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Abstract

CNN-based optical flow estimation has attracted atten-
tion recently, mainly due to its impressively high frame
rates. These networks perform well on synthetic datasets,
but they are still far behind the classical methods in real-
world videos. This is because there is no ground truth op-
tical flow for training these networks on real data. In this
paper, we boost CNN-based optical flow estimation in real
scenes with the help of the freely available self-supervised
task of next-frame prediction. To this end, we train the net-
work in a hybrid way, providing it with a mixture of syn-
thetic and real videos. With the help of a sample-variant
multi-tasking architecture, the network is trained on differ-
ent tasks depending on the availability of ground-truth. We
also experiment with the prediction of “next-flow” instead
of estimation of the current flow, which is intuitively closer
to the task of next-frame prediction and yields favorable re-
sults. We demonstrate the improvement in optical flow es-
timation on the real-world KITTI benchmark. Additionally,
we test the optical flow indirectly in an action classifica-
tion scenario. As a side product of this work, we report
significant improvements over state-of-the-art in the task of
next-frame prediction.

1. Introduction

Supervised learning of optical flow estimation with a
deep network yields a good trade-off between run time
and accuracy of the estimated optical flow [6]. However,
such supervised learning requires a large number of train-
ing pairs, which have been provided via synthetic images.
Such imagery lacks realism and diversity, and it keeps the
network from using the full potential of the learning con-
cept. Particularly on real-world data, FlowNet [6] does not
yield the same accuracy as state-of-the-art conventional op-
tical flow estimation techniques.

In this paper, we approach this problem by providing

Figure 1: We improve CNN-based optical flow estimation
in real videos by adding the extra self-supervised task of fu-
ture frame prediction, and training the network with a mix-
ture of synthetic and real-world videos. This combination is
made possible by putting a “multiplexer” at the entry of the
network which mixes data from the two sources on a timely
basis.

real-world data to the network during training. Since there
is only a very limited amount of real-world image pairs with
ground truth optical flow, we use a semi-supervised hybrid
multi-tasking scheme that exploits real-world videos with-
out ground truth and synthetic imagery with ground truth.
For the network to learn useful concepts from the unlabeled
data, we build on the self-supervised task of next-frame pre-
diction as an auxiliary task. The general concept of this hy-
brid learning task is illustrated in Figure 1.

The hybrid multi-tasking combines the best of super-
vised learning on synthetic data and self-supervised learn-
ing on real data. On the KITTI optical flow benchmark,
we obtained a clear improvement over the FlowNet, which
was trained without the self-supervised next frame predic-
tion task. The improvement over the baseline is even larger
when testing on an application task for optical flow, such as
action recognition.

In addition to the hybrid multi-task learning of optical
flow estimation and next frame prediction, we also propose
multi-task learning on next frame prediction and next flow
prediction. The latter two sub-tasks are more compatible
and improve results when feeding the optical flow into an
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Figure 2: Details of the multi-tasking architecture. For the sake of clarity, the lower-resolution outputs and their corresponding
losses (as introduced in [6]) are not displayed here. The flow estimation and frame prediction branches only differ in the
number of channels of the output layer(s). Numbers in the boxes show kernel size and number of output channels for each
layer. The upconvolutional layers are designed such that the output of each layer is of the same size (resolution) as its dual
convolutional layer. As it is a fully convolutional architecture, the output resolution of each layer varies, depending on the
resolution of the input frames.

action recognition network.
While we mainly focus on improving optical flow with

the auxiliary task of next frame prediction, we also show
benefits on next frame prediction.

2. Related Work

Since the work by Horn & Schunk [9], optical flow es-
timation has been dominated by variational methods [2, 20,
22].

The FlowNet by Dosovitskiy et al. [6] was the first deep
network trained end-to-end on optical flow estimation. It
was followed by Teney et al. [25] and Tran et al. [26]. These
supervised learning methods require training data with opti-
cal flow annotations. In Dosovitskiy et al. [6] and Mayer et
al. [17] synthetic datasets were introduced to provide such
data. Tran et al. [26] applied an existing variational method
to create pseudo-ground truth data.

Instead, Ahmadi and Patras [1] and Yu et al. [32] for-
mulated the task as an unsupervised learning problem. To
this end, they used a cost function based on the classical
color constancy assumption, as it is used in variational tech-
niques.

Video prediction has been very popular recently [16, 31,
7, 14, 10, 15, 23, 19]. Although some of these works fo-
cus on prediction as the main objective [16, 31], most of
them use it as an auxiliary task. Finn et al. [7] proposed
an action-conditioned video prediction model to facilitate
unsupervised learning for physical interaction. Patraucean
et al. [19] learn optical flow by warping the current frame
to the next one. Lotter et al. [14] use prediction to learn
representations for object recognition.

The works by Pintea et al. [21], Walker et al. [28, 29],
Jayaraman et al. [10], and Vondrick et al. [27] focus on mo-
tion prediction. Their predicted motion is conditioned on
a single input frame. In contrast, we model future motion

based on current motion and the scene content by making
explicit use of two consecutive frames as input.

3. Hybrid Architecture and Training Schedule
3.1. Optical Flow Estimation

The flow estimation network in the proposed hybrid ar-
chitecture largely builds on the FlowNet architecture intro-
duced in Dosovitskiy et al. [6]. As illustrated in Section 5,
we add two more up-convolutional layers (Upconv1, Up-
conv0) to the decoder. This yields a flow field with the
resolution of the input images. This is advantageous when
combining the network with next-frame prediction. In con-
trast, the network in Dosovitskiy et al. [6] yields a lower
resolution flow field, which is up-sampled with bilinear in-
terpolation.

In Section 5, the first and second row compose the en-
coder and decoder components of the flow estimator respec-
tively. While our network follows the same multi-resolution
scheme as in Dosovitskiy et al. [6], in Section 5 we omit the
extra details regarding the so-called refinement steps (Fig-
ure 3 of [6]) which represent lower-resolution outputs. We
use the endpoint error loss (EPE) for training of this branch
of the network. A more detailed illustration of the architec-
ture is provided in the supplementary material.

3.2. Next-Frame Prediction

The network for the auxiliary task of next-frame predic-
tion shares the encoder with the flow estimation network,
and adds a second decoder stream with independent weights
but using the same architecture. Rows 1 & 3 in Section 5
form the next-frame prediction component of the network.
As suggested in previous work [16], we use an L1 loss to
avoid blur in the generated images.

As reported in section 4, we experimented with different
number of frames as input for next-frame prediction. How-
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ever, in the multi-tasking scheme, we only use a 2-frame
set-up to be compatible with the paired task of flow estima-
tion. The two three-channel RGB images are provided as a
stacked six-channel input to the overall network.

3.3. Joint training

For joint training of the hybrid network, there are two
challenges. First, the data comes from two different
sources, and there are multiple ways how to mix them dur-
ing training. Secondly, unlike synthetic data, the real data
does not come with optical flow ground truth, i.e., for real
data as input, there is no loss for the flow related stream of
the network.

Hybrid data We mix the data at the minibatch level: data
in a single batch is taken completely either from the syn-
thetic dataset or the real-world dataset. The minibatch B(i)
at iteration i alternates between minibatches B(i)1 & B(i)2

from the two data sources

B(i) = (1− s(i))B(i)1 + s(i)B(i)2 (1)

using the switch function

s(i) = b i mod (n1 + n2)

n1
c, (2)

which always yields 0 or 1 and allows for different numbers
of cycles n1 and n2 dedicated to each data source, respec-
tively.

Batch-variant loss The total loss at the ith iteration is
computed according to:

L(i) = w1L(i)
1 s(i) + w2L(i)

2 (3)

in which L(i)
1 & L(i)

2 are the flow and frame estimation
losses respectively, with their assigned weights, w1 & w2.

In case of real-data without ground truth optical flow,
we deactivate the flow related loss L(i)

1 and, thus, the flow
related decoder stream of the network. Both the loss and
the loss gradient are set to zero. We keep the loss in sync
with the switch function s to ensure the desired functional-
ity: the network learns on both tasks when synthetic data is
provided, but skips updating the optical flow decoder when
there is no ground truth.

We set the loss weights such that w1/w2 is equal to
σ2/σ1 where σ’s are the estimates of the variances of the
input data (frame vs. flow) and are computed over a subset
of 500 random samples from the training sets. In the fol-
lowing experiments, we report results with a fixed ratio of
1/5 for wflow/wframe.

In our main experiments we fix the ratio of cycles ded-
icated to synthetic and real data sources. But we also pro-
vide an analysis on the effect of different cycle ratios on the
quality of the output flow field.

(a)

(b)

Figure 3: Illustration of the two multi-tasking schemes in-
troduced in this paper. (a) Combination of flow estimation
with next-frame prediction; (b) the next-flow prediction re-
places the task of current flow estimation. Each Ik denotes
a single frame in a video sequence of length 3, and F de-
notes a flow field. In both scenarios only I1 and I2 are the
inputs to the network. Therefore, the terms “current flow”
and “next-flow” refer to F12 and F23, respectively.

3.4. Next-Flow Prediction

In a multi-tasking scheme, for the combination to yield
significant improvements in the results, the two tasks need
to be “related” [4]. In context of the current work, we hy-
pothesize that prediction of the “next-flow” (i.e. the future
flow to come), may have more in common with the task of
next-frame prediction. Figure 3 compares the two combi-
nations and gives an intuition on how the two “prediction”
tasks match.

More formally: The two tasks share the encoder compo-
nent of the network, that maps (I1, I2) 7→ z, where z is the
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Overlayed FlowNet FlowNet NextFlow EpicFlow
Inputs +NextFrame +NextFrame

Figure 4: Some samples from the estimated optical flow fields on real scenes from HMDB51 [11]. Both of our suggested
methods in the middle columns, show clear improvements in the flow fields and preserving the object shapes.

internal representation to be learned by the network. This
mapping is affected by both tasks during the backward pass.
For multi-tasking to make sense, we expect that some fea-
tures learned by the encoder are beneficial for both target
tasks. We hypothesize that the pair of (z 7→ I3, z 7→ F23)
have more to share, compared to (z 7→ I3, z 7→ F12) not
only due to both being “prediction” tasks, but also because
in obtaining the future flow, the network needs to learn, at
least implicitly, about the future frame. This is not the case
for the current flow (Figure 3). This hypothesis is supported
by our experimental results.

3.5. Training Details

We train the network for 1 million iterations, with a batch
size of 8 for both of the data sources. The initial learning

rate is 0.0001, and drops by a factor of 0.5 every 100K itera-
tions starting from 300K. We use ADAM [13] for optimiza-
tion with β1 = 0.9, β2 = 0.999. On an NVIDIA Titan X,
training takes roughly 10 days.

4. Experiments
4.1. Datasets

For hybrid training of the network we need 2 datasets
per experiment. We used the so-called “FlyingThings3D”
dataset of Mayer et al. [17] as the data source with ground
truth optical flow. It consists of more than 20000 training
images and allows training a network from scratch. More-
over, it provides an independent test set that we used for
testing. The much smaller Sintel dataset [3] has 1064 sam-
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Dataset for KITTI’12 KITTI’15 Sintel FlyingThings3D

Frame Prediction train test train train test

B2B Unsupervised FlowNet [32] - - 11.3 - - -
FlowNet [6] - 8.26 - - 4.50 -

FlowNet Baseline - 8.79 - 15.59 4.33 1.84
FlowNet Baseline+NextFrame Sports 8.55 - 15.16 4.38 1.86
FlowNet Baseline+NextFrame Cityscapes 8.49 - 14.68 4.24 1.80
FlowNet Baseline+NextFrame KITTI:frames 8.37 - 14.15 4.30 1.84
FlowNet Baseline+NextFrame Sports + KITTI:frames 8.39 - 15.08 4.29 1.86
FlowNet Baseline+NextFrame Sports→KITTI:frames 7.78 9.2 13.95 4.36 1.85

FlowNet [6] →KITTI:flow - 7.52 9.1 - - -
FlowNet+NextFrame →KITTI:flow KITTI:frames 5.31 - 10.19 5.35 2.82

Table 1: Quantitative evaluation of optical flow estimation performance based on End Point Error (EPE). “KITTI:frames”
indicates video frames (without flow annotations) from the KITTI dataset. Moreover, wherever the evaluation is performed on
a KITTI (2012/2015) training subset, the data used for the training of the network is taken from its counterpart (2015/2012).
The→ sign indicates a pre-training/fine-tuning process.

ples and was used only for testing.
The only available real-world dataset with ground truth

optical flow is the KITTI dataset. There are two indepen-
dent datasets, KITTI 2012 [8] and KITTI 2015 [18]. We
used both datasets for the quantitative evaluation of the op-
tical flow. Since both datasets are independent, we always
used one for training and the other for testing. Except for
one experiment, we did not use the optical flow ground truth
for training but only the images. We took the frames from
the “multi-view” extension of the datasets, consisting of
4074 and 4200 images in the 2012 and 2015 versions, re-
spectively.

There are many large real-world datasets without optical
flow ground truth. We used mainly a subset of the Sports1M
dataset [12] for the self-supervised training task. The subset
includes all videos with a file size up to 5 MBytes, amount-
ing to more than 220K videos and 220M frames. We will
make the selection list available online. Also in another ex-
periment, we simply used 50000 frames from videos of the
Cityscapes dataset [5].

Moreover, we used the UCF101 [24] and HMDB51 [11]
datasets for testing the optical flow indirectly in an action
recognition scenario. The datasets contain more than 2M &
600K frames, respectively.

To compare the performance of our next-frame predictor
to published work, we used the same subset of UCF101 [24]
as Mathieu et al. [16]. It consists of 387 videos.

4.2. Direct Evaluation of the Optical Flow

In Figure 4 we visualize some of the flow fields estimated
with our method, FlowNet [6], and an accurate but slow
variational method (EpicFlow [22]). On real-world scenes,
our flow fields capture the shape of moving objects much
better than the baseline FlowNet. We believe this sharp-

ness is a result of asking for pixel-level accurate results in
the auxiliary task of frame prediction, which regulates the
blurring that the flow branch tends to exert.

We quantitatively evaluated the method on KITTI 2012
& 2015. Table 1 shows these results along with two syn-
thetic datasets. All the experiments used the same syn-
thetic source of data and they differ only in the source of
real data. ‘FlowNet Baseline’ is our full-resolution exten-
sion of the architecture of [6] trained on FlyingThings3D.
‘FlowNet+NextFrame‘ indicates our hybrid multi-tasking
scheme.

Results from various configurations are displayed in Ta-
ble 1. Although the Sports dataset has little similarity
with the scenes in KITTI, using this data for the auxil-
iary task yields significant improvements on KITTI. Using
frames from the Cityscapes dataset, improves the results
even more, as the videos are recorded in a similar context to
that of KITTI’s. There is no significant change on the syn-
thetic datasets. This does not come as a surprise, since the
FlyingThings3D dataset can cover other synthetic datasets
like Sintel well. There is no significant domain shift from
the training set to the test set in this case.

Using video frames from the KITTI dataset (labeled
as ‘KITTI:frames’) rather than the Sports or Cityscapes
datasets for the auxiliary task, improves results on KITTI
as expected. We also experimented with combining the
two real datasets, both in a parallel fashion and in a
pre-training/fine-tuning scheme (’Sports→KITTI:frames’).
The latter led to another large improvement. We submitted
this version to the official KITTI evaluation site to obtain
results on the KITTI test set. The result is essentially as
good as the FlowNet fine-tuned on KITTI. Figure 5 depicts
a qualitative comparison on this benchmark.

We also report results on the fine-tuned FlowNet com-
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Action Accuracy (%)

UCF101 [24] HMDB51 [11]

Classical
EpicFlow [22] 82.8 56.1
TV-L1 [20] (as reported in [30]) 87.2 -

CNN based
FlowNet 62.0 38.6
FlowNet pre-trained with NextFrame 63.4 38.4
FlowNet+NextFrame Multi-tasking (1:5) 74.1 48.4
NextFlow+NextFrame Multi-tasking (1:5) 75.5 48.9

Table 2: Action classification accuracy. Each row contains results of training and testing the action classifier on optical flow
generated by a specific method. 1:5 indicates the real to synthetic iterations ratio.

(a) First input frame

(b) FlowNetS+ft [6]

(c) B2B Unsupervised FlowNet [32]

(d) Ours

Figure 5: Sample result on the KITTI benchmark. The un-
supervised method of Yu et al. [32] has problems near the
image boundaries and reveals blurred motion boundaries.
Our method shows a similar quality as FlowNetS+ft, al-
though it has been only fine-tuned on unlabeled data.

bined with the hybrid learning on the auxiliary task at the
very bottom of Table 1. This experiment shows that even
when fine-tuning the FlowNet baseline on KITTI, hybrid
training still yields significant improvements.

EPE Action Accuracy (%)

nreal : nsynth KITTI’12 HMDB51 UCF101

FlowNet 8.88 38.6 62.0
1:9 8.76 48.0 75.3
1:5 8.55 48.4 74.1
1:3 8.78 47.3 74.7
1:1 8.94 48.3 76.6
4:1 10.35 48.0 -

Table 3: Analysis of the effect of different cycles ratios on
optical flow quality. For EPE, lower values are better. For
action class accuracy, higher numbers are better.

4.3. Indirect Evaluation: Action Classification

As real-world videos rarely come with optical flow
ground-truth (KITTI being an exception), possibilities for a
direct evaluation of the optical flow is limited. Thus, we use
the evaluation on flow-based action classification as an indi-
rect quantitative measure on two larger real-world datasets.
We use the action classifier network of Wang et al. [30]
and train/test it with optical flow from different optical flow
methods as input.

Table 2 shows the results of this evaluation. We used
the Sports dataset to provide unsupervised data. The hybrid
learning was done with a ratio of 1:5 for real to synthetic
cycles. The optical flow with our hybrid learning scheme
improved results on action recognition by a large margin
(12.1% on UCF and 9.8% on HMDB) when compared to
the baseline FlowNet. We achieved even larger improve-
ments by replacing current flow with ‘NextFlow’.

We also tried a pre-training/fine-tuning scenario in which
the network is initially trained for the frame prediction
task (on real data), and then fine-tuned with the main task
(“FlowNet pre-trained with NextFrame”). Results confirm
that this sequential learning is not sufficient. The multi-
tasking scheme is necessary to make good use of the auxil-
iary task on the real data.

We report also number of two variational methods, TV-
L1 [33] and EpicFlow [22]. They provide a higher accu-
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FlowNet 1:9 1:5 1:3 1:1 4:1 EpicFlow

Figure 6: Qualitative comparison of different data source combination cycles. On top of each column the nreal : nsynth ratio
is displayed. When there is no real data involved (FlowNet), the network fails to estimate an acceptable flow field in real
scenes. On the other hand, if training spends too many cycles only on frame prediction, as in the 4:1 column, the network no
longer focuses enough on the optical flow task. The best results are obtained with a ratio of 1:5 or 1:3.

Whole Image Moving Regions

Similarity Sharpness Similarity Sharpness
Method PSNR(dB) (dB) PSNR(dB) (dB)

Mathieu et al. [16]
L1 22.3 18.5 28.7 24.8

GDL + L1 23.9 18.7 29.9 25
Adv + GDL + L1 29.6 20.3 32 25.4

Ours (2-frame) L1 29.9 20.6 31.9 25.4
Ours (4-frame) L1 30.8 20.8 31.9 25.4

Table 4: Next frame prediction on UCF101 [24]. With just a simple L1 loss we already obtain clear improvements over the
state-of-the-art.

racy, but are also much slower than the network based ap-
proaches.

4.4. Impact of Task Combination Cycles

We evaluated on which ratio of training cycles on syn-
thetic and real data one obtains the best performance and on
how robust the method is to deviations from the optimal ra-
tio. We used the Sports dataset as data source in this exper-
iment. Figure 6 shows the results for various nreal : nsynth
cycle ratios. Results are robust for a large range of ratios.
Lower ratios approach the results of FlowNet, as the effect
of the auxiliary task starts to vanish. Putting too much em-

phasis on the auxiliary task introduces artifacts in the optical
flow field, since the network starts to care mostly about next
frame prediction. In general, the ratio should be biased to-
wards the supervised optical flow task. A ratio of 1:5 seems
a good choice in general.

4.5. Next-Frame Prediction as a Single Task

We also evaluated the output of our next-frame predic-
tion network and tested it on UCF. To this end, we trained it
as an independent single-task network (nsynthetic = 0). Ta-
ble 4 shows a comparison with Mathieu et al. [16] – which
to the best of our knowledge is the current state-of-the-art in
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I1 I2 I3 I4 Ours Mathieu et
al. [16]

Ground Truth

Figure 7: Next frame prediction samples. Results of Mathieu et al. [16] are often a bit sharper due to the adversarial loss, yet
the method also introduces distortions and artifacts; see the last two samples. Our next frame predictions are blurrier due to
relying only on the L1 loss, but yield robust predictions without distortion. This explains the on-par quantitative results in
Table 4.

next-frame prediction on UCF. Without the use of any aux-
iliary cost functions, as introduced in Mathieu et al. [16]
for the sake of sharp results, and just with a single L1 loss,
we obtain results on par with Mathieu et al. on the moving
regions of the image, and significantly better results on the
whole image. This means that the network is more success-
ful on applying the motion only to the dynamic areas and
keeping the static areas intact. We show qualitative exam-
ples of the predicted frames in Figure 7 and in a video in the
supplementary material.

Since frame prediction has only been an auxiliary task in
the network, the input settings (particularly the cycles ratio)
have been set to focus on improvement of the optical flow
output. Therefore, by increasing the number of flow cycles,
the next-frame prediction accuracy is degraded.

5. Conclusions
We have presented a way to improve a deep network for

optical flow estimation on real data by training it with an
additional self-supervised auxiliary task. Our experiments
showed a consistent improvement of the optical flow qual-

ity on real-world data. Thus, we believe that this approach
largely improves the transfer of deep networks trained on
synthetic dataset to domains in the real world. While we
focused here on optical flow, the concept may transfer also
to similar problems, such as disparity estimation, and alter-
native self-supervised auxiliary tasks.
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Supplementary Material

Figure 8: In this detailed illustration of the architecture, we show the contraction throughout the encoder in the first row,
followed by the two decoder branches, showing the expansion in the network. Captions above/below the boxes show the layer
names, as well as the number of outputs/feature maps. In the first row we also show the kernel sizes for each layer, while
we do not display the fixed kernel size of 4x4 for the Upconv layers of rows 2 and 3 (see table 5). The fully-convolutional
architecture can be used with different input sizes, and thus no resolution is displayed in this figure. Each represents a
convolutional layer with a kernel size of 3x3, and stride and padding values of 1, which preserves the spatial dimensions, and
maps its higher dimensional input blob to a flow or frame prediction. These low resolution predictions are then up-sampled
and concatenated to the input of the next layer, along with the corresponding features from the encoder. The “On-Off” losses
of the flow prediction branch are all synchronized to (de)activate the branch when necessary.
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Conv1 Conv2 Conv3 Conv3 1 Conv4 Conv4 1 Conv5 Conv5 1 Conv6 Conv6 1

kernel size 7x7 5x5 5x5 3x3 3x3 3x3 3x3 3x3 3x3 3x3
stride 2 2 2 1 2 1 2 1 2 1
padding 3 2 2 1 1 1 1 1 1 1

Upconv5 Upconv4 Upconv3 Upconv2 Upconv1 Upconv0

kernel size 4x4 4x4 4x4 4x4 4x4 4x4
stride 2 2 2 2 2 2
padding 1 1 1 1 1 1

Table 5: Kernel size, stride and padding settings for different layers of the network. Upconv layers in the flow and frame
branches share the same settings.

nreal : nsynth ∞ 8:1 4:1 1:1 1:3 1:5 1:9

Similarity - PSNR (dB) - Whole Image 29.9 29.20 29.14 28.8 28.57 28.34 28.24

Table 6: Analysis of the effect of different cycles ratios on frame prediction. The more flow prediction cycles we include in
the arrangement, the lower the prediction quality goes.
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