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1. Convergence Analysis
We find that Sparse Convolutions converge much faster than standard convolutions for most input-output-combinations,

especially for those on Synthia with irregularly sparse depth input, as considered in Section 5.1 of the main paper. In Figure
1, we show the mean average error in meters on our validation subset of Synthia over the process of training with identical
solver settings (Adam with momentum terms of β1 = 0.9, β2 = 0.999 and delta 1e−8). We chose for each variant the
maximal learning rate which still causes the network to converge (which turned out to be 1e−3 for all three variants). We
find that Sparse Convolutions indeed train much faster and much smoother compared to both ConvNet variants, most likely
caused by the explicit ignoring of invalid regions in the update step. Interestingly, the ConvNet variant with concatenated
visibility mask in the input converges smoother than the variant with only sparse depth in the input, however, additionally
incorporating visibility masks seems to reduce overall performance for the task of depth upsampling.

2. Semantic Segmentation
2.1. Detailed Results on Synthia

Relating to Section 5.3 of the main paper, we show in Table 1 the class-wise IoU for semantic labeling on 5% sparse
input data and compare the three proposed VGG-like variants: Convolutions on depth only, convolutions on depth with
concatenated visibility mask, and sparse convolutions using depth and visibility mask. We find that sparse convolutions learn
to predict also less likely classes, while standard convolutions on such sparse data even struggle to get the most likely classes
correct.

2.2. Semantic Segmentation on Real Depth Maps

Many recent datasets provide RGB and aligned depth information along with densely annotated semantic labels, such as
Cityscapes [1] and SUN-RGBD [14]. Many state-of-the-art approaches incorporate depth as well as RGB information in
order to achieve highest performance for the task of semantic segmentation [5]. As the provided depth maps are often not

Table 1: Evaluation of the class-level performance for pixel-level semantic labeling on our Synthia validation
split subset (‘Cityscapes‘) after training on all Synthia ‘Sequence‘ subsets using the Intersection over Union
(IoU) metric. All numbers are in percent and larger is better.
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VGG - Depth Only 27.1 30.3 25.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.4
VGG - Depth + Mask 20.9 27.8 14.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.9
VGG - Sparse Convolutions 95.3 59.0 33.0 17.2 1.0 60.5 28.7 33.0 12.5 35.6 6.1 0.5 22.4 31.1
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Figure 1: Convergence of the three considered network baselines from Section 5.1 of the main paper
for the task of sparse depth upsampling on 5% dense input depth maps from our Synthia train subset.

Table 2: Performance comparison of different input and convolution variants for the task of semantic labeling
on (sparse or filled) depth maps from the SUN-RGBD dataset [14]. All networks are trained from scratch on the
training split using 37 classes, performance is evaluated on the test split as mean IoU, c.f . [5].

Convolution Type Input Depth Visibility Mask? IoU [%]

Standard Raw Depth No 7.697
Standard Filled Depth No 10.442
Standard Raw Depth Concatenated 18.971
Standard Filled Depth Concatenated 18.636
Sparse Raw Depth Yes 19.640

completely dense, we propose to use sparse convolutions on the depth channel instead of filling depth maps artificially and
applying dense convolutions afterwards.

We conduct experiments on SUN-RGBD with only depth maps as input to show the benefit of using sparse convolutions
over traditional convolutions. As seen in Section 5.3 of the main paper, sparse convolutions help to incorporate missing
depth information in the input for very sparse (5%) depth maps. In Table 2 we show the performance of a VGG16 (with
half the amount of channels than usual) trained from scratch for the task of semantic labeling from (sparse) depth maps. We
apply skip connections as used throughout literature [6, 12] up to half the input resolution. We compare performance on the
provided raw sparse depth maps (raw, c.f . Figure 3) as well as a dense depth map version obtained from a special inpainting
approach using neighboring frames (filled) on the SUN-RGBD test dataset, as well as the used convolution type (sparse or
standard). We find that sparse convolutions perform better than standard convolutions, on both raw and filled depth maps, no
matter if a visibility map is concatenated to the input depth map or not. Like reported in [5], standard convolutions on the
raw depth maps do perform very bad, however, we find that concatenating the visibility map to the input already doubles the
achieved performance. A detailed class-wise performance analysis can be found in Table 3. Note that missing information
in the input, like missing depth measurements in the SUN-RGBD dataset, does not always cause less information, which we
discuss in the following section. This phenomenon boosts methods that explicitly learn convolutions on a visibility mask,
such as the two standard convolution networks with concatenated visibility masks. Although we do not explicitly extract
features of the visibility masks we still outperform the other convolution variants.



Figure 2: Missing data sometimes contains useful information as in the example of handwritten digit classification or 3D
CAD model classification. Examples are taken from LeCun et al. [9] and Graham [4].

Figure 3: Active sensors such as ToF cameras might contain missing values because of strongly reflecting surfaces. However,
the missing data clearly outlines the shape of certain objects and therefore gives a hint for semantic segmentation. This
example is taken from the SUN-RGBD dataset [14].

2.3. Discussion: Missing data is not always missing information

In our experiments we recognized that missing data might sometimes be helpful for certain tasks. Let’s consider e.g. digit
classification [10] or shape recognition from 3D CAD models as depicted in Figure 2. For both cases the relation between
invalid (background) and valid pixels/voxels is indispensable information for the classification. We want to stress that our
approach does not tackle such cases. Instead it handles cases where unobserved data is irregularly distributed and does not
contain additional information. Therefore, the missing data harms the results of the convolution.

Data from active sensors, such as Time-of-Flight (ToF) cameras used in the SUN-RGBD dataset, is often sparse as shown
in Figure 3. However, the missing data might contain a pattern if e.g. only certain materials do reflect the emitted light. This
might be the reason why the results in Table 2 show a significant improvement for standard convolutions if the visibility mask
is concatenated. Our Sparse Convolution Network does not consider any missing data. Therefore, it might miss information
encoded in the visibility mask. Although, the proposed method outperforms the naı̈ve approaches, considering the valid mask
explicitly will likely further improve the performance of our method.



Table 3: Evaluation of the class-level performance for pixel-level semantic labeling on Synthia Cityscapes subset
after training on all Synthia Sequence subsets using the Intersection over Union (IoU) metric. All numbers are
in percent and larger is better. Our sparse convolutions outperform the other variants on 18 classes, standard
convolutions on filled depth with concatenated visibility mask outperform the others on 11 classes, and on 8
classes standard convolutions on raw depth with concatenated mask perform best.
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Conv. Raw Depth 49.5 72.3 0.2 9.4 26.5 5.5 29.3 0.2 17.9 2.6 0.0 6.3 0.0 0.0 0.3 9.0 0.0 7.4 0.0 0.0 0.2 45.3 0.1 0.0 0.0 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.4 0.0 0.0 7.7
Conv. Filled Depth 53.1 76.1 8.7 19.6 34.5 8.5 34.5 0.3 9.1 10.4 0.5 12.3 0.0 0.0 0.0 27.6 0.0 14.0 0.1 0.0 1.3 48.9 5.1 0.0 0.0 0.1 0.8 0.0 0.0 0.0 0.0 0.0 2.1 8.4 7.6 2.9 0.1 10.4
Conv. Raw Depth, Mask concat. 59.4 80.2 28.7 53.3 49.0 37.3 42.9 2.7 21.7 17.7 7.3 22.3 0.0 5.2 0.9 35.6 11.4 21.4 14.0 0.0 6.3 34.8 10.0 6.4 4.6 0.1 8.6 0.0 4.7 12.1 2.7 0.1 35.0 30.2 9.2 23.3 2.7 19.0
Conv. Filled Depth, Mask concat. 59.9 81.6 29.2 52.5 50.7 38.6 42.6 0.6 15.3 16.9 11.1 17.0 0.1 0.5 0.2 20.5 12.5 11.3 16.2 0.0 4.0 38.0 18.9 4.3 5.4 0.0 5.5 0.0 3.6 15.7 0.0 9.3 32.9 27.4 17.0 29.9 0.6 18.6
Sparse Conv. Raw Depth 60.1 80.7 26.9 54.2 50.3 34.7 40.5 9.3 22.0 11.0 10.0 16.6 4.0 8.5 3.0 20.7 10.7 23.2 17.9 0.0 3.8 44.5 10.2 6.2 6.9 2.5 5.2 4.6 5.0 15.3 1.2 2.8 42.9 31.6 11.2 26.4 3.0 19.6

Table 4: Evaluation of differently generated depth map variants using the manually annotated ground truth disparity maps
of 142 corresponding KITTI benchmark training images [13]. Best values per metric are highlighted. Cleaned Accumulation
describes the output of our automated dataset generation without manual quality assurance, the extension ‘+ SGM‘ describes
an additional cleaning step of our depth maps with SGM depth maps, applied mainly to remove outliers on dynamic objects.
All metrics are computed in the disparity space.

Density MAE RMSE KITTI δi inlier rates
outliers δ1 δ2 δ3

SGM 82.4% 1.07 2.80 4.52 97.00 98.67 99.19
Raw LiDaR 4.0% 0.35 2.62 1.62 98.64 99.00 99.27
Acc. LiDaR 30.2% 1.66 5.80 9.07 93.16 95.88 97.41
Cleaned Acc. 16.1% 0.35 0.84 0.31 99.79 99.92 99.95

3. Detailed Dataset Evaluation
Relating to Section 4.1 of the main paper, we manually extract regions in the image containing dynamic objects in order

to compare our dataset’s depth map accuracy for foreground and background separately. Various error metrics for the 142
KITTI images with corresponding raw sequences, where we differentiate between the overall average, c.f . Table 4, as well
as foreground and background pixels, c.f . Tables 5 and 6.

We find that our generated depth maps have a higher accuracy than all other investigated depth maps. Compared to raw
LiDaR, our generated depth maps are four times denser and contain five times less outliers in average. Even though we
lose almost 50% of the density of the LiDaR accumulation through our cleaning procedure, we achieve almost 20 times less
outliers on dynamic objects and even a similar boost also on the static environment. This might be explained through the
different noise characteristics in critical regions, e.g. where LiDaR typically blurs in lateral direction on depth edges, SGM
usually blurs in longitudinal direction. In comparison to the currently best published stereo algorithm on the KITTI 2015
stereo benchmark website [13], which achieves 2.48, 3.59, 2.67 KITTI outlier rates for background, foreground and all pixels
(anonymous submission, checked on April 18th, 2017), the quality of our depth maps is in the range of 0.23, 2.99, 0.84.
Therefore, besides boosting depth estimation from single images (as shown in Section 5), we hope to also boost learned
stereo estimation approaches.

Table 5: Evaluation as in Table 4 but only for Fore-
ground pixels.

Depth Map MAE RMSE KITTI δi inlier rates
outliers δ1 δ2 δ3

SGM 1.23 2.98 5.91 97.6 98.2 98.5
Raw LiDaR 3.72 10.02 17.36 84.29 86.11 88.56
Acc. LiDaR 7.73 12.01 59.73 55.67 73.73 83.04
Cleaned Acc. 0.88 2.15 2.99 98.55 98.96 99.17

Table 6: Evaluation as in Table 4 but only for Back-
ground pixels.

Depth Map MAE RMSE KITTI δi inlier rates
outliers δ1 δ2 δ3

SGM 1.05 2.77 4.36 96.93 98.72 99.27
Raw LiDaR 0.22 1.90 0.94 99.25 99.56 99.73
Acc. LiDaR 1.09 4.81 4.25 96.74 97.99 98.78
Cleaned Acc. 0.34 0.77 0.23 99.83 99.94 99.97
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Figure 4: Further qualitative results of our depth upsampling approach on the KITTI dataset with corresponding sparse depth
input and our generated dense depth map dataset.

4. Further Depth Upsampling Results
We show more results of our depth upsampling approach in Figure 4. The input data of the Velodyne HDL64 is sparse

and randomly distributed when projected to the image. Our approach can handle fine structures while being smooth on flat
surfaces. Sparse convolutions internally incorporate sparsity in the input and apply the learned convolutions only to those
input pixels with valid depth measurements.

5. Boosting Single-Image Depth Prediction
As promised in Section 4 of the main paper, we conducted several experiments for a deep network predicting depth maps

from a single RGB image, e.g. as done by [2, 3, 11] and many more. Due to the lack of training code and to keep this study
independent of current research in loss and architecture design, we chose the well-known VGG16 architecture [12] with
weights initialized on the ImageNet dataset [8] and vary only the used ground truth. For a fair comparison, we use the same
amount of images and the same sequence frames for all experiments but adapt the depth maps: Our generated dataset (denser
than raw LiDaR and even more accurate), sparse LiDaR scans (as used by most approaches for depth prediction on KITTI
scenes), as well as depth maps from semi-global matching (SGM) [7], a common real-time stereo estimation approach, c.f .
Table 7 (bottom). We evaluate the effect of training with the standard L1 and L2 losses, but do not find large performance
differences, c.f . Table 7 (top). Also, we compare the difference between an inverse depth representation, as suggested in the
literature [11, 15], as well as an absolute metric representation, c.f . Table 7 (top). Surprisingly, we find that absolute depth
values as ground truth representation outperform inverse depth values. We use the best setup (absolute depth with L2 loss due
to faster convergence) to evaluate the performance on our test split, where our dataset outperforms the other most promising
depth maps from raw LiDaR, c.f . Table 7 (bottom).

We find that our generated dataset produces visually more pleasant results and especially much less outliers in occluded
regions, c.f . the car on the left for the second and last row of Figure 5. Also, our dense depth maps seem to help the networks
to generalize better to unseen areas, such as the upper half of the image. We hope that our dataset will be used in the future
to further boost performance for this challenging task.
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