x∈RN

h(x) = min
x∈RN

f(x1,x2, . . . ,xJ) +

J∑
i=1

gi(xi) , (19)

where the N dimensions are partitioned into J blocks of (possibly different dimensions) (N1, . . . , NJ), i.e.,
x ∈ RN can be decomposed as x = (x1, . . . ,xJ). The function f : RN → R is assumed to be block C1-
smooth (possibly nonconvex) with block Lipschitz continuous gradient on dom g1 × dom g2 × . . . × dom gJ ,
i.e., xi 7→ ∇xif(x1, . . . ,xi, . . . ,xJ) is Lipschitz continuous. Further, let the function gi : RNi → R be simple
(possibly nonsmooth and nonconvex) and prox-bounded. We require h to be coercive and bounded from
below by some value h > −∞.

Working with block algorithms can be simplified by an appropriate notation, which we introduce now.
We denote by xi := (x1, . . . ,xi−1,xi+1, . . . ,xJ) the vector containing all blocks but the ith one.

The following Algorithm 2 is a straight forward extension of Algorithm 1 to problems of class (19) with
a block coordinate structure. In each iteration, the algorithm applies one iteration of iPiano to the problem
restricted to a certain block. The formulation of the algorithm allows blocks to be updated in an almost
arbitrary order. In the end, the only restriction is that each block must be updated infinitely often.

We seek for a critical point x∗ ∈ domh of h, which in this case is characterized by

−∇f(x) ∈ ∂g1(x1)× ∂g2(x2)× . . .× ∂gJ(xJ) .

In fact if we apply Algorithm 2 to (6) from the preceding section (i.e. J = 1), we recover the variable metric
iPiano algorithm (Algorithm 1). For βn,i = 0 for all n ∈ N and i ∈ {1, . . . , J}, the algorithm is known as
Block Coordinate Variable Metric Forward-Backward (BC-VMFB) algorithm [14]. If, additionally An,i = id
for all n and i, the algorithm is referred to as Proximal Alternating Linearized Minimization (PALM) [10].

Verification of Assumption 5. In order to prove convergence of this algorithm, we can make use of the
results of the preceding section for the variable metric iPiano algorithm. We consider a function

F : RN × RN × RN1×N1 × . . .× RNJ×NJ × RJ → R
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Block coordinate variable metric iPiano

Algorithm 2. Block coordinate variable metric iPiano

• Parameter: Let for all i ∈ {1, . . . , J}

– (αn,i)n∈N be a sequence of positive step size parameters,

– (βn,i)n∈N be a sequence of non-negative parameters, and

– (An,i)n∈N be a sequence of matrices An,i∈ S++(Ni) such that An,i� id and infn,i ς(An,i) > 0.

– Let σi = 1 if gi is semi-convex and σi = 0 otherwise.

• Initialization: Choose a starting point x0 ∈ domh and set x−1 = x0.

• Iterations (n ≥ 0): Update: Select jn ∈ {1, . . . , J} and compute

ynjn = xnjn + βn,jn(xnjn − xn−1
jn

)

xn+1
jn
∈ arg min

x∈RNjn
Gjn(x; xnjn)

arg min
x∈RNjn

Gjn(x; xnjn) := gjn(x) +
〈
∇xjn f(xn), x− xnjn

〉
+

1

2αn,jn
‖x− ynjn‖2An,jn

xn+1

jn
= xn

jn

xn
jn

= xn−1

jn
,

(20)

where Ln > σmn is determined such that

f(xn+1) ≤ f(xn) +
〈
∇xjn f(xn),xn+1

jn
− xnjn

〉
+
Ln
2
‖xn+1

jn
− xnjn‖2An,jn (21)

holds and αn,jn , βn,jn with infn,j αn,j > 0 are chosen such that

δ
σjn
n,jn

:=
1

2

(
1 + σjn − βn,jn

αn,jn
− (Ln − σjnmn)

)
and γn,jn := δ

σjn
n,jn
− βn,jn

2αn,jn
(22)

satisfy
inf
n,j

γn,j > 0 and δ
σjn
n+1,jn

‖xn+1
jn
− xnjn‖2An+1,jn

≤ δσjnn,jn
‖xn+1

jn
− xnjn‖2An,jn , (23)

where mn ∈ R denotes the semi-convexity modulus of gjn w.r.t. Ajn ∈ S++(Njn) (if σjn = 1).
Set An+1,jn

= An,jn , δ
σjn
n+1,jn

= δ
σjn
n,jn

.

given by (set A := (A1, . . . , AJ), Ai ∈ RNi×Ni , ∆ := (δ1, . . . , δJ))

F (x,y,A,∆) = H∆,A(x,y) := h(x) +

J∑
i=1

δi‖xi − yi‖2Ai .

Theorem 20. Suppose F is a proper lower semi-continuous Kurdyka– Lojasiewicz function (e.g. h is semi-
algebraic; cf. Remark 6) that is bounded from below. Let (xn)n∈N be generated by Algorithm 2 with valid
variables and parameters as in the description of this algorithm. Assume that each block coordinate is updated
infinitely often. Then, the sequence (xn)n∈N satisfies

∞∑
k=0

‖xk+1 − xk‖2 < +∞ , (24)

and (xn)n∈N converges to a critical point of (19).
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Numerical application

Proof. As the nth iteration of Algorithm 2 reads exactly the same as in Algorithm 1 but applied to the block
coordinate jn only, we can directly apply Propositions 15, and obtain

H(∆σ
n,An)(x

n+1,xn) ≤ H(δσn,An)(x
n,xn−1)− γn,jnς(An,jn)‖xnjn − xn−1

nj ‖22 ,

and the function H is monotonically decreasing along the iterations, i.e., the parameters in the algorithm
are chosen such that one step on an arbitrary block decreases the value of H unless the block coordinate is
already stationary.

Since the non-smooth part of the optimization problem (19) is additively separated the estimation of the
subdifferential is simple as it reduces to the Cartesian product of the subdifferential with respect to each
block. Therefore, Proposition 17 can be used analogously to deduce

‖∂F (xn+1,yn+1,An+1,∆n+1)‖− ≤
b

2

(
‖xn+1

jn
− xnjn‖22 + ‖xnjn − xn−1

jn
‖22
)
.

Under the assumption that each block is updated infinitely often, also the continuity results from Propo-
sition 18 can be transferred easily to the setting of Algorithm 2, i.e., we can conclude any convergent
subsequence of block coordinates actually F -converges to the limit point (limk→∞ gi(x

nk
i ) = gi(x

∗
i ) for each

block i ∈ {1, . . . , J} and f is continuous anyway).
Therefore, the conditions in Assumption 5 are verified by dn = ‖xnjn−xn−1

jn
‖2, an = γn,jnς(An,jn), bn = 1,

and εn = 0.

6 Numerical application

6.1 A Mumford–Shah-like problem

The continuous Mumford–Shah problem is given formally by

min
w,Γ

λ

2

∫
Ω

|w − I|2 dx+

∫
ΩrΓ

|∇w|2 dx+ γ|Γ| , (25)

where w : Ω → R is an image on the image domain Ω ⊂ R2 and I : Ω → R is a given noisy image, |Γ|
measures the length of the jump set Γ. Intuitively, a solution w must be smooth except on a possible jump
set Γ, and approximate I. The positive parameters λ and γ steer the importance of each term. In order to
solve the problem, the jump set Γ needs to represented with a mathematical object that is amenable for a
numerical implementation.

Therefore, we consider the well-known Ambrosio–Tortorelli approximation [2] given by

min
w,z

λ

2

∫
Ω

|w − I|2 dx+

∫
Ω

z2|∇w|2 dx+ γ

∫
Ω

ε|∇z|2 +
(z − 1)2

4ε
dx , (26)

where ε > 0 is a fixed parameter and z : Ω→ [0, 1] is a (soft) edge indicator function, also called a phase-field.
The last integral is shown to Gamma-converge to the length of the jump set of (25) as ε→ 0.

In this section, we solve a slight variation of this problem. Instead of an image denoising model we
are interested in an inpainting problem (as shown in Figure 2), which is usually more difficult. In image
inpainting, the true information about the original image is only given on a subset [c = 1] of the image
domain (black pixels in Figure 2(b)), where c : Ω → {0, 1}—the original image I is unknown on [c = 0]
(white part Figure 2(b)). In [17], the idea of image inpainting is pushed to a limit and used for PDE-
based image compression, i.e., the inpainting mask [c = 1] is a small subset of Ω. Usually a simple PDE is
used for reconstructing the original image based on its gray values given only on mask points, for instance
linear diffusion in [23] (result given in Figure 2(d)). When the inpainting mask is optimized, linear diffusion
based inpainting is shown to be competetive with JPEG and sometimes with JPEG2000. Therefore using
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A Mumford–Shah-like problem

(a) original image I (b) mask c (90% unknown) (c) inpainting w using (27) (d) linear diffusion inpainting

Figure 2: Example for image inpainting/compression. The gray values of the original image (a) are stored only at
the mask points (b), where known values are black [c = 1] and unknown ones are white [c = 0]. Based on 10% known
gray values the original image is reconstructed in (c) with the Ambrosio–Tortorelli inpainting (27) that we evaluate
algorithmically in this paper, and in (d) with a simple linear diffusion model [23] which arises as a special case of
(27) when the edge set z is fixed to 1 everywhere on the image domain Ω.

a more general inpainting model combined with an optimized inpainting mask is expected to improve this
performance. We consider the model

min
w,z

∫
Ω

z2|∇w|2 dx+ γ

∫
Ω

ε|∇z|2 +
(z − 1)2

4ε
dx

s.t. w(x) = I(x) , ∀x ∈ [c = 1] ,

(27)

which extends the linear diffusion model by optimizing for an additional edge set z. The linear diffusion
model is recovered when fixing z = 1 on Ω. Since we want to evaluate our algorithms, we neglect the
development made for finding an optimal inpainting mask and generate the mask by randomly selecting 10%
as known pixels.

From now on, we discretize the problem and with a slight abuse of notation we use the same symbols
to denote the discrete counterparts of the above introduced variables: I ∈ RN is the (vectorized1) original
image, c ∈ RN is the (inpainting) mask, w ∈ RN is the optimization variable (representing a vectorized
image), and z ∈ [0, 1]N represents the jump (or edge) set of (25). The continuous gradient ∇ is replaced by
a discrete derivative operator D ∈ R2N×N that implements forward differences in horizontal D1 ∈ RN×N
and vertical direction D2 ∈ RN×N with homogeneous boundary conditions, i.e., forward differences across
the image boundary are set to 0. Our discretized model of (27) reads

min
w,z

1

2
‖diag(z)(D1w)‖22 +

1

2
‖ diag(z)(D2w)‖22 +

γε

2
‖Dz‖22 +

γ

4ε
‖z − 1‖22

s.t. wi = Ii , ∀i ∈ {1, . . . , N} with ci = 1 ,

(28)

where diag : RN → RN×N puts a vector on the diagonal of a matrix. Figure 4 shows the input data, the
reconstructed image, and the reconstructed edge set, for ε = 0.1 and γ = 1/400 and the number of pixel
N = 551 · 414 = 228114.

In the following, we evaluate several algorithms that use a variable metric. Let

g1(w) := δX(w) with X := {w ∈ RN |wi = Ii if ci = 1} , g2(z) :=
γ

4ε
‖z − 1‖22

f(w, z) :=
1

2

(
‖ diag(z)(D1w)‖22 + ‖ diag(z)(D2w)‖22 + γε‖Dz‖22

)
.

1The columns of the image are stacked to a long vector.
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A Mumford–Shah-like problem

We can apply iPiano to (6) with x = (w, z) and g(x) = (g1(w), g2(z)), or block coordinate iPiano to (19)
with x1 = w and x2 = z.

In order to determine a suitable metric, we first compute the derivatives of f

∇wf(w, z) =
(
D>1 diag(z2)D1 +D>2 diag(z2)D2

)
w

∇zf(w, z) =
(
diag((D1w)2) + diag((D2w)2) + γεD>D

)
z ,

where the squares are to be understood coordinate-wise. A feasible metric for block coordinate variable
metric iPiano (BC-VM-iPiano) must satisfy (21). Therefore, for the w-update step (z is fixed), we require
An,w (the metric w.r.t. the block of w coordinates) to satisfy

〈∇wf(w, z)−∇wf(w′, z)−An,w(w − w′), w − w′〉 ≤ 0

for all w,w′, which is achieved, for example, by a diagonal matrix An,w given by

(An,w)i,i =

N∑
j=1

|
(
D>1 diag(z2)D1 +D>2 diag(z2)D2

)
i,j
| (29)

for all i ∈ {1, . . . , N}. For the z-update (w is fixed), analogously, we require An,z (the metric w.r.t. the
block of w coordinates) to satisfy

〈∇wf(w, z)−∇wf(w, z′)−An,z(z − z′), z − z′〉 ≤ 0

for all z, z′, which is achieved, for example, by a diagonal matrix An,z given by

(An,z)i,i =

N∑
j=1

|
(
diag((D1w)2) + diag((D2w)2) + γεD>D

)
i,j
| (30)

for all i ∈ {1, . . . , N}. Note that compared to (21) the metric contains the scaling Ln,w and Ln,z, respectively.
For constant step size schemes (An,w = An,z = id) we use Lw ≤ 8 and2 Lz ≤ 2 + 8γε.

Besides BC-VM-iPiano, we test forward–backward splitting (FB) with constant step size scheme α =
2/max(Lw, Lz), block coordinate forward–backward splitting (BC-FB) with step sizes αw = 2/Lw and αz =
2/Lz (this method is also known as PALM [10]), variable metric forward–backward splitting (BC-FB) with
the metric (29) and (30) as a composed diagonal matrix, block coordinate variable metric forward–backward
splitting (BC-VM-FB) with the metric (29) and (30), iPiano (iPiano) with constant step size scheme α =
2(1−β)/max(Lw, Lz), block coordinate iPiano (BC-iPiano) with constant step size scheme αw = 2(1−β)/Lw
and αz = 2(1 − β)/Lz, variable metric iPiano (VM-iPiano) with the metric (29) and (30) as a composed
diagonal matrix, and block coordinate variable metric iPiano (BC-VM-iPiano) with the metric (29) and (30).
For all methods that incorporate an inertial parameter, it is set to β = 0.7.

The metric that is used for BC-FB and VM-iPiano is actually not feasible, as (29) and (30) are not sufficient
to guarantee that the metric induces a quadratic majorizer to the function f (cf. (8)). The gradient is not
linear with respect to both coordinates. The gradient is linear only if one coordinate is fixed. Nevertheless,
in our practical experiments, the methods converged. In future work, we want to analyze if this inaccuracy
can be compensated by making use of relative error conditions, which are not yet incorporated into the
algorithms.

We solve problem (28) with all methods up to 1000 iterations and define E∗ as the minimal objective
value that is achieved among all methods. Let E0 be the initial value. Figure 3 plots the decrease of the
relative objective value (En − E∗)/(E0 − E∗) along the iterations n on a logarithmic scale on both axes.

The performance of FB and iPiano are nearly identical as they do not explore the different scaling
of w- and z-coordinates, unlike BC-FB and BC-iPiano. As both block coordinates seem to “live” on a
different scale, block coordinate methods are favorable. However, as the immense performance speed up

2Note that I is normalized to [0, 1] and, thus, we observed that w stays in [0, 1] too. Therefore (D1w)2i is in [0, 1].
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Figure 3: Number of iterations vs. relative objective value for solving (28). The performance is significantly improved
for methods that take a variable metric into account. Intuitively, this means that the coordinates of the optimization
variable are irregularly scaled along the iterations. The variable metric version of iPiano shows the best performance.

of the variable metric methods shows the irregular scaling happens to be present also among different w-
coordinates, respectively, z-coordinates. Throughout the experiments, we have noticed that optimization
problems where regularization (like smoothness between pixels) is important, inertial methods seem to
perform slightly better in general. For this experiment variable metric iPiano shows the best performance
and sets the value for E∗, the lowest objective value among all methods after 1000 iterations.

7 Conclusion

In this paper, we presented a convergence analysis for abstract inexact descent methods based on the KL-
inequality that unifies and generalizes the analysis in Attouch et al. [5], Frankel et al. [16] and Ochs et al.
[28]. The novel convergence theorem allows for more flexibility in the design of descent algorithms. More in
detail, algorithms that imply a descent on a proper lower semi-continuous parametric function and satisfy a
certain relative error condition are considered. The parametric function can be seen as an objective function
that may vary along the iterations under mild restriction. The gained flexibility is used to formulate a
variable metric version of iPiano (an inertial forward–backward splitting-like method). Moreover, thanks
to a weakened contraction condition in the abstract convergence theorem, we obtain a block coordinate
variable metric version of iPiano almost for free. Both algorithms are formulated such that they can be
easily implemented with full control about the step size parameters. Finally, the algorithms are shown to
perform well on the practical problem of image compression using a Mumford–Shah-like regularization.

Although the abstract convergence result provides the full flexibility in handling relative errors as in [16],
we do not explore an inexact formulation of (block coordinate variable metric) iPiano in this paper, and
postpone this research to future work.
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(a) input to model (28) (b) inpainting w using (28) (c) edges z using (28)

Figure 4: Solution to Problem 28. (a) shows the inpainting mask from Figure 2(b) weighted with the gray values
from Figure 2(a). (b) shows the solution image w and (c) the solution edge set z of (28). Although the model is
non-convex, visually all algorithm resulted in the same solution. Figure 3 shows that the final objective values differ.
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