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CNNs Today:
- Superior accuracy-runtime tradeoftf

- Used in autonomous systems: self-driving cars
- Blackbox

Empirical

- Single FlowNetC [6,7]

- Cosine annealing for
learning rate

- Training budget:
600k iterations

- Batch normalization

- Trained against EPE:

2 _
EPE = \/(u —ug')2 + (v —vst)2 | Tu =

COMPUTERVISION University of Freiburg
http://Imb.informatik.uni-freiburg.de

Ozgun Cicek*
cicek@cs.uni-freiburg.de

How Can We Trust CNNs?

CNNs We Want:

- Estimating also their reliability

predicted flow

e |

Dropout
Bootstrapping

SGDR

Empirical Ensembles

Straightforward
approach to get mean
and variance from M
iIndividual networks:
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Pred. Mean
Pred. Var

Predictive

Explicitely predicting mean
and variance of a Laplace
distribution by maximizing
Its Iog-likelihoNod:
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- MC Dropout [1]

- Bootstrapped ensembles [2]

- SGDR ensembles [3,4]

- Evaluating existing methods extensively:

- Empirical
- Predictive
- Bayesian

- Proposing Multi-hypotheses network for state-of-the-art uncertainty estimation in realtime

Watch our video on YouTube: https://www.youtube.com/watch?v=HvyovWSo8uE

Overview of Investigated Approaches
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Dropout
Bootstrapping

SGDR

Predictive Ensembles

Bayesian approach: ensembles
of M predictive networks. The
mean and the variance of the
mixure distribution is
computed by the law of total
variance:

Uncertainty Estimates and Multi-Hypotheses Networks for Optical Flow

Our Contributions

- Investigating existing methods for uncertainty estimation in the scope of optical flow

Aaron Klein
kleinaa@cs.uni-freiburg.de makansio@cs.uni-freiburg.de fh@cs.uni-fretburg.de brox@cs.uni-freiburg.de

Sparsification: Our model independent metrics:
uncertainty based pixel ranking Sparsification Error:
Oracle Sparsification: pointwise distance between curves
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Results

Evaluation Metrics Comparison to the State of the Art
Flow Prediction

Oracle Entropy

EPE based pixel ranking AUSE:
Area Under Sparsification Error

FlowNetH
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Desired:
- Obtain multiple samples in a single forward pass ! /

- Multimodality in output hypothesis

- Merge M hypotheses with a network (FlowNetS[6,7])

- Diverse output to increase chances of being accurate

FlowNetH:
- Minimize:

Multiple-Hypotheses Network

Lhyp — Z l(ybest_idx(i,j)a ygt (7/7 .7))

YouTube video
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Results on Sintel Clean Stacked Networks and Comparison to ProbFlow [5]:

FlownetH-Pred-Merged-SS

empirical (Emp) predictive (Pred)

EPE | Oracle EPE | Var. | AUSE | EPE | Oracle EPE . [ Runtime Sintel Clean||Sintel Final|| KITTI

AUSE|EPE ||AUSE |EPE||AUSE|EPE

Pred. Mean runtime

FlowNetC - 3.40 - - 0.133 | 3.62 - - 38ms

Pred. Var

Dropout 3.67 2.56 5.05 0.158 | 3.99 2.96 320ms

Pred. Mean

ProbFlow 0.162 | 1.87 [| 0.17313.34 (| 0.466 |8.95 || 38.1s'
Pred. Var reaq. ean req. ean req. ean
SGDREnsemble 3.25 2.56 3.50 || 0.134 | 3.40 2.87 304ms % _: | Mergener } : } g FlowNetH-Pred-Merged-FT-KITTI|| - 3 ~ [ - [0.086[3.12]] 60ms
BootstrappedEnsemble 3.41 2.17 952 0.127 346 2.49 304ms ) FlowNetH—Pred—Merged 0117 258 0128 378 0151 784 60ms
BootstrappedEnsemble-Merged 0.102 | 3.20 2.49 332ms FlowNetH-Pred-Merged-S 0.091 [ 2.29 [ 0.098 [3.51[| 0.102 [6.86 || 86ms
FlowNetH-Merged - 3.50 1.73 83.32 || 0.095 | 3.36 1.89 60ms __ Derived from FlowNet 2.0 [7] and Cascade Residual Learning [8]| |FlowNetH-Pred-Merged-SS 0.089] 2.19 {|0.096 | 3.40 || 0.091 | 6.50 99ms
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Conclusions

Ensemble Types:

Emp. Ensembles vs. Pred. Ensembles: - Dropout: worst AUSE and EPE FlowNetH-Pred-Merged-SS vs. ProbFlow [5]:
- SGDR: best EPE and good AUSE
- empirical ensembles provide more diversity - BootstrappedEns: best AUSE
- empirical ensembles have lower EPE Overall, FlowNetH-Pred-Merged-SS is the best in terms of AUSE, EPE and runtime
- predictive ensembles have better AUSE Merging Networks: best among all internal methods except EPE on Sintel, where it is slightly worse than ProbFlow.
- predictive ensembles have no big advantage over a single predictive model - Models with merging network are on-par on EPE and AUSE

- FlowNetH has the best accuracy-runtime tradeoff
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