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ABSTRACT

Image segmentation is an important first step for the quanti-
tative analysis of biomedical images. We present a method to
simultaneously segment and classify translucent overlapping
objects in 2D images. For this we propose an approach using
a fully-convolutional neural network simultaneously solving
two tasks: object detection and instance segmentation. Ob-
ject detection predicts reference points, object class labels
and sizes. To solve the problem of multiple labels per lo-
cation, we lift our label-space from 2D to 3D, resulting in a
non-overlapping representation of the instance masks. To our
knowledge it is the first method that handles overlapping bio-
logical objects using deep learning making it easily applicable
to a large variety of challenging datasets.

Index Terms— instance segmentation, object detection,
overlapping objects, deep learning

1. INTRODUCTION

Detection, classification and segmentation are problems that
frequently occur in biomedical image analysis. One exam-
ple is the quantification of shape variations of different types
of cells which requires proper cell instance segmentation and
classification. In 2D projections, as e.g. in brightfield mi-
croscopy, clustering cells appear to overlap which makes con-
ventional image segmentation impossible. In this work we
provide a general approach that can handle these problems.
It is based on Convolutional Neural Networks (CNN) that
have demonstrated drastic performance improvements on pix-
elwise semantic segmentation [1, 2] in the last years. How-
ever, semantic segmentation does not distinguish object in-
stances and only few of the existing approaches provide work-
arounds for instance aware semantic segmentation. An even
smaller subset of them can be generalized to handle overlap-
ping objects. We solve all mentioned problems with a single
Fully Convolutional Network.
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Fig. 1. Proposed segmentation pipeline. (a) Raw input im-
age with overlapping translucent objects. (b-c) Predicted seg-
mentations. The overlapping objects are encoded as sheared
2D masks in a 3D volumetric image. Shearing in xz- and in
yz-direction is required to resolve ambiguities. (d) Predicted
bounding boxes and object centers. (e) Resulting overlapping
class-specific segmentation masks, displayed as outlines.

Our method is able to separate overlapping translucent
objects providing complete segmentation masks for each
instance. For this, we lift our label-space from 2D to 3D
and perform the object segmentation in 3D. To obtain pixel-
accurate class-specific object masks in 2D, we combine the
3D representation with object reference points and bound-
ing boxes which are predicted by the network as well. The
overview of our method is shown in Fig. 1.

Our main contributions are: 1. We present a method that
produces complete class-labeled instance masks of overlap-
ping translucent objects. 2. We introduce an object detection
framework that does not generate proposals and refines them,
but predicts reference points containing information about the
location, size and class of an object.

2. RELATED WORK

In the last years many approaches appeared that deal with in-
stance segmentation. Some of them inspired our work: The



Fig. 2. Two-headed U-Net [2] architecture: Two expansion
paths share feature maps (FM) from one contraction path.
The channel number is shown on top of each FM. Parame-
ters without dataset indication are used for both datasets. The
spatial resolution of all FMs after the last 3×3 convolution is
452×452, only valid parts of convolutions are propagated.

authors of [2] separate touching objects by lines of one pixel
width which are assigned to the background class label. The
network is forced to learn this local ”misclassification” via
high pixelwise loss weights. With decreasing object distance
the weights between two objects smoothly increase. The strat-
egy leads to separated object instances but can not deal with
overlapping objects. We use the same weighting scheme to
add gaps between touching reference points which we present
to the network as disks with fixed diameter of 9 pixels.

In [3] and [4] a grid with distinct class labels per grid cell
is put on each object. The labels are ordered so that two touch-
ing objects always have different labels on touching borders.
Similar to our work the authors transform the object masks to
a higher dimension making them separable. Our method can
be seen as a generalization of the mentioned methods, making
it possible to also distinguish overlapping objects and there-
fore providing a more flexible approach.

In this work we show the suitability of our method for
translucent objects, but, theoretically, it can be applied to im-
ages containing occluded non-transparent objects as well. For
this, we suggest to generate the training data synthetically,
following the strategies described in [5, 6].

In [7] the authors generate object bounding box proposals
in the first stage which are then classified and regressed in a
second stage. [8] extends the method, additionally predicting
the binary segmentation mask per proposal.

3. METHOD

In contrast to [7, 8], we do not generate proposals and succes-
sively refine them. Instead we directly let a neural network
predict class-labeled object reference points and correspond-
ing segmentation masks in a higher dimensional space to dis-
ambiguate image regions occupied by multiple objects.

Our network architecture is based on the ”U-Net” [2] with
four resolution levels. The contraction path of the U-Net alter-

nates between convolutions and pooling steps which reduce
the spatial dimensions of the input image from 636×636 to
32×32 pixels at the lowest resolution and encode the relevant
image information into 1024-dimensional feature vectors. We
extend the U-Net to simultaneously solve the detection and
segmentation tasks using two independent expansion paths
(see Fig. 2). Additionally, we replace ReLUs by ELUs [9]
and substitute the two last convolution layers of the original
U-Net by new modules, to produce the proposed detections
as 2D heat maps, and segmentation masks as 3D sigmoidal
activations. In section 3.3 we show, how to combine all net-
work outputs to get the final class-labeled object segmentation
masks.

We represent object Ok := (mk, ck,bk,pk, yk) as tuple,
where mk : Ω → {0, 1} is its binary mask denoted as binary
function of the image domain Ω ⊂ N2, ck ∈ R2 is its bound-
ing box center, bk = (wk, hk)> ∈ R2 are bounding box
width and height, pk ∈ R2 is a user-defined object reference
point in close proximity to ck and yk ∈ {1, . . . , C} is its class
label. We denote the set of all objects asO = {O1, . . . , OK}.
A hat above a letter indicates predicted variables, primed vari-
ables indicate 3D representations. x = (x, y)> ∈ Ω are 2D
image coordinates and x′ = (x>, z)> ∈ Ω × Z are corre-
sponding coordinates in 3D space.

3.1. Object Detection

An object reference point can be any point, approximately lo-
cated in the middle of an object that uniquely describes it.
We chose e.g. the position of the nucleus for the OSC-ISBI
dataset and object bounding box centers for the duckweed
dataset. We assign the object class label to the correspond-
ing reference point.

At the spatial positions of the reference points we addi-
tionally predict the widths and heights of the object bounding
boxes. The exact bounding box shape is not crucial for the ap-
proach, therefore, we roughly discretize the space of possible
bounding box widths and heights according to

w̃k =
⌈ wk
Dmax

·R
⌉

and h̃k =
⌈ hk
Dmax

·R
⌉
,

where Dmax = maxj
√
w2
j + h2j is the size of the largest

object in the training set andR is the number of discretization
steps. We set R = 31 for all experiments. Discretization has
the advantage that the network only performs classification
tasks alleviating the problem of weighting regression losses
to match classification losses.

The detection path produces two score maps: ŝdet : Ω ×
{0, . . . , C} → [0, 1] estimating the probability for every pixel
of belonging to class c ∈ {0, . . . C} (c = 0: background,
c > 0: object classes) and ŝbbox : Ω × {0, . . . , R}2 → [0, 1]
for discrete bounding box width and height (see Fig 2). Dur-
ing training we use weighted softmax cross entropy for the



image detection segmentation ground truth

Fig. 3. Qualitative results on the ”duckweed” (first row) and
”OSC-ISBI” (second row) datasets.

object class and sigmoid cross entropy for the object bound-
ing box sub-tasks. To make the detection more robust, we
reduce the loss weight of pixels in the direct neighborhood of
isolated object reference points on the loss. However, in ar-
eas of clustered reference points the influence is increased to
properly separate them. For this, pixelwise loss weights are
computed and applied as described in [2].

3.2. Object Segmentation

The object masks mk can not be directly used for CNN train-
ing, because the 2D image does not provide any information
about the depth of the objects in 3D space. However, a suit-
able transformation lifting the dimension of the label-space
from 2D to 3D allows separation of the objects.

First, we lift the domain of the mask functions mk to 3D
using

m′k(x′) =

{
mk(x) z = 0

0 otherwise
.

Then we shear the coordinates of object mask m′k in xz-
direction so that its transformed bounding box center c′k =
(c>k , 0)> stays at z = 0 (see Fig. 1) and describe all masks by
a single function m′x : Ω×Z→ {0, 1} where

m′x(x′) := max
k∈{1,...,K}

(
m′k ◦ (T xk )−1

)
(x′).

T xk : R3 → R3 is the object specific shear transforma-
tion. Superscripts .x and .y indicate shearing in xz- and
yz-direction in the rest of the paper. As shown in Fig. 1
shearing in xz-direction resolves the problem of overlapping
objects in y-direction. However, overlaps in x-direction stay
unresolved. When also shearing in yz- direction and properly

combining both representations we can separate all objects
(see Sec. 3.3). Separation fails only in the pathological case
of identical bounding box centers.

The shearing transformation in xz-direction is composed
as follows T xk = (Tck

)−1 ◦ T xs ◦ Tck
. The components of

the transformation are: Translation Tck
which shifts the ob-

ject bounding box center ck to the origin; shearing T xs with
fixed angle γ which is chosen individually for every dataset
depending on the maximal object size. The transformation
T yk is constructed equivalently with yz-shearing T ys .

We train the network onm′x andm′y using sigmoid cross
entropy as objective function. Between the sheared object
masks we compute loss weights similar to [2], and balance
the influence of foreground and background class by setting
the weights higher for all positions {x′ | ∃k : mk(x) = 1}
that project on any object mask.

Additionally, we let the network perform a semantic seg-
mentation. It puts the network focus on foreground regions
which in our case has a stabilizing effect on the training pro-
cess.

3.3. Post-processing: Combining the Network Outputs

A very important property of our lifting transformation
is the existence of a corresponding back-transformation
T −1 : (m̂′x, m̂′y, ŝdet, ŝbbox) 7→ Ô.

We combine both representations described in Sec. 3.2
via the reference points. To retrieve the reference points,
the output scores ŝdet of the detection path are first turned
into a hard pixelwise classification Ŷ using ∀x ∈ Ω :
Ŷ (x) = argmaxc∈{0,...,C} ŝdet(x, c). The object locations
P̂ := {p̂1, . . . , p̂K̂} are the centers of mass of the connected
components of Ŷ for all foreground classes. As predicted
bounding box extents b̂k and label ŷk of object Ôk we pick
the class occurring most frequently in the area of the cor-
responding connected component. The number of detected
objects K̂ is the number of connected components for all
classes.

The pseudo-probabilities m̂′x, m̂′y : Ω× Z → [0, 1] out-
put by the 3D network must be projected to 2D space to get
the final segmentation. For each object Ôk we first undo the
shearing of m̂′x and m̂′y using the object-specific T xk and
T yk , respectively, to map the probabilities for that object to
the z=0 plane using

pxk(x′) = (m̂′x ◦ T xk ) (x′) and pyk(x′) = (m̂′y ◦ T yk ) (x′).

To obtain 2D probability maps for each object, we first
compute the joint probability pxk(x′) · pyk(x′) and then project
along the z-axis weighted by a Gaussian N0,σ:

pk (x) =
∑
z

pxk(x′) · pyk(x′) · N0,σ(z).

The Gaussian with standard deviation σ models localization
inaccuracies. We only consider locations within the area



of the predicted bounding box b̂k. Finally, we apply Otsu
thresholding [10] per pk to get the binary masks to which
we assign the corresponding class labels yielding the final
segmentation m̂k.

3.4. Training

We train the network in the caffe framework [11] until con-
vergence (250K iterations) using the ADAM solver [12] with
the first and second momentum set to 0.9 and 0.999, respec-
tively. We start with a base learning rate of 0.00001 which is
reduced by a factor of 0.2 every 50K iterations. We regularize
the training process with weight decay, setting the parameter
to 0.00001. Since the test images are bigger than the net-
work output, we process input images in tiles. The network
is trained on augmented data. Data augmentation includes ro-
tation, flipping, elastic deformation as described in [2] and
random strictly increasing intensity transformation.

4. RESULTS

4.1. Evaluation scores

We quantitatively evaluate the quality of the predicted ob-
ject masks as in [13], computing dice coefficient (DC), pixel-
based true positive (TPp) and false positive (FPp) rates on the
”good” segmentations with DC > t and object-based false
negative (FNo), measuring the rate of ”bad” segmentations
(DC ≤ t) where t = 0.7 is the DC threshold.

4.2. Datasets

Duckweed Objects of interest are the individual leaves of
the duckweed (Lemna gibba L.) plant rosettes. Every leaf
can be diseased (showing chloroses) or healthy. Chloroses
are areas with less chlorophyll in the leaves ranging in size
from only few pixels to the whole leaf area. We predict these
areas as second class in the semantic segmentation sub-task.
Another challenge of the dataset is object size variation. As
reference points we use the bounding box centers. We present
these points to the network as one image containing disks with
9 pixel diameter around the bounding box centers. We use 64
discrete depth levels for m′x and m′y which we encode as 64
output channels, yielding shearing angle γ = 29◦.

The dataset contains 33 images. We train the network on
22 images and test it on the remaining 11. Quantitative results
are provided in Tab. 1. The class ”diseased” contains many
segments with areas of only few pixels. For these areas little
spatial misalignment of a predicted segmentation mask causes
a ”mismatch”, even though the detection is present. This leads
to the observed high false negative rate for that class. We
reduce the dice threshold to t = 0.5 to support this statement
(see ”diseased@0.5” in Tab. 1). The qualitative results are
depicted in Fig. 3.

DC FNo TPp FPp
healthy .930±0.055 .128±.068 .939±.066 .000±.000
diseased .904±0.099 .500±.336 .934±.069 .000±.000
diseased@0.5 .816±0.152 .250±.194 .858±.137 .000±.000
all .929±0.057 .129±.067 .939±.066 .000±.000

Table 1. Results on the ”duckweed” dataset

DC FNo TPp FPp
Phoulady et al.[14] .831±.079 .408±.163 .927±.098 .003±.002
Ramalho et al.[15] .856±.078 .501±.180 .899±.113 .002±.001
Lee et al. [16] .879±.087 .434±.168 .877±.123 .001±.001
ours .863±.074 .370±.141 .895±.107 .001±.001
oursplus .855±.072 .334±.141 .912±.099 .002±.001

Table 2. Results on the ”OSC-ISBI” dataset

OSC-ISBI The dataset OSC-ISBI is part of ”The Second
Overlapping Cervical Cytology Image Segmentation Chal-
lenge - ISBI 2015” [17] and contains 8 images for training
and 9 for testing. Although the dataset only contains objects
of one class, their density is very high, making instance seg-
mentation very difficult even for human experts. Therefore
annotations with two confidence-levels are provided, high-
confident for obvious and low-confident for ambiguous anno-
tations. Using the bounding box centers as reference points
results in a better segmentation, but, compared to other meth-
ods, worse detection accuracy. So we decide to use the cell
nuclei as reference points. They are also provided by the chal-
lenge as binary segmentation masks and much easier to detect
than the more abstract bounding box centers. Our predicted
projection planes are therefore slightly offset from the ones
defined on the bounding box centers. To make our approach
more robust to this effect, we increase the standard deviation
in the point-to-plane matching to σ = 3 (cf. σ = 2 for duck-
weed). We reduce the image resolution by a factor of two and
increase the depth (=number of channels) of m′x and m′y to
100 yielding shearing angle γ = 39◦. We could further im-
prove the detection performance of our method, by adding all
synthetically generated data from the first challenge (denoted
in Tab. 2 as ”oursplus”).

The network is pretrained on high-confident annotations
only and finetuned on all annotations after 100K iterations.
Qualitative results are depicted in Fig. 3.

5. CONCLUSION

We could show that our deep learning approach is able to
segment biological images containing translucent overlapping
object instances with high density. The regular shape and
comparably high contrast of the duckweed dataset allows to
successfully segment up to three overlapping leaves at the
same location with very high precision. Segmentation of cells
in the OSC-ISBI dataset is a challenge even for human ex-
perts. We found that the network benefits from including
noisy low confidence annotations and on-par with the state-
of-the-art in cervical cell segmentation.



6. REFERENCES

[1] Jonathan Long, Evan Shelhamer, and Trevor Darrell,
“Fully convolutional networks for semantic segmenta-
tion,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2015, pp. 3431–
3440.

[2] Olaf Ronneberger, Philipp Fischer, and Thomas Brox,
“U-net: Convolutional networks for biomedical image
segmentation,” in International Conference on Medical
Image Computing and Computer-Assisted Intervention.
Springer, 2015, pp. 234–241.

[3] Yi Li, Haozhi Qi, Jifeng Dai, Xiangyang Ji, and Yichen
Wei, “Fully convolutional instance-aware semantic seg-
mentation,” arXiv preprint arXiv:1611.07709, 2016.

[4] Jonas Uhrig, Marius Cordts, Uwe Franke, and Thomas
Brox, “Pixel-level encoding and depth layering for
instance-level semantic labeling,” in German Confer-
ence on Pattern Recognition. Springer, 2016, pp. 14–25.

[5] Ke Li and Jitendra Malik, “Amodal instance segmen-
tation,” in European Conference on Computer Vision.
Springer, 2016, pp. 677–693.

[6] Victor Yurchenko and Victor S. Lempitsky, “Parsing
images of overlapping organisms with deep singling-out
networks,” CoRR, vol. abs/1612.06017, 2016.

[7] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun, “Faster r-cnn: Towards real-time object detection
with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[8] Kaiming He, Georgia Gkioxari, Piotr Dollár, and
Ross Girshick, “Mask r-cnn,” arXiv preprint
arXiv:1703.06870, 2017.
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