
Supplementary Material:
Learning to Estimate 3D Hand Pose from Single RGB Images

Christian Zimmermann, Thomas Brox
University of Freiburg

{zimmermann, brox}@cs.uni-freiburg.de

Supplementary

A. HandSegNet architecture and learning
schedule

Table 1 contains the architecture used for HandSegNet. It
was trained for hand segmentation on R-train with a batch
size of 8 and using ADAM solver [1]. The network was
initialized using weights of Wei et al. [2] for layers 1 to
16 and then trained for 40000 iterations using a standard
softmax cross-entropy loss. The learning rate was 1 · 10−5

for the first 20000 iterations, 1 · 10−6 for following 10000
iterations and 1 · 10−7 until the end. Except for random
color hue augmentation of 0.1 no data augmentation was
used. From the 320×320 pixel images of the training set a
256×256 crop was taken randomly.

B. PoseNet architecture and learning schedule
Table 2 contains the architecture used for PoseNet. In all

cases it was trained with a batch size of 8 and using ADAM
solver [1]. The initial 16 layers of the network are initialized
using weights of Wei et al. [2] all others are randomly ini-
tialized . The network is trained for 30000 iterations using a
L2 loss. The learning rate is 1 ·10−4 for the first 10000 iter-
ations, 1 · 10−5 for following 10000 iterations and 1 · 10−6

until the end. For ground truth generation of the score maps
we use normal distributions with a variance of 25 pixels and
the mean being equal to the given keypoint location. We
normalize the resulting maps such that each map contains
values from 0 to 1, if there is a keypoint visible. For invisi-
ble keypoints the map is zero everywhere.

We train PoseNet on axis aligned crops that are resized
to a resolution of 256×256 pixels by bilinear interpolation.
The bounding box is chosen such that all keypoints of a sin-
gle hand are contained within the crop. We augment the
cropping procedure by modifying the calculated bounding
box in two ways. First, we add noise to the calculated cen-
ter of the bounding box, which is sampled from a zero mean
normal distribution with variance of 10 pixels. The size of
the bounding box is changed accordingly to still contain all

id Name Kernel Dimensionality
Input image - 256×256×3

1 Conv. + ReLU 3×3 256×256×64
2 Conv. + ReLU 3×3 256×256×64
3 Maxpool 4×4 128×128×64
4 Conv. + ReLU 3×3 128×128×128
5 Conv. + ReLU 3×3 128×128×128
6 Maxpool 4×4 64×64×128
7 Conv. + ReLU 3×3 64×64×256
8 Conv. + ReLU 3×3 64×64×256
9 Conv. + ReLU 3×3 64×64×256

10 Conv. + ReLU 3×3 64×64×256
11 Maxpool 4×4 32×32×256
12 Conv. + ReLU 3×3 32×32×512
13 Conv. + ReLU 3×3 32×32×512
14 Conv. + ReLU 3×3 32×32×512
15 Conv. + ReLU 3×3 32×32×512
16 Conv. + ReLU 3×3 32×32×512
17 Conv. 1×1 32×32×2
18 Bilinear Upsampling - 256×256×2
19 Argmax - 256×256×1

Hand mask - 256×256×1

Table 1: Network architecture of the proposed HandSegNet
network. Except for input and hand mask output every row
of the table gives a data tensor of the network and the oper-
ations that produced it.

hand keypoints. Second we find it helpful to improve gener-
alization performance by adding a bit of noise on the coor-
dinates used to generate the score maps. Therefore, we add
a normal distribution of zero mean and variance 1.5 to the
ground truth keypoint coordinates, whereas each keypoint
is sampled independently. Additionally we apply random
contrast augmentation with a scaling factor between 0.5 and
1.0, which is sampled from a uniform distribution.



id Name Kernel Dimensionality
Input image - 256×256×3

1 Conv. + ReLU 3×3 256×256×64
2 Conv. + ReLU 3×3 256×256×64
3 Maxpool 4×4 128×128×64
4 Conv. + ReLU 3×3 128×128×128
5 Conv. + ReLU 3×3 128×128×128
6 Maxpool 4×4 64×64×128
7 Conv. + ReLU 3×3 64×64×256
8 Conv. + ReLU 3×3 64×64×256
9 Conv. + ReLU 3×3 64×64×256

10 Conv. + ReLU 3×3 64×64×256
11 Maxpool 4×4 32×32×256
12 Conv. + ReLU 3×3 32×32×512
13 Conv. + ReLU 3×3 32×32×512
14 Conv. + ReLU 3×3 32×32×512
15 Conv. + ReLU 3×3 32×32×512
16 Conv. + ReLU 3×3 32×32×512
17 Conv. 1×1 32×32×21
18 Concat(16, 17) - 32×32×533
19 Conv. + ReLU 7×7 32×32×128
20 Conv. + ReLU 7×7 32×32×128
21 Conv. + ReLU 7×7 32×32×128
22 Conv. + ReLU 7×7 32×32×128
23 Conv. + ReLU 7×7 32×32×128
24 Conv. 1×1 32×32×21
25 Concat(16, 17, 24) - 32×32×554
26 Conv. + ReLU 7×7 32×32×128
27 Conv. + ReLU 7×7 32×32×128
28 Conv. + ReLU 7×7 32×32×128
29 Conv. + ReLU 7×7 32×32×128
30 Conv. + ReLU 7×7 32×32×128
31 Conv. 1×1 32×32×21

Table 2: Network architecture of the PoseNet network. Ex-
cept for input every row of the table represents a data tensor
of the network and the operations that produced it. Outputs
of the network are are predicted score maps c from layers
17, 24 and 31.

C. PosePrior architecture

Table 3 contains the architecture used for each stream of
the PosePrior. It uses 6 convolutional layers followed by
two fully-connected layers. All use ReLU activation func-
tion and the fully-connected layers have a dropout probabil-
ity of 0.2 to randomly drop a neuron. Preceeding to the first
FC layer, information about the hand side is concatenated
to the flattened feature representation calculated by the con-
volutional layers. All drops in spatial dimension are due
to strided convolutions. The network ceases with a fully-
connected layer that estimates P parameters, where P = 3

for Viewpoint estimation and P = 63 for the coordinate
estimation stream.

id Name Kernel Dimensionality
Input - 32×32×21

1 Conv. + ReLU 3×3 32×32×32
2 Conv. + ReLU 3×3 16×16×32
3 Conv. + ReLU 3×3 16×16×64
4 Conv. + ReLU 3×3 8×8×64
5 Conv. + ReLU 3×3 8×8×128
6 Conv. + ReLU 3×3 4×4×128
7 Reshape + Concat - 130
8 FC + ReLU + Drop(0.2) - 512
9 FC + ReLU + Drop(0.2) - 512
10 FC - 512

Output - P

Table 3: Network architecture of a single stream for the
proposed PosePrior network. Except for input and output
every row of the table gives a data tensor of the network
and the operations that produced it. Reduction in the spa-
tial dimension is due to stride in the convolutions. P is the
number of estimated parameters and is P = 3 for View-
point estimation and P = 63 for the coordinate estimation
stream.

D. GestureNet architecture and learning
schedule

We train the GestureNet using Adam solver, a batch size
of 8 and an initial learning rate of 1 · 10−4 which drops
by one decade at 15000 and 20000 iterations. Training is
finished at iteration 30000. The network is trained with a
standard softmax cross-entropy loss on randomly cropped
256×256 images.

E. Additional results
Figure 1 shows results of the proposed approach.

id Name Dimensionality
Input crel 63

1 FC + ReLU + Dropout(0.2) 512
2 FC + ReLU + Dropout(0.2) 512
3 FC 35

Table 4: Network architecture of the GestureNet used for
our experiments. All layers were initialized randomly.
Probability to drop a neuron in the indicated layers is set
to 0.2.



Figure 1: Qualitative examples of our complete system. Input to the network are color image and information if its a left
or right hand. The network estimates the hand segmentation mask, localizes keypoints in 2D (shown overlayed with the
input image) and outputs the most likely 3D pose. The top row shows samples from a dataset we recorded for qualitative
evaluation, the following three rows are from R-val and last three rows are from S-val.

Figure 2: Two samples from the NYU Hand Pose Dataset
by Tompson et al. [3]. Due to artefacts in the color images
this dataset is not suited to evaluate color based approaches.

F. NYU Hand Pose Dataset

A commonly used benchmark for 3D hand pose estima-
tion is the NYU Hand Pose Dataset by Tompson et al. [3].
We can’t use it for our work, because it only provides reg-
istered color images, which exclusively provide color infor-

mation for pixels with valid depth data. This results into
corrupted images as shown in Figure 2. This makes it infea-
sible to use for an approach that only utilizes color.

References
[1] D. P. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. CoRR, abs/1412.6980, 2014.
[2] Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser

Sheikh. Convolutional pose machines. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 4724–4732, 2016.

[3] J. Tompson, M. Stein, Y. Lecun, and K. Perlin. Real-Time
Continuous Pose Recovery of Human Hands Using Convolu-
tional Networks. ACM Transactions on Graphics, 33(5):1–10,
Sept. 2014.


