
Supplementary Material for
"FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks"

Figure 1. Flow field color coding used in this paper. The displace-
ment of every pixel in this illustration is the vector from the center
of the square to this pixel. The central pixel does not move. The
value is scaled differently for different images to best visualize the
most interesting range.

1. Video

Please see the supplementary video for FlowNet2 results
on a number of diverse video sequences, a comparison be-
tween FlowNet2 and state-of-the-art methods, and an illus-
tration of the speed/accuracy trade-off of the FlowNet 2.0
family of models.

Optical flow color coding. For optical flow visualization
we use the color coding of Butler et al. [3]. The color cod-
ing scheme is illustrated in Figure 1. Hue represents the
direction of the displacement vector, while the intensity of
the color represents its magnitude. White color corresponds
to no motion. Because the range of motions is very different
in different image sequences, we scale the flow fields before
visualization: independently for each image pair shown in
figures, and independently for each video fragment in the
supplementary video. Scaling is always the same for all
methods being compared.

2. Dataset Schedules: KITTI2015 Results

In Table 1 we show more results of training networks
with the original FlowNet schedule Sshort [4] and the new
FlowNet2 schedules Slong and Sfine . We provide the end-
point error when testing on the KITTI2015 train dataset. Ta-
ble 1 in the main paper shows the performance of the same
networks on Sintel. One can observe that on KITTI2015, as
well as on Sintel, training with Slong + Sfine on the com-

Architecture Datasets Sshort Slong Sfine

FlowNetS

Chairs 15.58 - -
Chairs - 14.60 14.28

Things3D - 16.01 16.10
mixed - 16.69 15.57

Chairs→Things3D - 14.60 14.18

FlowNetC
Chairs 13.41 - -

Chairs→Things3D - 12.48 11.36

Table 1. Results of training FlowNets with different schedules
on different datasets (one network per row). Numbers indicate
endpoint errors on the KITTI2015 training dataset.

bination of Chairs and Things3D works best (in the paper
referred to as Chairs→Things3D schedule).

3. Recurrently Stacking Networks with the
Same Weights

The bootstrap network differs from the succeeding net-
works by its task (it needs to predict a flow field from
scratch) and inputs (it does not get a previous flow esti-
mate and a warped image). The network after the boot-
strap network only refines the previous flow estimate, so it
can be applied to its own output recursively. We took the
best network from Table 2 of the main paper and applied
Net2 recursively multiple times. We then continued train-
ing the whole stack with multiple Net2. The difference from
our final FlowNet2 architecture is that here the weights are
shared between the stacked networks, similar to a standard
recurrent network. Results are given in Table 2. In all cases
we observe no or negligible improvements compared to the
baseline network with a single Net2.

4. Small Displacements
4.1. The ChairsSDHom Dataset

As an example of real-world data we examine the
UCF101 dataset [9]. We compute optical flow using
LDOF [4] and compare the flow magnitude distribution to
the synthetic datasets we use for training and benchmark-
ing, this is shown in Figure 3. While Chairs are similar
to Sintel, UCF101 is fundamentally different and contains
much more small displacments.
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Training of Warping
Net2 gradient EPE

enabled enabled
Net1 + 1×Net2 7 – 2.93
Net1 + 2×Net2 7 – 2.95
Net1 + 3×Net2 7 – 3.04
Net1 + 3×Net2 3 7 2.85
Net1 + 3×Net2 3 3 2.85

Table 2. Stacked architectures using shared weights. The com-
bination in the first row corresponds to the best results of Table 2
from the paper. Just applying the second network multiple times
does not yield improvements. In the two bottom rows we show
the results of fine-tuning the stack of the top networks on Chairs
for 100k more iterations. This leads to a minor improvement of
performance.

Figure 2. Images from the ChairsSDHom (Chairs Small Displace-
ment Homogeneous) dataset.

To create a training dataset similar to UCF101, follow-
ing [4], we generated our ChairsSDHom (Chairs Small Dis-
placement Homogeneous) dataset by randomly placing and
moving chairs in front of randomized background images.
However, we also followed Mayer et al. [6] in that our
chairs are not flat 2D bitmaps as in [4], but rendered 3D
objects. Similar to Mayer et al., we rendered our data first
in a “raw” version to get blend-free flow boundaries and
then a second time with antialiasing to obtain the color im-
ages. To match the characteristic contents of the UCF101
dataset, we mostly applied small motions. We added scenes
with weakly textured background to the dataset, being
monochrome or containing a very subtle color gradient.
Such monotonous backgrounds are not unusual in natural
videos, but almost never appear in Chairs or Things3D. A
featureless background can potentially move in any direc-
tion (an extreme case of the aperture problem), so we kept
these background images fixed to introduce a meaningful
prior into the dataset. Example images from the dataset are
shown in Figure 2.

4.2. Fine-Tuning FlowNet2-CSS-ft-sd

With the new ChairsSDHom dataset we fine-tuned our
FlowNet2-CSS network for smaller displacements (we de-
note this by FlowNet2-CSS-ft-sd). We experimented with
different configurations to avoid sacrificing performance on
large displacements. We found the best performance can
be achieved by training with mini-batches of 8 samples: 2
from Things3D and 6 from ChairsSDHom. Furthermore,

Name Kernel Str. Ch I/O In Res Out Res Input
conv0 3×3 1 6/64 512×384 512×384 Images
conv1 3×3 2 64/64 512×384 256×192 conv0
conv1_1 3×3 1 64/128 256×192 256×192 conv1
conv2 3×3 2 128/128 256×192 128×96 conv1_1
conv2_1 3×3 1 128/128 128×96 128×96 conv2
conv3 3×3 2 128/256 128×96 64×48 conv2_1
conv3_1 3×3 1 256/256 64×48 64×48 conv3
conv4 3×3 2 256/512 64×48 32×24 conv3_1
conv4_1 3×3 1 512/512 32×24 32×24 conv4
conv5 3×3 2 512/512 32×24 16×12 conv4_1
conv5_1 3×3 1 512/512 16×12 16×12 conv5
conv6 3×3 2 512/1024 16×12 8×6 conv5_1
conv6_1 3×3 1 1024/1024 8×6 8×6 conv6
pr6+loss6 3×3 1 1024/2 8×6 8×6 conv6_1
upconv5 4×4 2 1024/512 8×6 16×12 conv6_1
rconv5 3×3 1 1026/512 16×12 16×12 upconv5+pr6+conv5_1
pr5+loss5 3×3 1 512/2 16×12 16×12 rconv5
upconv4 4×4 2 512/256 16×12 32×24 rconv5
rconv4 3×3 1 770/256 32×24 32×24 upconv4+pr5+conv4_1
pr4+loss4 3×3 1 256/2 32×24 32×24 rconv4
upconv3 4×4 2 256/128 32×24 64×48 rconv4
rconv3 3×3 1 386/128 64×48 64×48 upconv3+pr4+conv3_1
pr3+loss3 3×3 1 128/2 64×48 64×48 rconv3
upconv2 4×4 2 128/64 64×48 128×96 rconv3
rconv2 3×3 1 194/64 128×96 128×96 upconv2+pr3+conv2_1
pr2+loss2 3×3 1 64/2 128×96 128×96 rconv2

Table 3. The details of the FlowNet2-SD architecture.

Name Kernel Str. Ch I/O In Res Out Res Input
conv0 3×3 1 6/64 512×384 512×384 Img1+flows+mags+errs
conv1 3×3 2 64/64 512×384 256×192 conv0
conv1_1 3×3 1 64/128 256×192 256×192 conv1
conv2 3×3 2 128/128 256×192 128×96 conv1_1
conv2_1 3×3 1 128/128 128×96 128×96 conv2
pr2+loss2 3×3 1 128/2 128×96 128×96 conv2_1
upconv1 4×4 2 128/32 128×96 256×192 conv2_1
rconv1 3×3 1 162/32 256×192 256×192 upconv1+pr2+conv1_1
pr1+loss1 3×3 1 32/2 256×192 256×192 rconv1
upconv0 4×4 2 32/16 256×192 512×384 rconv1
rconv0 3×3 1 82/16 512×384 512×384 upconv0+pr1+conv0
pr0+loss0 3×3 1 16/2 512×384 512×384 rconv0

Table 4. The details of the FlowNet2 fusion network architecture.

we applied a nonlinearity of x0.4 to the endpoint error to
emphasize the small-magnitude flows.

4.3. Network Architectures

The architectures of the small displacement network and
the fusion network are shown in Tables 3 and 4. The input
to the small displacement network is formed by concatenat-
ing both RGB images, resulting in 6 input channels. The
network is in general similar to FlowNetS. Differences are
the smaller strides and smaller kernel sizes in the beginning
and the convolutions between the upconvolutions.

The fusion network is trained to merge the flow esti-
mates of two previously trained networks, and this task dic-
tates the input structure. We feed the following data into
the network: the first image from the image pair, two es-
timated flow fields, their magnitudes, and finally the two
squared Euclidean photoconsistency errors, that is, per-
pixel squared Euclidean distance between the first image
and the second image warped with the predicted flow field.
This sums up to 11 channels. Note that we do not input
the second image directly. All inputs are at full image reso-
lution, flow field estimates from previous networks are up-
sampled with nearest neighbor upsampling.
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Figure 3. Left: histogram of displacement magnitudes of different datasets. y-axis is logarithmic. Right: zoomed view for very small
displacements. The Chairs dataset very closely follows the Sintel dataset, while our ChairsSDHom datasets is close to UCF101. Things3D
has few small displacements and for larger displacements also follows Sintel and Chairs. The Things3D histogram appears smoother
because it contains more raw pixel data and due to its randomization of 6-DOF camera motion.

5. Evaluation
5.1. Intermediate Results in Stacked Networks

The idea of the stacked network architecture is that the
estimated flow field is gradually improved by every network
in the stack. This improvement has been quantitatively
shown in the paper. Here, we additionally show qualitative
examples which clearly highlight this effect. The improve-
ment is especially dramatic for small displacements, as il-
lustrated in Figure 4. The initial prediction of FlowNet2-C
is very noisy, but is then significantly refined by the two suc-
ceeding networks. The FlowNet2-SD network, specifically
trained on small displacements, estimates small displace-
ments well even without additional refinement. Best results
are obtained by fusing both estimated flow fields. Figure 5
illustrates this for a large displacement case.

5.2. Speed and Performance on KITTI2012

Figure 6 shows runtime vs. endpoint error comparisons
of various optical flow estimation methods on two datasets:
Sintel (also shown in the main paper) and KITTI2012. In
both cases models of the FlowNet 2.0 family offer an ex-
cellent speed/accuracy trade-off. Networks fine-tuned on
KITTI are not shown. The corresponding points would be
below the lower border of the KITTI2012 plot.

5.3. Motion Segmentation

Table 5 shows detailed results on motion segmentation
obtained using the algorithms from [7, 5] with flow fields
from different methods as input. For FlowNetS the algo-
rithm does not fully converge after one week on the train-
ing set. Due to the bad flow estimations of FlowNetS [4],
only very short trajectories can be computed (on average
about 3 frames), yielding an excessive number of trajecto-
ries. Therefore we do not evaluate FlowNetS on the test
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Figure 6. Runtime vs. endpoint error comparison to the fastest
existing methods with available code. The FlowNet2 family out-
performs other methods by a large margin.

set. On all metrics, FlowNet2 is at least on par with the best
optical flow estimation methods and on the VI (variation of
information) metric it is even significantly better.
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Figure 4. Three examples of iterative flow field refinement and fusion for small displacements. The motion is very small (therefore mostly
not visible in the image overlays). One can observe that FlowNet2-SD output is smoother than FlowNet2-CSS output. The fusion correctly
uses the FlowNet2-SD output in the areas where FlowNet2-CSS produces noise due to small displacements.

5.4. Qualitative results on KITTI2015

Figure 7 shows qualitative results on the KITTI2015
dataset. FlowNet2-kitti has not been trained on these im-
ages during fine-tuning. KITTI ground truth is sparse, for
better visualization we interpolated the ground truth bilin-

early. FlowNet2-kitti significantly outperforms competing
approaches both quantitatively and qualitatively.
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Figure 5. Iterative flow field refinement and fusion for large displacements. The large displacements branch correctly estimates the large
motions; the stacked networks improve the flow field and make it smoother. The small displacement branch cannot capture the large
motions and the fusion network correctly chooses to use the output of the large displacement branch.

Method Training set (29 sequences) Test set (30 sequences)
D P R F VI O D P R F VI O

LDOF (CPU) [2] 0.81% 86.73% 73.08% 79.32% 0.267 31/65 0.87% 87.88% 67.70% 76.48% 0.366 25/69
DeepFlow [11] 0.86% 88.96% 76.56% 82.29% 0.296 33/65 0.89% 88.20% 69.39% 77.67% 0.367 26/69
EpicFlow [8] 0.84% 87.21% 74.53% 80.37% 0.279 30/65 0.90% 85.69% 69.09% 76.50% 0.373 25/69
FlowFields [1] 0.83% 87.19% 74.33% 80.25% 0.282 31/65 0.89% 86.88% 69.74% 77.37% 0.365 27/69
FlowNetS [4] 0.45% 74.84% 45.81% 56.83% 0.604 3/65 0.48% 68.05% 41.73% 51.74% 0.60 3/69
FlowNet2-css-ft-sd 0.78% 88.07% 71.81% 79.12% 0.270 28/65 0.81% 83.76% 65.77% 73.68% 0.394 24/69
FlowNet2-CSS-ft-sd 0.79% 87.57% 73.87% 80.14% 0.255 31/65 0.85% 85.36% 68.81% 76.19% 0.327 26/69
FlowNet2 0.80% 89.63% 73.38% 80.69% 0.238 29/65 0.85% 86.73% 68.77% 76.71% 0.311 26/69
LDOF (CPU) [2] 3.47% 86.79% 73.36% 79.51% 0.270 28/65 3.72% 86.81% 67.96% 76.24% 0.361 25/69
DeepFlow [11] 3.66% 86.69% 74.58% 80.18% 0.303 29/65 3.79% 88.58% 68.46% 77.23% 0.393 27/69
EpicFlow [8] 3.58% 84.47% 73.08% 78.36% 0.289 27/65 3.83% 86.38% 70.31% 77.52% 0.343 27/69
FlowFields [1] 3.55% 87.05% 73.50% 79.70% 0.293 30/65 3.82% 88.04% 68.44% 77.01% 0.397 24/69
FlowNetS [4]∗ 1.93% 76.60% 45.23% 56.87% 0.680 3/62 – – – – – –/69
FlowNet2-css-ft-sd 3.38% 85.82% 71.29% 77.88% 0.297 26/65 3.53% 84.24% 65.49% 73.69% 0.369 25/69
FlowNet2-CSS-ft-sd 3.41% 86.54% 73.54% 79.52% 0.279 30/65 3.68% 85.58% 67.81% 75.66% 0.339 27/69
FlowNet2 3.41% 87.42% 73.60% 79.92% 0.249 32/65 3.66% 87.16% 68.51% 76.72% 0.324 26/69

Table 5. Results on the FBMS-59 [10, 7] dataset on training (left) and test set (right). Best results are highlighted in bold. Top: low
trajectory density (8px distance), bottom: high trajectory density (4px distance). We report D: density (depending on the selected trajectory
sparseness), P: average precision, R: average recall, F: F-measure, VI: variation of information (lower is better), and O: extracted objects
with F ≥ 75%. (∗) FlownetS is evaluated on 28 out of 29 sequences. On the sequence lion02, the optimization did not converge after one
week. Due to the convergence problems we do not evaluate FlowNetS on the test set.

6. Warping Layer

The following two sections give the mathematical details
of forward and backward passes through the warping layer
used to stack networks.

6.1. Definitions and Bilinear Interpolation

Let the image coordinates be x = (x, y)> and the set of
valid image coordinates R. Let I(x) denote the image and
w(x) = (u(x), v(x))> the flow field. The image can also
be a feature map and have arbitrarily many channels. Let
channel c be denoted with Ic(x). We define the coefficients:

θx = x− bxc, θx = 1− θx,
θy = y − byc, θy = 1− θy (1)

and compute a continuous version Ĩ of I using bilinear in-
terpolation in the usual way:

Ĩ(x, y) = θxθyI(bxc, byc)
+ θxθyI(dxe, byc)
+ θxθyI(bxc, dye)
+ θxθyI(dxe, dye)

(2)

6.2. Forward Pass

During the forward pass, we compute the warped image
by following the flow vectors. We define all pixels to be
zero where the flow points outside of the image:

JI,w(x) =

{
Ĩ(x+w(x)) if x+w(x) is in R,
0 otherwise.

(3)
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Figure 7. Qualitative results on the KITTI2015 dataset. Flow fields produced by FlowNet2-kitti are significantly more accurate, detailed
and smooth than results of all other methods. Sparse ground truth has been interpolated for better visualization (note that this can cause
blurry edges in the ground truth).

6.3. Backward Pass

During the backward pass, we need to compute the
derivative of JI,w(x) with respect to its inputs I(x′) and
w(x′), where x and x′ are different integer image loca-
tions. Let δ(b) = 1 if b is true and 0 otherwise, and let
x + w(x) = (p(x), q(x))>. For brevity, we omit the de-
pendence of p and q on x. The derivative with respect to
Ic(x

′) is then computed as follows:

∂Jc(x)

∂Ic(x′)
=

∂Ĩc(x+w(x))

∂Ic(x′)

=
∂Ĩc(p, q)

∂Ic(x′, y′)

= θx′θy′δ(bpc = x′)δ(bqc = y′)

+ θx′θy′δ(dpe = x′)δ(bqc = y′)

+ θx′θy′δ(bpc = x′)δ(dqe = y′)

+ θx′θy′δ(dpe = x′)δ(dqe = y′). (4)

The derivative with respect to the first component of the
flow u(x) is computed as follows:

∂J(x)

∂u(x′)
=

{
0 if x 6= x′ or (p, q)> /∈ R
∂Ĩ(x+w(x))

∂u(x) otherwise.
(5)

In the non-trivial case, the derivative is computed as fol-

lows:

∂Ĩ(x+w(x))

∂u(x)
=

∂Ĩ(p, q)

∂u

=
∂Ĩ(p, q)

∂p

=
∂

∂p
θpθqI(bpc, bqc)

+
∂

∂p
θpθqI(dpe, bqc)

+
∂

∂p
θpθqI(bpc, dqe)

+
∂

∂p
θpθqI(dpe, dqe)

= − θqI(bpc, bqc)
+ θqI(dpe, bqc)
− θqI(bpc, dqe)
+ θqI(dpe, dqe). (6)

Note that the ceiling and floor functions (d·e, b·c) are non-
differentiable at points with integer coordinates and we use
directional derivatives in these cases. The derivative with
respect to v(x) is analogous.
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