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Abstract— This paper explores and investigates Deep Con-
volutional Neural Networks (DCNNs) architectures to increase
efficiency and robustness of semantic segmentation tasks. The
proposed solutions are based on Up-Convolutional Networks.
We introduce three different architectures in this work. The
first architecture, called Part-Net, is designed to tackle the
specific problem of human body part segmentation and to
provide robustness to overfitting and body part oclussion.
The second network, called Fast-Net, is a network specifically
designed to provide the lowest computation load without loosing
representation power. Such architecture is capable of being run
on mobile GPUs. The last architecture, called M-Net, aims
to maximize the robustness characteristics of deep semantic
segmentation approaches through multiresolution fusion. The
networks achieve state-of-the-art performance on the PASCAL
Parts Dataset and competitive results on the KITTI dataset for
road and lane segmentation. Moreover, we introduce a new part
segmentation dataset designed to bring semantic segmentation
to highly realistic robotics scenarios, called Freiburg City
Dataset. Additionally, we present results obtained with a ground
robot and an unmanned aerial vehicle and a full system which
explore the capabilities of human body part segmentation in
the context of human-robot interaction.

I. 1. INTRODUCTION

Convolutional Neural Networks (CNNs) are driving ad-
vances in many areas of visual perception, such as object
detection [11]–[13], place recognition [38], localization [18] ,
visual odometry [1], [19] and classification [20], [37]. CNNs
have the ability to learn effective hierarchical feature repre-
sentations that characterize the typical variations observed in
visual data, which makes them very well-suited for all visual
classification tasks. While these previous approaches present
state of the art results they still produce coarse inference and
suffer from efficiency and robustness issues. The so-called up-
convolutional networks extend CNNs towards fine inference,
making pixel-wise prediction [8], [23].

In this paper we will explore and investigate techniques to
increase efficiency and robustness of deep learning architec-
tures for semantic segmentation. We introduce three different
architectures. The first architecture, called Part-Net [30], is
designed to tackle the specific problem of human body part
segmentation and to provide robustness to overfitting and
occlusion. The second network, called Fast-Net, is a network
designed to provide a low computational power semantic
segmentation architecture. The third architecture, called M-
Net, aims to maximize the robustness of deep architectures
using multiresolution fusion. We are interested in predicting
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high resolution segmentation masks as shown in Figure 1, in
contrast to predicting a single class label per image.

In contrast to usual classification CNNs, which contract
the high-resolution input to a low-resolution output, up-
convolutional networks can take an abstract low-resolution
input and predict a high-resolution output, such as a full-
size image [8]. In [23], an up-convolutional network was
attached to a classification network, which resolves the above-
mentioned limitation: the contractive network part includes
large receptive fields, while the up-convolutional part provides
high localization accuracy. In this work, we demonstrate
the power of up-convolutional networks to solve a wide
range of segmentation tasks and propose architectures to
solve human part segmentation and road and lane detection.
Additionally a novel architecture based on multiresolution
fusion is introduced to increase the robustness of these
networks.

To evaluate the architectures we tested our techniques on
the following datasets: PASCAL parts [6], Freiburg Sitting
People and Freiburg People in Disaster [30]. We also tested on
the KITTI-Road dataset [10] for road and lane segmentation
and on Freiburg City dataset for realistic human body part
segmentation in urban scenarios. Further experiments with a
full robotic system were carried out to measure the behavior
of our human body part segmentation approach in a human-
robot interaction task.

The results show that the proposed architectures achieved
their desired goals with substantial improvements in efficiency
and robustness. For road and lane segmentation, we show
competitive results. In the other test cases we outperform the
compared techniques in terms of computational performance
and accuracy.

The paper is organized as follows. We first discuss related
work in Section 2. In Section 3, we present the proposed
architectures. Experimental results are described in Section
4. Ongoing work and possible future research directions are
discussed in Section 5.

II. 2. RELATED WORK

In the last two years deep learning approaches have
achieved state of the art performance in semantic segmenta-
tion. Previous approaches rely on pre or post-processing and
encode segmentation relations using Conditional Random
Fields (CRFs) [4], [25], [32]. [32] presented an approach
that couples local image features with a CRF and an image
classification approach to combine global image classification
with local segmentation. Another branch of CRFs called
Hierarchical Conditional Random Fields (HCRF) has been
introduced by [4]. They proposed a technique called harmony
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Fig. 1: Input image (left) and the corresponding mask (right) predicted by our networks for human body part segmentation,
in the top row. The bottom row shows obtained results for road and lane segmentation.

potential to overcome a problem of classical HCRFs, which
do not allow multiple classes to be assigned to a single region.
[25] used an alternative approach for people detection and
segmentation, in which they merge the outputs of a top-down
part detector in a generalized eigen problem, producing pixel
groupings.

The first method capable of processing arbitrarily-sized
inputs was introduced in [26]. They proposed a fully convo-
lutional network (FCN) to recognize strings of digits. This
network was restricted to one-dimension input strings and
the authors used Viterbi decoding to obtain the recognition
outputs. Another pioneering work is from [41]. They extended
a FCN to estimate a two-dimensional score detection map for
the four corners of postal address blocks. Aforementioned
methods were applied to detection and had only two or three
layers. Recently much deeper fully convolutional networks
were applied to semantic segmentation [31], image restoration
[9] and detection [35]. [31] proposed a recurrent neural
network for scene segmentation, which works on image
patches. [35] proposed a CNN sliding window approach
which simultaneously recognizes, locates and detects objects.

In contrast to previous FCN networks, the architecture
proposed by [23] allows training the network end-to-end
for semantic segmentation tasks using the whole image as
input. The proposed method does not require any pre or
post-processing method, unlike earlier approaches which rely
on segmenting image patches and additional techniques to
perform segmentation [29], [31]. The concept of [23] shows
better performance and provides the state-of-the-art results
in generic semantic segmentation problems. It replaces the
fully connected layers of a deep classification network, e.g.
VGG [37], by convolutional layers that produce coarse score
maps. Successive up-convolutional refinements allows them
to increase the resolution of these score maps. This kind of
architecture was used for other problems. These new tasks
include optical flow [7], depth estimation [21], edge detection
[42] and region proposal generation [12].

The latest methods building on the FCN architecture are
[3], [22], [30], [33], [34]. Our previous paper [30] discusses
the Part-Net architecture, where we focused on human part
segmentation and optimized the use of dropout to prevent

over-fitting increasing robustness to occluded parts. [22]
proposed a new architecture called ParseNet which focuses
on global pooling and can model global context directly. [33]
presented the U-Net, an up-convolutional network for pixel
classification of microscopy images. [34] presented a FCN
architecture for detection and tracking of liquids. The authors
also utilized a long short-term memory (LSTM) recurrent
cell to incorporate temporal information to the FCN based
approach. [3] proposed a variation of the FCN architecture
focusing on computational efficiency called SegNet. Their
main contribution is related to improving the network’s
performance by the use of pooling indices computed in
the max-pooling step to perform upsampling. The authors
claim such approach eliminates the need for learning to
upsample and reduces the systems memory requirements.
Our low computation requirement architecture (Fast-Net)
is different from Seg-Net with regard to the proposed
architectural changes and to the identification and suppression
of bottlenecks of FCNs.

Several works have been proposed on animal part segmen-
tation and person keypoint prediction [16], [36], [39], [43],
[44]. [43] performed part detection based on region proposals
that are classified using a CNN. The approach was tested on
a bird part segmentation dataset. [39] developed an approach
that learns an end-to-end human keypoint detector for pose
estimation using a CNN. [16] presents a sliding window
approach for part localization with CNNs. They employ
a CNN at each position of the window to detect human
body parts. This requires thousands of CNN evaluations per
image and makes the approach comparatively slow. None
of these approaches has been applied to human body part
segmentation.

Road and lane segmentation benchmarks are currently
dominated by the following deep learning approaches [2], [5],
[28]. [2] introduced a road scene segmentation approach that
learns a classifier based on hand-crafted features, creating
the training samples for a CNN network. The network learns
specific domain features based on the machine-generated
annotations. [5] introduced convolutional patch networks,
which are CNNs designed for patch segmentation, allowing
pixel-wise labeling. This technique also explicitly provides



spatial information of the patch to the network, allowing
incorporation of a spatial prior to the network. [28] presented
a CNN architecture in combination with deconvolutions. The
author proposed a multi-patch technique that learns region-
specific features, each patch region is trained on a separate
network. This method currently provides the best results
on the KITTI benchmark. While being less deep than our
architectures, the proposed network is computational costly
and is not able to provide interactive frame rates.

In this paper, we propose multiple architectures which ex-
plore specific task features (Part-Net), an architecture designed
to provide maximum trade-off between computational burden
and segmentation accuracy (Fast-Net) and an architecture
created to provide higher robustness through multiresolution
fusion (M-Net). Our approach is built upon the architecture
from [23] and introduces several useful modifications. In
particular, our architectures explore all available pooling
layers for refinement, present a new refinement stage and
propose a new dropout layer to further extend the robustness
of such architectures to occlusion and clutter scenarios. We
also share similar objectives with [3] and [22] in terms of
better computational performance and segmentation robust-
ness, respectively. We show in Section 4 a set of experiments
directly comparing our architectures to the aforementioned
techniques.

III. 3. METHODOLOGY

Semantic segmentation associates each pixel i of an input
image x to one of Ncl class labels. In our approach, this task
is learned end-to-end from a training set D, which consists
of N input images xn and their corresponding ground truth
segmentation yn, which is given as a Ncl-channel image
with one-hot encoding. The learned network model f(x; θ) is
described by a parameter vector θ, which is optimized during
the training procedure according to the loss function

L(θ;D) =

N∑
n=1

Ncl∑
k=1

log(yn)smax(fk(xn; θ)) (1)

where smax is the softmax function

smax(ak) =
exp(ak)∑Ncl

l=1 exp(al)
(2)

over all classes. After training, we set the output at each
pixel to the class label k with the largest activation fk(x; θ).

A. 3.1 Part-Net

Part-Net is a network designed to provide highly accurate
human body part segmentation. The main novelties of such
architecture is the refinement procedure and the feature map
dropout module proposed by us in [30].

The network architecture is shown in Fig. 2. The parameters
of the contracting part of the network are initialized with the
parameters of the VGG classification network [37] to save
training time.

The proposed refinement architecture is composed of
multiple layers, where each layer combines the upsampled

output of its previous layer with the pooled features of
the corresponding layer of the contracting network part.
The former provides the preliminary class scores at the
coarse resolution, whereas the latter contributes information
for refining the resolution. The combination of both is
described in Fig. 3. The coarse score map is fed into an
up-convolutional layer, i.e., it is upsampled by a factor 2
via bilinear interpolation followed by a convolution. We
use a ReLU activation function after each up-convolutional
operation to avoid the vanishing gradient problem. The
feature map from the contracting network part is fed into
a convolutional layer followed by dropout to improve the
robustness to over-fitting. Finally, the output of both streams
are summed element-wise to yield the output of the refinement
layer. This output is the input for the next refinement layer.
Each layer increases the resolution of the segmentation by a
factor 2.

With this refinement architecture we manage to obtain a
high quality output at the resolution of the input image. This
is in contrast to [23], who stopped their refinement after
three layers, because they did not observe any improvement
afterwards. A full description of the architecture is presented
at Table I and results of an ablation study are shown in
Section 4.

Fig. 3: Description of the first refinement layer. Successive
refinement layers have the same architecture, but take different
inputs. The upper stream takes the output from the contractive
network (fc7-conv) or from the previous refinement layer as
input. It applies an up-convolution followed by a ReLU.
The lower stream takes high-resolution features from the
corresponding layer in the contractive network as input.

1) Feature Map Dropout:: To make Part-Net more robust
and specialized to human part segmentation we implement
a feature map dropout technique. The method consists of
extending the dropout to the entire feature map, not just
to some pixels like on the standard dropout. Feature map
dropout is based on the Spatial Dropout method [39] where
the authors also aim to increase robustness of CNNs, but in
this case, for human pose estimation. Spatial correlation is a
singular characteristic in human body part segmentation which
must be explored. Hence, dropout must also be correlated.
Feature map dropout performs a standard Bernoulli trial per
output feature during training, yet propagates the dropout
value across the entire feature map.

Given a network with L hidden layers and l ∈ {1, ..., L}.
Let zl be the vector of inputs into layer l and let yl denote
the vector of outputs from layer l. W l and bl are the weights
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Fig. 2: Part-Net architecture. Only convolutional, pooling, and up-convolutional layers are visualized. Up-convolutional layers
have size N = Ncl. We call the network part up to fc7-conv the contractive network part, whereas the part after fc7-conv is
called the expansive network part.

name kernel
size

stride pad output size

data - - - 300 × 300 × 3
conv1_1 3 × 3 1 100 498 × 498 × 64
conv1_2 3 × 3 1 1 498 × 498 × 64
pool1 2 × 2 2 0 249 × 249 × 64
conv2_1 3 × 3 1 1 249 × 249 × 128
conv2_2 3 × 3 1 1 249 × 249 × 128
pool2 2 × 2 2 0 125 × 125 × 128
conv3_1 3 × 3 1 1 125 × 125 × 256
conv3_2 3 × 3 1 1 125 × 125 × 256
conv3_3 3 × 3 1 1 125 × 125 × 256
pool3 2 × 2 2 0 63 × 63 × 256
conv4_1 3 × 3 1 1 63 × 63 × 512
conv4_2 3 × 3 1 1 63 × 63 × 512
conv4_3 3 × 3 1 1 63 × 63 × 512
pool4 2 × 2 2 0 32 × 32 × 512
conv5_1 3 × 3 1 1 32 × 32 × 512
conv5_2 3 × 3 1 1 32 × 32 × 512
conv5_3 3 × 3 1 1 32 × 32 × 512
pool5 2 × 2 2 0 16 × 16 × 512
fc6-conv 7 × 7 1 0 10 × 10 × 4096
fc7-conv 1 × 1 1 0 10 × 10 × 4096
Up-conv1 4 × 4 2 0 22 × 22 × Ncl

Up-conv2 4 × 4 2 0 46 × 46 × Ncl

Up-conv3 4 × 4 2 0 94 × 94 × Ncl

Up-conv4 4 × 4 2 0 190 × 190 × Ncl

Up-conv5 4 × 4 2 0 382 × 382 × Ncl

output - - - 300 × 300 × Ncl

TABLE I: Part-Net architecture in more detail. The Up-conv
layers refer to each refinement step. For brevity reasons
ReLUs, dropout and some layers from the up-convolution
step are not shown.

and biases at layer l. (∗) denote the element-wise product and
r(l) is the vector of independent Bernoulli random variables
that has probability p of being 1. Feature Map Dropout is
then expressed as

r(l)z ∼ Bernoulli(p)
∼
y
(l)

= r(l) ∗ y(l)

z
(l+1)
i = w

(l+1)
i

∼
y
(l)

+ b
(l+1)
i

y
(l+1)
i = f(z

(l+1)
i )

The variable
∼
y
(l)

is called thinned vector of outputs. This
sets apart the feature map dropout from the standard dropout.
The resulting thinner network

∼
y
(l)

has the entire feature
maps zeroed. For instance, in a convolution layer of size
(1, 64, 20, 20), and a dropout of 0.5, approximately 32 of the
64 feature channels will be zeroed after the input passes the
dropout layer.

Part-Net experiments are presented in Section 4 and
ratify the effectiveness of our architecture to human body
part segmentation. It yelds state-of-the-art results but does
not provide interactive frame rate computation. Our next
architecture aims to mitigate this limitation.

B. 3.2 Fast-Net

Fast-Net is an up-convolutional architecture which tackles
the main inefficiencies of such architectures. Our goal is
to provide the best trade-off between performance and
segmentation accuracy. Fast-Net is shown in Fig. 4 and a
detailed specification of the individual network layers are
given in Table II.

1) Optimizing the Use of Parameters:: The main motiva-
tion to design Fast-Net is to make up-convolutional networks
efficient in terms of memory and runtime, while keeping high
quality segmentation. Such requirements emerged from the
need to provide accurate and efficient segmentation for road
and lane detection. To meet these requirements we optimized
the number of network parameters.

2) Parameter reduction:: The fully convolutional network
from [23] and Part-Net use the VGG-16 classification network
as basis for the contraction side of the network. This
network has 4096 filters with 7 × 7 spatial size. The large
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Fig. 4: Fast-Net architecture. Up-convolutional layers have size equal to C ∗Ncl. C stands for the scalar factor of filters
augmentation.

name kernel
size

stride pad output size

data - - - 500 × 500 × 3
conv1_1 3 × 3 1 10 518 × 518 × 64
conv1_2 3 × 3 1 1 518 × 518 × 64
pool1 2 × 2 2 0 259 × 259 × 64
conv2_1 3 × 3 1 1 259 × 259 × 128
conv2_2 3 × 3 1 1 259 × 259 × 128
pool2 2 × 2 2 0 130 × 130 × 128
conv3_1 3 × 3 1 1 130 × 130 × 256
conv3_2 3 × 3 1 1 130 × 130 × 256
conv3_3 3 × 3 1 1 130 × 130 × 256
pool3 2 × 2 2 0 65 × 65 × 256
conv4_1 3 × 3 1 1 65 × 65 × 512
conv4_2 3 × 3 1 1 65 × 65 × 512
conv4_3 3 × 3 1 1 65 × 65 × 512
pool4 2 × 2 2 0 33 × 33 × 512
conv5_1 3 × 3 1 1 33 × 33 × 512
conv5_2 3 × 3 1 1 33 × 33 × 512
conv5_3 3 × 3 1 1 33 × 33 × 512
pool5 2 × 2 2 0 17 × 17 × 512
FC-conv 3 × 3 1 0 15 × 15 × 1024
FC-conv2 1 × 1 1 0 15 × 15 × 1024
conv-Ncl 1 × 1 1 0 1 × 1 × Ncl

Up-conv1 4 × 4 2 0 40× 40× CNcl

Up-conv2 4 × 4 2 0 82× 82× CNcl

Up-conv3 4 × 4 2 0 166×166×CNcl

Up-conv4 4 × 4 2 0 294×294×CNcl

Up-conv5 4 × 4 2 0 590× 590×Ncl

output - - - 500× 500 × Ncl

TABLE II: Fast-Net architecture in more detail. The Up-conv
layers refer to each refinement step.

number of filters and its corresponding size, constitutes
the main concentration of parameters and consequently the
major computational load of the network. Another related
computational bottleneck is the extensive use of padding,
Table II shows that Fast-Net can process an input image of
500×500 pixels with almost the same feature map dimensions
as Part-Net with an input image of size 300× 300.

To address this problem, we reduced the number of
parameters by reducing the number of FC-conv filters from
4096 to 1024. In addition, we reduce the size of the filters
from 7 × 7 to 3 × 3. The proposed reduction of network

parameters makes our approach more efficient than the
previously proposed dense segmentation architectures. From
such a reduction, one must expect a significant drop in
classification accuracy. However, we use some of the saved
parameters at another part of the network to keep the high
accuracy and even improve it compared to the baseline
network.

3) New refinement to improve system accuracy:: In order
to make Fast-Net capable of producing segmentation masks
comparable or superior to the network before the parameter
reduction, we give more parameters to the up-convolutional
side of the network. Previous up-convolutional networks like
[23] and Part-Net have a one−to−one mapping, where each
refinement has the same number of filters and classes (Ncl).
We based our new distribution of parameters on those of the
U-nets [33]. U-nets have a variable number of filters that is
equal to the corresponding number of filters of the layer at
the contraction part. Such approach was successfully applied
to medical images, yet it was never shown to work with
natural images because it is quite large and slow. In order
to provide more parameters to the expansive part without
hurting the computational time we propose a similar approach
that uses multiple filters per class like U-net, but without the
considerable increase of the network parameters. We increase
the number of filters by a scalar C. The additional parameters
to the expansive side provide further capacity to Fast-Net to
produce more accurate upsampled masks and consequently
better segmentation predictions. The small increase in the
number of parameters hardly increases the computational cost
and makes Fast-Net more robust to scale.

The new architecture has C ∗ Ncl filters in almost all
expansive layers except two layers. These are the convolu-
tional layer between the contraction and expansion part of
the network (conv-Ncl) and the last layer of the architecture.
For these layers C = 1, to maintain the network efficiency
and to produce class scores, respectively. The main purpose
of the layer between the contraction and expansion side is
to maintain the network efficiency, while the last one has as
goal to make the network calculate the loss over only the
useful classes.
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Fig. 5: Description of the M-Net architecture. The architecture has two streams, high and low. The low stream is half the
resolution of the high stream and is an auxiliary stream that is fused to the main stream according to the resolution.

C. 3.3 M-Net

Multiresolution Net (M-Net) is an architecture inspired by
inter network refinement of multiresolution streams. The main
goal of the M-Net architecture is to incorporate characteristics
of multiple resolutions into a single architecture. This is done
by the fusion of features from a low resolution network into a
high resolution one. Lower resolution networks have low false
positive detection rates. By combining low resolution features
from an auxiliary network into the predictions of our main
network stream we are capable of providing high resolution
segmentation masks together with low false positive detection
rates. Such approach can leverage the semantic information
of up-convolutional architectures and reinforce predictions
which are consistent among resolutions.

Such approach is inspired by the coloring network of [15],
where the authors proposed a multi-stream network for image
coloring. Here, the two streams are Fast-Net architectures
which are fused to improve the predicted mask from the
high resolution stream. The complete architecture is shown
in Figure 5. The key element of this architecture is its fusion
layer.

1) Fusion Layer:: To include low resolution features in
high resolution predictions we introduce a fusion layer. We
formulate the fusion layer as:

yfusion = σ
(
b+W

[
yhigh + ylow

])
(3)

where yfusion is the fused feature, yhigh is the high
resolution features, ylow is the low resolution features and
W and b are the weights and biases. The fusion can be
interpreted as a element-wise sum of high-level and low-level

features maps. Incorporating low resolution features to a high
resolution network makes M-Net more robust towards false
positive detections.

D. 3.4 Data Augmentation

Data augmentation is needed for every tested application,
due to the reduced number of training examples provided by
these datasets. Very deep networks, like the ones proposed in
this work, require a large number of examples. To this end,
we employ a series of data transformations to provide more
examples. In particular, we implemented:

• Scaling: Scale the image by a factor from 0.7 and 1.4
• Rotation: Rotate the image by an angle of up to 30

degrees
• Color: Add a value between −0.1 and 0.1 to the hue

channel of the HSV representation.
In Section 4 we show in a dedicated experiment the

importance of data augmentation, which is different from
the fidings of [23].

In the case of body part segmentation all augmentation
transformations positively impact the results. However, for
the specific case of road and lane segmentation, rotation and
cropping transformations are undesirable, since the network
is expected to learn spatial priors of the road.

E. 3.5 Network Training

Training was performed in a multi-stage process, except
for M-Net where we explored single stage training without
VGG initialization of the contraction side. Without such
initialization, training time increases by a factor of two. For
the other techniques we initialized the contracting part of the



network with the 16 layer version of the VGG architecture
[37].

The networks were trained by backpropagation using
Stochastic Gradient Descent (SGD) with momentum. Each
minibatch consisted of just one image. The learning rate
and momentum for Part-Net were fixed to 1e−10 and 0.99,
respectively. However for Fast-Net and M-net, we reduced
the padding of the first convolutional layer from 100 to 10
pixels (slightly faster training), used Xavier initialization,
increased learning rate from 1e-10 to 1e-9 and decreased the
momentum from 0.99 to 0.90. We also changed the fixed
learning rate (Lr) by a polynomial learning policy

Lr = L (1− i/max i)
p
, (4)

where L is the base learning rate, i is the learning step
and p is the power index. The new policy converges faster
than the fixed learning rate policy. On average the multi-stage
training required half the number of iterations to obtain the
same results.

The multi-stage training was done one refinement stage at
time and each refinement took 24 hours. Thus, training the
whole network takes 5 days on a single GPU. For M-Nets
we needed twice this amount.

IV. 4. EXPERIMENTS

We evaluated the performance of our networks on two
different problems. First we present a series of experiments
focusing on human body part segmentation. The second set
of results focused on road and lane segmentation. Our full
source code is publicly available at 1.

For human part segmentation we tested our method on
PASCAL Parts dataset, Freiburg Sitting People dataset,
Freiburg People in Disaster dataset and Freiburg City Dataset.
On the first three datasets we report quantitative results and
compare to results obtained with the state-of-the-art FCN
baseline [23]. We fine-tuned the FCN for each dataset on the
same training data that was used for training our network.
Moreover, we conducted experiments in a direct robotics
context with a ground robot and an unmanned aerial vehicle.
A full robotic system experiment is presented to measure the
behaviour of our human body part technique when exposed
to an interaction scenario between a human and a robot.

Subsequently, we evaluated the performance of Fast-Net
on real driving data from the KITTI benchmark dataset. We
present a series of evaluations in terms of runtime, accuracy,
and scale robustness. The implementation was based on the
publicly available Caffe [17] deep learning toolbox, and all
experiments were carried out with a system containing an
NVIDIA Titan X GPU.

A. 4.1 PASCAL Parts dataset

The PASCAL Parts dataset [6] includes annotations for
20 PASCAL super classes and part annotations for each of
them. We focused on the person subset of this dataset, which
consists of 3539 images. The annotations even include eyes

1 http://lmb.informatik.uni-freiburg.de/resources/binaries/

and ears, which may not seem relevant in a robotics context
for now. Therefore we merged labels to two granularity levels:
coarse and fine. For the coarse version we consider four labels
(head, torso, arms, legs). In the finer version, we have 14
labels and distinguish also between the left and right side
of the person (head, torso, upper right arm, lower right arm,
right hand, upper left arm, lower left arm, left hand, upper
right leg, lower right leg, right foot, upper left leg, lower left
leg and left foot).

We cannot compare our results with other approaches since
there is no paper reporting human body part segmentation.
To the best of our knowledge, the only results reported
so far are [24], [40], though none of them have reported
results on the person category. Therefore, we present the
first quantitative results on person part segmentation for the
PASCAL Parts dataset.

As metrics, we chose pixel accuracy and intersection over
union. Let nij be the number of pixels of class i predicted
to belong to class j, where ti =

∑
j nij be the total number

of pixels of class i. The pixel accuracy Acc =
∑

i nii/
∑

i ti
takes into account also the prediction of background pixels.
Background prediction is important to avoid false positives.

The downside of pixel accuracy as a sole measure, however,
is the dominance of the background in the metric. More than
three quarters of the images is background. Therefore, along
with pixel accuracy, we also report the intersection over union
(IOU), which is a popular metric for computer vision datasets.
It is defined as IOU = (1/N)

∑
i nii/(ti +

∑
j nji − nii).

Unlike pixel accuracy, IOU does not take the background
detection into account and solely measures the semantic
segmentation of the parts. However, it does penalize false
positive pixel assignments.

1) Coarse body parts:: We first predicted the coarse
segmentation with four body part classes. We randomly
divided the dataset into 70% training and 30% testing.
Table III shows the results. There is a 5% percentage points
improvement over the state of the art in both metrics. Further
comparison against other FCN approaches are provided in
Table XVIII.

TABLE III: Results on PASCAL dataset with 4 body parts.

Method Accuracy IOU

FCN [23] 71.30 57.35
Part-Net - No dropout 74.60 61.20
Part-Net - With dropout 76.58 63.03

Additionally, we also performed experiments without the
feature map dropout at the refinement part of the network.
Table III presents our results for the network without feature
map dropout at the expansive part of the network and
with dropout. The addition of the dropout layer brings a
considerable gain, in terms of better mean pixel accuracy
and IOU. This result confirmed that a spatially correlated
dropout can benefit from the strong spatial correlation of
human body parts. Since the results showed a consistent gain
when including feature map dropout compared to standard

 http://lmb.informatik.uni-freiburg.de/resources/binaries/


dropout, all the following experiments with Part-Net were
run with feature map dropout.

TABLE IV: Results on the PASCAL dataset with 14 body
parts.

Method Accuracy IOU

FCN [23] 75.60 53.12
Part-Net 77.00 54.18

2) Detailed body parts:: When predicting all 14 body
parts, we randomly divided the dataset into 80% training
and 20% testing. Figure 6 shows a set of results obtained
by Part-Net. The results are organized column-wise, where
each column is an example and the rows correspond to input
image, ground truth and results obtained using the FCN of
[23]. The last row shows the results using our network. The
results of Part-Net are closer to the ground truth than the FCN
baseline. Table IV contains the corresponding quantitative
numbers. We outperform the FCN baseline by 1% percentage
point in both metrics. The smaller improvement on the more
complex task indicates that there was not enough training
data to exploit the larger capacity of our network. For the
experiments reported so far, we did not make use of any data
augmentation. In the next section we discuss the importance
of data augmentation, especially for more complex tasks.

B. 4.2 Effect of Data Augmentation

Apart from the usual mirroring and cropping, we applied
two types of augmentations to our training data: spatial
augmentations and color augmentation; see the detailed
description in Section 3.4. Table VI shows the impact of
these types of data augmentation for 4 body parts, while
Table V presents the results for all 14 body parts. What can
be noticed from the fine granularity results is the difficulty of
the network to segment the extremities, mainly based on its
low area and wide range of possible orientations. Table VII
summarizes the IOU along with the pixel accuracy for the fine
granularity level. Clearly, both types of data augmentation
improved results significantly. These results emphasize the
importance of a solid data augmentation technique when
approaching relatively complex tasks with limited training
set sizes. The relative improvement of data augmentation was
more prevalent on the more difficult task with 14 classes,
which can be attributed to the fact that, a more difficult task
requires more training data.

TABLE VI: Augmentation results Accuracy and IOU on the
PASCAL dataset with 4 body parts.

Acc. IOU
Method Head Torso Arms Legs All

FCN [23] 71.30 70.74 60.62 48.44 50.38 57.35
Part-Net 76.58 75.08 64.81 55.61 56.72 63.03
Part-Net(Spatial) 82.18 80.49 74.39 67.17 70.39 73.00
Part-
Net(Spatial+Color)

85.51 83.24 79.41 73.73 76.52 78.23

Fig. 6: Qualitative results on the PASCAL dataset (task with
14 body parts). First row: Input image. Second row: Ground
truth. Third row: Result predicted with FCN [23]. Fourth
row: Result predicted by our network. Part-Net produces
more accurate segmentation masks, not only for single person
segmentation but also when there are multiple persons in the
image.

TABLE VII: Augmentation summary on the PASCAL dataset
with 14 body parts.

Method Accuracy IOU

FCN [23] 75.60 53.12
Part-Net 77.00 54.18
Part-Net (Spatial) 84.19 66.93
Part-Net (Spatial + Color) 88.20 71.71

C. 4.3 Effect of Layer Refinement

In order to measure the effects of each refinement on
the segmentation quality, we perform experiments testing
all possibilities of previous layers inclusion to the proposed
architecture. The experiments include the IOU values per set
of refinements for PASCAL coarse and fine granularities, see
Table VIII.

The results show that the inclusion of all pooling layers
in the refinement process is beneficial for segmentation,
providing a total gain above 20% percentage points. Such
conclusion is opposite to [23], who pointed out that after
fusing predictions from pool3 only minor improvements



TABLE V: Augmentation results (IOU) on the PASCAL dataset with 14 body parts.

Method Head Torso L U
arm

L
LW
arm

L
hand

R U
hand

R
LW
arm

R
hand

R U
leg

R
LW
leg

R
foot

L U
leg

L
LW
leg

L
foot

Mean

FCN [23] 74.0 66.2 56.6 46.0 34.1 58.9 44.1 31.0 49.3 44.5 40.8 48.5 47.6 41.2 53.1
Part-Net (Spatial) 81.8 78.0 69.5 63.1 59.0 71.2 63.0 58.7 65.4 60.6 52.0 67.9 60.3 50.0 66.9
Part-Net (Spatial+Color) 84.0 81.5 74.1 68.0 64.0 75.4 67.4 61.9 72.4 67.1 56.9 73.0 66.1 57.7 71.7

R = right, L = left, U = upper, LW = lower.

TABLE VIII: Refinement impact for PASCAL dataset with 4
and 14 body parts. The results constitute the IOU values per
refinement stage.

Stage IOU-4 parts IOU-14 parts

No Refinement 57.01 51.69
Pool4 70.24 64.15
Pool4 + Pool3 73.31 66.80
Pool4 + Pool3 + Pool2 74.65 67.92
Pool4 + Pool3 + Pool2 + Pool1 78.23 71.70

were noticed. In our experiments all refinements present
significant gains. The experiments show that pool2 and
pool1 are responsible for an improvement of more than 4.9
percentage points with respect to the IOU metric. Therefore,
exploiting all pooling layers can provide better segmentation
masks with only a small computational burden.

D. 4.4 Freiburg Sitting People Part Segmentation Dataset

To evaluate Part-Net in a robotics scenario, we created
a new dataset 2 that provides high resolution segmentation
masks for people in sitting position, specifically people in
wheelchairs. Part segmentation can be of great interest for
robotics, since it provides to robots detailed body location,
allowing fine interaction. Figure 7a, presents an input sample
image and Figure 7b its ground truth segmentation, while
Figure 7c shows the segmentation prediction. The dataset has
200 images of six different people from multiple viewpoints
and wide range of orientations. The ground truth annotation
contains the 14 body part classes as used for the PASCAL
parts dataset.

(a) Input Image (b) Groundtruth (c) Predicted Mask

Fig. 7: Results on the Freiburg Sitting People dataset.
Groundtruth in a different color mapping.

Due to the unavailability of a large amount of data, we
chose two different testing scenarios. First we trained our
network on the PASCAL parts dataset, and used the full

2 http://lmb.informatik.uni-freiburg.de/resources/datasets/PartSeg.html

sitting people dataset for testing. Alternatively, we randomly
chose two people from the dataset for training (along with the
data from PASCAL parts) and the remaining four as the test
set. Results are shown in Table IX. The network generalized
well to the new datasets. The improvement over the FCN
baseline was much larger than the difference between the
network that had seen sitting people for training and the
one that had not. Nonetheless, providing training data that is
specific to the task helped improve the performance.

TABLE IX: Results with and without training on the Freiburg
people dataset.

Method Accuracy IOU

FCN [23] 59.69 43.17
Part-Net (Trained on PASCAL) 78.04 59.84
Part-Net (Training with 2 people, Testing with 4) 81.78 64.10

E. 4.5 KITTI Road/Lane Dataset

The KITTI Visual Benchmark Suite [10] is a dataset
designed to benchmark optical flow, odometry data, object
detection, and road/lane detection. The road benchmark
consists of 600 frames of 375× 1242 pixels and constitutes
the main benchmark dataset for road and lane segmentation.
The data was acquired in five different days. The main
goal of the Fast-Net architecture is to provide high quality
semantic segmentation predictions with the lowest possible
computational burden. The road and lane segmentation
problem motivate the design of such architecture based on its
real-time requirement. M-Net was designed to provide more
robustness to false positive detections, consequently better
segmentation.

The dataset has three different categories of road scenes:
single-lane road with markings (UM), single-lane road without
markings (UU), and multi-lane road with markings (UMM).
In this paper, we deal with road and ego-lane detection. We
do not differentiate between the road categories, but the
ego-lane problem is trained separately. The dataset provides
ground truth for training and an evaluation website for testing3.
The KITTI online evaluation system allows for anonymous
submission of results, thereby some of the top ranked
methodologies do not have a corresponding publication.

1) Road Detection:: There are four road segmentation
tasks for the KITTI benchmark: UM, UU, UMM and URBAN
ROAD. URBAN ROAD is the category that summarizes

3 http://www.cvlibs.net/datasets/kitti/eval_road.php
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TABLE X: Results for the road KITTI dataset.

Benchmark MaxF AP PRE REC FPR FNR
UM Fast-Net 92.20% 88.85% 92.57% 91.83% 3.36% 8.17%
UM M-Net 93.31% 90.54% 95.11% 91.57% 2.14% 8.43%
UMM Fast-Net 95.52% 92.86% 95.37% 95.67% 5.10% 4.33%
UMM M-Net 95.20% 92.96% 96.03% 94.38% 4.28% 5.62%
UU Fast-Net 92.65% 89.20% 92.85% 92.45% 2.32% 7.55%
UU M-Net 92.97% 88.38% 93.36% 92.58% 2.15% 7.42%
URBAN Fast-Net 93.83% 90.47% 94.00% 93.67% 3.29% 6.33%
URBAN M-Net 94.09% 90.78% 95.13% 93.08% 2.63% 6.92%

TABLE XI: Results on UM road KITTI dataset.

Method MaxF AP PRE REC FPR FNR Time
DDN [28] 93.65% 88.55% 94.28% 93.03% 2.57% 6.97% 2s
M-Net 93.31% 90.54% 95.11% 91.57% 2.14% 8.43% 130ms
Fast-Net 92.20% 88.85% 92.57% 91.83% 3.36% 8.17% 83ms
CNN1 (anonymous) 91.73% 92.08% 91.10% 92.36% 4.11% 7.64% 2s
CNN (anonymous) 91.22% 91.35% 91.22% 91.23% 4.00% 8.77% 2s

TABLE XII: Results on UU road KITTI dataset.

Method MaxF AP PRE REC FPR FNR Time
M-Net 92.97% 88.38% 93.36% 92.58% 2.15% 7.42% 130ms
Fast-Net 92.65% 89.20% 92.85% 92.45% 2.32% 7.55% 83ms
Fast-Net Low 91.89% 89.44% 92.59% 91.20% 2.38% 8.80% 52ms
DDN [28] 91.76% 86.84% 93.06% 90.50% 2.20% 9.50% 2s
CNN1 (anonymous) 89.70% 90.61% 89.41% 89.99% 3.47% 10.01% 2s

TABLE XIII: Results on UMM road KITTI dataset.

Method MaxF AP PRE REC FPR FNR Time
Fast-Net 95.52% 92.86% 95.37% 95.67% 5.10% 4.33% 83ms
M-Net 95.20% 92.96% 96.03% 94.38% 4.28% 5.62% 130ms
DDN [28] 94.17% 92.70% 96.73% 91.74% 3.41% 8.26% 2s
FCN_LC [27] 94.09% 90.26% 94.05% 94.13% 6.55% 5.87% 30ms
Fast-Net Low 93.89% 92.62% 94.57% 93.22% 5.89% 6.78% 52ms

TABLE XIV: Results on URBAN_ROAD KITTI dataset.

Method MaxF AP PRE REC FPR FNR Time
M-Net 94.09% 90.78% 95.13% 93.08% 2.63% 6.92% 130ms
Fast-Net 93.83% 90.47% 94.00% 93.67% 3.29% 6.33% 83ms
DDN [28] 93.43% 89.67% 95.09% 91.82% 2.61% 8.18% 2s
Fast-Net Low 92.39% 90.24% 93.03% 91.76% 3.79% 8.24% 52ms
CNN1 (anonymous) 91.98% 92.44% 91.08% 92.89% 5.01% 7.11% 2s

all three different road scene categories. Table X shows
our results for road segmentation with Fast-Net and M-
Net. The results confirm the capacity of M-Net to provide
more accurate segmentation masks and to incorporate the
false positive robustness of low resolution networks to high
resolution ones. The individual methods are ranked according
to their pixel-wise maximum F-measure on the bird’s-eye
view space. The other provided measurements are: Average
Precision (AP), Precision (PRE), Recall (REC), False Positive
Rate (FPR) and False Negative Rate (FNR).

The single-lane with markings category (UM) is formed
by images taken from a marked urban two-way road and
has 95 images for training and 96 images for testing. Our
approach ranks second and third for this category, as seen
in Table XI. While all top results for this category report
processing times of about 2 seconds, the Fast-Net architecture

has an average runtime of 83 milliseconds and M-Net of 130
milliseconds. This makes Fast-Net the only approach among
the top performing methods that is capable of interactive
frame rates.

For the single-lane road without markings (UU) we have
98 images for training and 100 images for testing. Our
method ranks first and second for this set; see Table XII. The
resolution used for most of the experiments was 500× 500
but we also tested with a 300× 300 resolution. More tests
on the impact of resolution will be discussed in Section 4.6.

The third setting is composed of images taken from
the urban multi-lane marked road (UMM), which has 96
images for training and 94 for testing. Results are shown in
Table XIII, where the proposed network compares favorably
to all existing techniques, as well. For this scenario a CNN
method (FCN_LC) reports faster processing times but inferior



accuracy in all metrics.
The final metric of the KITTI evaluation benchmark

is one that combines all three experimental settings (UR-
BAN_ROAD). Table XIV presents our results and the best
results available. M-Net achieves the highest accuracy among
all top methods while Fast-Net presents comparable results to
M-Net with the smallest runtime of all compared techniques.
Figure 8 show a qualitative comparison of the results obtained
with our architecture and the top three results. We chose the
techniques that ranked best on URBAN_ROAD techniques
for comparison, since this metric can provide a better
overall measurement of how well a method behaves. The
proposed architecture shows low occurrences of false positive
predictions and sharp segmentation of edges, while enabling
interactive frame rates.

2) Lane Detection:: Lane detection is a challenging task
due to low inter-class variability. Without context, the ego-
lane is hard to distinguish from other asphalt parts of the
road. The KITTI dataset uses single-lane road marked images
to segment lanes. Table XV shows our results. In contrast
to road detection, there are methods with runtimes in the
millisecond range. Fast-Net, which is the only one among the
top techniques that was not specially designed for this task,
achieves the best accuracy. Figure 9 presents some qualitative
comparisons with the 3 best approaches. We can notice from
the qualitative results that Fast-Net presents high fidelity
ego-lane segmentation and low false positive and negative
detections.

F. 4.6 Performance Tests

Since the runtime depends much on the hardware and
resolution, we present results on various GPUs and at different
resolutions for the Fast-Net architecture. We tested seven
different desktop GPUs and two mobile ones; see Table XVI.
Even on older GPUs, such as the GTX 680, the architecture
achieves more than 10 frames per second and fits into the
GPU memory. The tests also reveal that the network is as fast
on a GTX 980, GTX TITAN X and on the recently release
GTX 1070.

We further extend our experiments to mobile GPUs and
proved Fast-Net is capable of runtime at speeds superior
to one frame per second in modern mobile GPUs, such as
TX1, and, to the best of our knowledge this is the first up-
convolutional network capable of local processing in low
power mobile GPUs. Such capability can leverage many new
applications of semantic segmentation in robotics and improve
the on-board perception of autonomous platforms.

We also varied the resolution. For the experiment we used
a machine with a TITAN X GPU and tested inputs ranging
from 150× 150 to 500× 500; see Table XVII. As expected,
the runtime increases with higher resolutions. However, even
at a 500× 500 resolution, our system is still more efficient
than any top result for road detection.

G. 4.7 Baseline Comparison

To compare to the state of the art, we trained all the
networks with rotation, scale and color augmentations. We

TABLE XVI: Runtime depending on the GPU, resolution of
300× 300.

GPU Forward Pass Time (ms)
TK1 1440
TX1 599

GTX 680 97.4
K-40 108

GTX TITAN 96.8
GTX 970 66.4
GTX 980 51

GTX TITAN X 52.2
GTX 1070 50.3

TABLE XVII: Runtime depending on the resolution for a
TITAN X GPU.

Resolution Forward Pass Time (ms)
150× 150 30
200× 200 35.6
300× 300 52.2
500× 500 83

selected the top available deep architectures based on
the reported results on semantic segmentation and on the
methodologies which tackle, to a certain degree, efficiency
and robustness. The results are reported from PASCAL
PARTS with four body parts. We explored the parameter
space to achieve the best baseline performance. Table XVIII
summarizes our results using the corresponding metrics, such
as Intersection over Union (IOU), Mean Pixel Accuracy (PA),
Precision (PRE), Recall (REC), False Positive Rate (FPR),
False Negative Rate (FNR). The time is reported for a forward
pass through the network. The results demonstrate that all
three networks outperform all the previous state-of-the-art
approaches. Fast-Net does not only consistently outperform
all previous methods in all metrics but also its runtime is only
a millisecond slower than the fastest architecture, however
largely outperforming such architecture.

We also tested giving more parameters to the fusion layers
of the M-Net architecture. We aim to measure the impact of
a wider search space for fusion and corresponding increment
of the upsampling filters to our approach. To this end, we
increased the fusion and up-convolution layers to 256 filters;
we call such modification M-Net heavy. The results show that
having more parameters in the fusion layers can make the
network provide the highest IOU, 2.56 percentage points
higher than Fast-Net. The heavy version of M-Net also
displays the highest precision and recall values and the
lowest false positive and negative rates. The only encountered
limitation is the higher forward pass time.

H. 4.8 Real-World Experiments

In this section we present experimental results on actual
robots. The collected datasets are able to benchmark three
main challenges of semantic segmentation, which are scale,
occlusion and crowded environments.

1) Range Experiments:: We explicitly made a dataset
to measure robustness of our networks when exposed to
multiple scales. PASCAL parts and KITTI does not provide
any specific data for measuring range robustness. The robot



(a) Fast-Net

(b) DNN [28]

(c) CNN1 (anonymous)

(d) CNN (anonymous)

Fig. 8: Segmentation results for road segmentation extracted from the KITTI benchmark. The proposed architecture shows
low occurrences of false positive predictions and sharp segmentation of edges. Green corresponds to correct segmentation,
red to false negative and blue to false positive detections.

TABLE XV: Results on UM lane KITTI dataset.

Method MaxF AP PRE REC FPR FNR Time
Fast-Net 89.88% 87.52% 92.01% 87.84% 1.34% 12.16% 83ms

ANM (anonymous) 89.11% 81.11% 88.68% 89.54% 2.01% 10.46% 60ms
PCA-Lane-S (anonymous) 87.01% 74.16% 87.31% 86.70% 2.22% 13.30% 30ms

S (anonymous) 85.15% 76.52% 88.61% 81.95% 1.85% 18.05% 100ms

Fig. 9: Lane predictions on the KITTI dataset compared with the 3 next best approaches. Top Left: Fast-Net, Top Right: ANN,
Botton Left: PCA-Lane-S, Botton Right: S. In the images green is the correct segmentation, red false negative detection and
blue false positive detection.

used for the experiments is the Obelix robot, Figure 10a.
Obelix is a robot designed for autonomous navigation in
pedestrian environments thus is useful to mimic the human
perspective for perception tasks.

In our experiments, we captured images from a Bumblebee

stereo camera. The testing phase consisted of training all the
architectures using the PASCAL parts dataset [6] and testing
on the range data. The dataset comprises outdoor images
of two different people at distances ranging from 0.8 m to
6.0 m, captured every 20 cm, as shown at Figure 11. Figure



TABLE XVIII: Performance of Part-Net, Fast-Net and M-Net in comparison to the state-of-the-art, from coarse PASCAL
PARTS.

Baseline IOU PA PRE REC FPR FNR Time

FCN [23] 57.35 71.79 77.28 67.92 15.08 27.12 150ms
SegNet [3] 45.22 44.82 49.88 80.71 45.21 9.57 47.7ms
ParseNet [22] 64.25 70.02 74.66 78.95 19.86 15.89 88ms

Part-Net 78.23 85.47 86.00 87.78 11.50 10.10 225ms
Fast-Net 81.92 88.81 88.74 90.04 9.51 8.44 48.7ms
M-Net 78.15 84.95 86.29 87.60 11.69 10.15 130ms

M-Net (Heavy) 84.62 91.51 91.47 90.57 7.1 8.29 345ms

(a) Obelix ground robot. (b) AR.DRONE 2.0 aerial platform.

Fig. 10: Robotics platforms used in our tests.

(a) 1.0 meter (b) 2.0 meters

(c) 3.0 meters (d) 4.0 meters

(e) 5.0 meters (f) 6.0 meters

Fig. 11: Qualitative results of the range experiment with the
Obelix robot. The lower resolution at one point does not
allow detection of small body parts anymore. However, the
larger parts, such as the torso and head, are still detected
correctly even at 6m distance.

12 presents our quantitative results for Part-Net and Fast-Net.
Fast-Net consistently performs better than Part-Net, specially
for longer distances. The smaller filters (3 × 3) at the last
two layers of the contraction side of the network provide a
smaller field of view and present a gain for longer distances.
For distances beyond 4 meters, Fast-Net largely outperforms
Part-Net.
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Fig. 12: Range segmentation results. The proposed approach
consistently performs better than Part-Net, specially for longer
distances.

2) Freiburg City Dataset:: We collected data with the
Obelix robot in the Freiburg city center. The dataset is con-
stituted of 52574 images and presents scenes with occlusion,
radial distortion, motion blur, glare, low light conditions,
people at multiple scales and crowds. The effort to build such
dataset is to bring semantic segmentation to a highly realistic
robotics scenario.

The dataset is used as a testing set, Part-Net was used
for these experiments, trained on the PASCAL dataset with
4 body parts. We choose Part-Net based on its robustness
to segmenting unseen environments, as confirmed in the
Freiburg People in Disaster experiments. Figure 13 shows
examples of segmentation under motion-blur, glare, occlusions
and multiple instances. In the first row we present results
with a single instance in a sequential order. The second
row of Figure 13 depicts segmentation examples in presence
of crowds, heavy occlusion and radial distortion. The first



Fig. 13: Segmentation examples on multiple scenarios on Freiburg City Dataset. The first row presents segmentation of a
single instance in a sequence. Second row exemplifies an example of segmentation for multiple instances in a sequence. The
third and fourth rows show segmentation results under glare, occlusion and multiple instances presence.

example in the third row of Figure 13 shows segmentation
under glare and the second example segmentation under
occlusion, where the segmented person on the left has most
of his body occluded, specially the head. The row displays
an unusual pose for segmentation and another example of
severe occlusion, where the person has only half of his body
visible.

The main outcome from such experiment is that Part-Net
can robustly transfer its representation from a controlled
dataset, in our case PASCAL Parts, to a real world environ-
ment and still produce accurate segmentation masks. Part-Net
can segment body parts under heavy occlusion and been

robust to unusual light conditions. Such difficult conditions
are not present in the PASCAL Parts dataset.

3) Freiburg People in Disaster:: For testing the robustness
of our networks to occlusion and clutter in other robotics
scenario we created the Freiburg People in Disaster dataset.
We used an AR.DRONE 2.0 aerial platform(Figure 10b). The
platform lacks a high definition downward facing camera,
therefore we mounted a GoPro HERO 4 to collect the Freiburg
People in Disaster dataset. The dataset consists of images
and corresponding segmentation masks for a set of 4 people
in an environment that mimics a disaster scenario, including
heavy clutter and occlusions. Figure 14 shows an example



(a) Input Image (b) Groundtruth (c) Part-Net (d) Fast-Net

Fig. 14: Predictions of our networks for the Freiburg People in Disaster Dataset.

with the ground truth and the results obtained using Part-Net
and Fast-Net approaches.

Since the dataset is too small to split into training and
a test set, we only used it for testing networks trained on
PASCAL Parts with 4 body parts. Table XIX presents the
results for this dataset. Part-Net performs 28% better than the
state of the art FCN, Fast-Net is slightly worse than Part-Net
but four times faster. The results obtained with Part-Net and
Fast-Net are already good enough for use in practice.

TABLE XIX: Results for Freiburg People in Disaster dataset.

Method Head Torso Arms Legs IOU

FCN [23] 52.71 62.49 35.04 43.25 43.20
Fast-Net 78.02 78.21 63.90 64.70 70.73
Part-Net 80.56 79.45 63.93 64.91 71.99

I. 4.9 Robotic Interaction Experiment:

In this section we present the use of the human part
segmentation with a robot scratching a paralysed person. Our
experimental setup consists of a KUKA OmniRob equipped
with a 7-DOF light-weight arm, Figure 15(a).

Our experiment consists of a person in a wheel chair
requesting a specific part of his body to be scratched. The
person determines the spot which needs to be scratched via
speech. For this we use an open source continuous, speaker-
independent speech recognition: pocketsphinx [14].

We implement pocketsphinx with a simple grammar, which
is activated by the keyword start. Pocketsphinx then converts
the speech into simple orders like "scratch my left hand".
For the other body parts there are speech commands which
are defined similarly. So whenever pocketsphinx recognizes
a speech sequence which fits to its grammar, it sends the
specific command to our central Robot Operating System
(ROS) interface.

Our ROS interface receives as input also a stream of images
from a camera. This camera takes images of the person in the
wheel chair throughout the whole experiment. These images
are given into Part-Net. The Part-Net predicts an outcome
based on the input image. This output is sent back to the
ROS interface. From every body part the mean position of the

(a) OmniRob (b) Start state

(c) Segmentation output (d) Final state

Fig. 15: Scratching experiment - Process: (a) shows the
omniRob platform used for these experiments (b) illustrates
the start state of our experiment. The robot is in its home
position. (c) shows the output of our segmentation tool. In
(d) the robot arm has reached the goal (in this scenario the
torso) and scratches the person.

segmented pixels is computed and together with the speech
command the destination of the robot arm is determined.
Then the ROS interface directs the robot arm to reach its
destination and, in case of success, to scratch the person.
Figure 16 illustrates this process.

We ran a total number of 40 attempts on four different test
persons. One attempt is when the person gives an order to
scratch. Each of the 14 body parts has been at least once the
part which was requested to be scratched.

We distinguish four different outcomes of the experiment:
(1) speech recognition fails, (2) segmentation fails, (3) robot
arm movement not possible and (4) success. The first three



TABLE XX: Results for the scratching experiment. (1)
speech recognition fails, (2) segmentation fails, (3) robot
arm movement not possible, (4) success.

(1) (2) (3) (4)
number 10 5 13 12

categories reflect which part of the experiment fails, while
the last category is the amount of sucessful attempts. Table
XX shows that our scratching experiment is successful in
30% of all cases. Considering its variable tasks and the
restricted working space of the robot arm this is a good
result. Furthermore, we conclude that the Part-Net works
well in combination with robots as it is responsible for only
18% of the failures.

Figure 17 shows examples of the segmentation in the
scratching experiment. In the first row high accurate segmen-
tations for the different body parts are presented while the
second row depicts failed segmentations. In the last two rows
segmentation results that include a direct interaction with
the robot arm are shown. We observe that the body parts
which are not easy to segment (e.g. legs in the second row),
are absorbed by the robot arm. It can also be seen that the
segmentation during the experiment is much harder.

V. 5. CONCLUSION AND FUTURE WORKS

We presented three different deep learning architectures
which are focused on efficiency and robustness aspects. Part-
Net presents state of the art performance for human body
part segmentation and robustness to occlusion and clutter,
however cannot provide interactive frames rates for robotics
tasks. Fast-Net provides not only state of the art results
on multiple segmentation tasks but also makes efficient use
of resources available on embedded platforms and provides
near-real time performance on modern GPUs. M-Net extends
up-convolutional networks to multiresolution fusion and
presents results with increased robustness. To the best of our
knowledge the presented architectures are the first to tackle
efficiency and robustness aspects of semantic segmentation
using up-convolutional networks in real world scenarios. In
addition, we shown results on human part segmentation and
road and lane segmentation problems. Our approach advances
the state of the art in all the following datasets, namely
PASCAL Parts, Freiburg Sitting People, Freiburg People in
Disaster and Freiburg Range. We also presented competitive
results for KITTI-Road and KITTI-Lane datasets.This work
also introduced the Freiburg City Dataset to provide realistic
robotics scenarios for human body part segmentation and a
full robotic system designed to measure the behavior of our
human body part segmentation approach in a human-robot
interaction task. This experiment confirms the applicability
and robustness of our technique on a mobile robot scenario.

Future work will investigate new architectures to perform
human part segmentation in videos taking the temporal context
into account. The ability to do human part segmentation from
videos can have many robotics applications, like learning
from demonstration. Another possible line of research will

include instance segmentation. A robust and efficient instance
segmentation method could provide further perception capa-
bilities to new applications, for instance people segmentation
and tracking in a smart home scenario.
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Fig. 17: Segmentation results for the scratching experiment. The white dots describe the computed means of the different
body parts. The first row shows examples in which the segmentation approach performs accurately. In the second row it can
be seen that the robot arm is also segmented, lowering the robustnes of Part-Net for this scenario. The last two rows present
examples during the scratching experiment. While the results in the third row are less accurate than in the first row, they still
produce reliable segmentation masks, whereas the last row, which presents failed examples.
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