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How Can We Trust CNNs? Our Contributions
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paper+poster:

CNNs Today:
- Superior accuracy-runtime tradeoff 
- Used in autonomous systems: self-driving cars 
- Blackbox

CNNs We Want:

- Estimating also their reliability

image0 predicted flow uncertainty

- Investigating existing methods for uncertainty estimation in the scope of optical flow
    - MC Dropout [1]
    - Bootstrapped ensembles [2]
    - SGDR ensembles [3,4]
- Evaluating existing methods extensively:
    - Empirical
    - Predictive
    - Bayesian
- Proposing Multi-hypotheses network for state-of-the-art uncertainty estimation in realtime
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images overlap uncertainty ProbFlow [5] uncertainty FlowNetH

- Single FlowNetC [6,7]
- Cosine annealing for 
   learning rate
- Training budget: 
   600k iterations
- Batch normalization
- Trained against EPE:
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Straightforward 
approach to get mean 
and variance from M 
individual networks:

Explicitely predicting mean 
and variance of a Laplace 
distribution by maximizing 
its log-likelihood:

Bayesian approach: ensembles 
of M predictive networks. The 
mean and the variance of the 
mixure distribution is 
computed by the law of total 
variance:

Desired:
- Obtain multiple samples in a single forward pass
- Multimodality in output hypothesis
- Merge M hypotheses with a network (FlowNetS[6,7])
- Diverse output to increase chances of being accurate
FlowNetH:
- Minimize:

* Equal Contribution

Watch our video on YouTube: https://www.youtube.com/watch?v=HvyovWSo8uE

Evaluation Metrics
Sparsification:
    uncertainty based pixel ranking
Oracle Sparsification:
    EPE based pixel ranking
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Method Comparison

Comparison to the State of the Art

Conclusions
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Emp. Ensembles vs. Pred. Ensembles:

- empirical ensembles provide more diversity
- empirical ensembles have lower EPE
- predictive ensembles have better AUSE
- predictive ensembles have no big advantage over a single predictive model

Ensemble Types:
- Dropout: worst AUSE and EPE 
- SGDR: best EPE and good AUSE
- BootstrappedEns: best AUSE

Merging Networks: best among all internal methods
- Models with merging network are on-par on EPE and AUSE
- FlowNetH has the best accuracy-runtime tradeoff

FlowNetH-Pred-Merged-SS vs. ProbFlow [5]:

Overall, FlowNetH-Pred-Merged-SS is the best in terms of AUSE, EPE and runtime 
except EPE on Sintel, where it is slightly worse than ProbFlow.

Results on Sintel Clean
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Sparsificat ion

Oracle Sparsificat ion

Derived from FlowNet 2.0 [7] and Cascade Residual Learning [8] 
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Sparsification Error Curves: EPE vs. AUSE

Stacked Networks and Comparison to ProbFlow [5]:

Sparsification Error Curves:

Our model independent metrics:
Sparsification Error:
   pointwise distance between curves
AUSE:    
   Area Under Sparsification Error

YouTube video:
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