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1 Computation of PSNR values

For all our evaluation results, the reported PSNR values are computed using
only the Y channel of the estimated YCbCr image. In case of RGB images, we
first convert to YCbCr color space and then compute on the Y channel. For all
experiments using the SRCNN [1] or VSR [5] architecture, we follow [5] and
for technical reasons crop away 12 pixels of the boundary from the estimated
high-resolution images before computing PSNR values.

2 Displacement magnitudes

We have noted that improvements using motion compensation are generally
smaller on Myanmar than on Videoset4. In Table 1, we compute the average
motion magnitudes of the datasets and note that the displacements are also
generally smaller in the Myanmar validation set.

l Dataset ‘Avg. Mag.

Myanmar training | 1.50px
Myanmar validation| 0.43px
Videoset4 1.29px

Table 1: Average motion magnitudes computed using FlowNet2 [4]. The numbers
show that the Myanmar validation set has the smallest displacements.

3 Video super-resolution with patch-based training

Using patch-based training, we retrain and evaluate SRCNN [1] and VSR [5] us-
ing different kind of motion compensations. However, the resulting PSNR scores
in Table 2 are all similar and we conclude that motion compensation on Myan-
mar has no effect. We also evaluate on Videoset4 (Table 3) and there see a small
increment of 0.18 for FlowNet2 [4] and FlowNet2-SD [4].
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Arch Tested on only no Drulea |FlowNet2-| FlowNet2
" || Trained on center warp 2] SD [4] [4]
[SRCNN]| only center || 31.62 ] - ‘ - ‘ - ‘ - |
only center 31.76 - - - -
no warp 31.80 31.83 - - -
VSR Drulea [2] 3177 3174 31.81 . -
FlowNet2-SD [4] 31.75 31.75 31.79 31.77 -
FlowNet2 [4] 31.76 31.76 31.80 31.78 31.79

Table 2: PSNR scores for patch-based video superresolution on the Myanmar
validation set. We retrained the architecture of [5] using only the center frames
(replicated three times), original images, and motion compensated frames. One
can observe that all scores are nearly the same and motion compensation on the
Myanmar validation set has no effect over providing original images or even only
the center image.

Motion compensation |Videoset4
during training and testing| PSNR
only center 24.60
no warp 24.59
Drulea [2] 24.69
FlowNet2-SD [4] 24.77
FlowNet2 [4] 24.77

Table 3: Evaluation of the different retrained VSR models from Table 2 on
Videoset4. Motion compensation shows a small performance improvement.

| Setting [ Patch-based [ Image-based ‘
Learning rate le — 05 le — 05
Learning rate policy fixed multistep!
Momentum 0.9 0.9
Weight decay 0.0005 0.0004
Batch size 240 2

Input resolution 36 x 36 960 x 540
Image pixels in batch 311k 1M
Training iterations 200k 300k
Training time 7 hours 32 hours

Table 4: Different settings of patch- and image-based traing. Settings are very
similar, except that the number of pixels and trainig time in image-based training
are larger. Note that the number of pixels is also further boosted much more by
sliding the convolutions from the VSR architecture over the entire images with
a stride of one. Tmultiplied by 0.5 every 50k iterations.
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4 Video super-resolution with image-based training

We perform the same set of experiments as in the last section for image-based
training. Comparing Table 2 to Table 5, we find that PSNRs are generally around
1 point higher. We also provide all the training settings in Table 4. Image-
based training in general processes more training data and sees a lot of similar
data during training by sliding the convolutions over an entire image. Motion
compensation on Myanmar (Table 5) still seams to have little effect, while motion
compensation on Videoset4 does show better PSNR values (Table 6).

Arch Tested on only no Drulea |FlowNet2-| FlowNet2
‘|| Trained on center warp 2] SD [4] [4]
only center 32.41 - - - -
no warp 32.38 32.55 - - -
VSR Drulea [2] 32.37 32.26 32.60 - -
FlowNet2-SD [4] 32.35 32.37 32.58 32.62 -
FlowNet2 [4] 32.37 32.36 32.61 32.61 32.63

Table 5: PSNR scores from Myanmar validation (ours). We now train the ar-
chitecture of [5] by applying it as a convolution over the complete images. We
again evaluate using only the center frame, original images and differently mo-
tion compensated frames. One can observe that scores are significantly better
compared to the patch-based training, but motion compensation on the Myan-
mar validation set still has negligible effect compared to training on original
frames.

Training input [PSNR‘
only center 24.66
no warp 24.79
Drulea [2] 24.91
FlowNet2-SD [4]| 25.12
FlowNet2 [4] |25.13

Table 6: Evaluation of the different image-based models on Videoset4. Motion
compensation in this case also shows a performance improvement.
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5 Joint Training

Since the FlowNet2-SD [4] is completely trainable, we can refine the optical flow
for the task of video super-resolution by training the whole network end-to-end
with the super-resolution loss. This potentially allows the optical flow estimation
to focus on aspects that are most relevant for the super-resolution task. As an
initialization we took the VSR network trained on FlowNet2-SD [4] from the last
section and used the same settings from Table 4, but now cropped the images
to a resolution of 256 x 256 to enable a batch size of 8. We then trained for
100k more iterations. The result is given in Table 7 and Figures 1(b) and 1(e).
We cannot see the flow itself improve, but we see a small improvement in the
PSNR value on Videoset4 and from the images one can observe that the ringing
artifacts disappear.

L e TR e e
(a) Initialization (b) After joint training  (c) After joint training with
smoothness
' ! !
= = ’
(d) Initialization (e) After joint training  (f) After joint training with
smoothness

Fig. 1: Example super-resolved image after training FlowNet2-SD [4] with VSR
(a and d) jointly (b and e) and including a smoothness constraint (¢ and f).

Test set After After joint After joint
initialization| training [training with smoothness
Myanmar validation 32.62 32.63 32.61
VideoSet4 25.12 25.21 25.19

Table 7: Evaluation of refining FlowNet2-SD [4] on the super-resolution task.
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In Figure 1(e), one can observe that many image details become flow arti-
facts. This is due to nature of the gradient through the warping operation; it
corrects the flow vector to the best directly neighboring pixel, which is in most
cases a local minimum. Following [3], we add a regularization loss that penalizes
deviations from smoothness in the optical flow field, weighted with an image
edge-aware term:

Lr =Y (Ll (0pu] + [0p0]) + €10 (9] + l00)) (1)

12}
where [ is the first image. ¢, j is a pixel location and u, v are the =,y components
of the flow vector. The results of training with this additional smoothness term
are given in Table 7 and Figures 1(c) and 1(f). The flow shows less artifacts than

Figure 1(e), but compared to Figure 1(b) some very slight ringing artifacts still
remain.

6 Evaluating Architectures and Datasets

In first part of the paper, the architecture from Dong et al. [1] adapted to
video super-resolution by Kappeler et al. [5] and the Myanmar training dataset
were used. Here, we investigate the effect of architectures and training datasets.
We extended the Myanmar training set by more high-resolution videos that
we downloaded from Youtube. The resulting dataset has 162k frames of res-
olution 960 x 540 and we named it MYT. We evaluate and compare the SR-
CNN [1], the FlowNet2-SD [4] (here used for super-resolution, not flow) and the
encoder-/decoder part of the architecture from Tao et al. [6] (SPMC-ED) for
single image super-resolution on the old and new datasets. The results are given
in Table 8.

SRCNN [1] trained on SRCNN [1] [FlowNet2-SD [4]| SPMC-ED [6]
Myanmar training (ours)|trained on MYT |trained on MYT|trained on MYT

Myanmar validation (ours) 32.42 31.98 31.47 32.63
Videoset4 24.63 24.70 24.93 25.07
Number of parameters 57K 57K 14M 491K

Table 8: PSNR values for different architectures and training datasets tested for
single-image super-resolution.

One can observe that SRCNN [1] tends to overfit on the Myanmar dataset.
The much deeper FlowNet2-SD [4] architecture performs worse on Myanmar,
but can generalize better to Videoset4. The size of SPMC-ED [6] is between
the former two and we observe that it performs best on Myanmar and also for
generalization to Videoset4. It clearly gives better results than SRCNN [1] and
for this reason we also use it for the final network in the paper.
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