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ABSTRACT
We present ISOOV2

DL - a method for semantic instance seg-
mentation of touching and overlapping objects. We introduce
a series of design modifications to the prior framework, in-
cluding a novel mixed 2D-3D segmentation network and a
simplified post-processing procedure which enables segmen-
tation of touching objects without relying on object detec-
tion. For the case of overlapping objects where detection is
required, we upgrade the bounding box parametrization and
allow for smaller reference point distances. All these novel-
ties lead to substantial performance improvements and enable
the method to deal with a wider range of challenging prac-
tical situations. Additionally, our framework can handle ob-
ject sub-part segmentation. We evaluate our approach on both
real-world and synthetically generated biological datasets and
report state-of-the-art performance.

Index Terms— Detection, classification, semantic seg-
mentation, instance segmentation, overlapping objects

1. INTRODUCTION

Semantic instance segmentation is one of the central tasks
in image understanding. A particularly challenging variant
of this task, segmentation of overlapping translucent objects,
often occurs in biological images but can also be found in
other domains. Many practical applications require not only
plain instance segmentation but also the identification of sub-
parts within object instances, e.g. organelles in cells. Existing
methods are not able to solve this task for overlapping objects.

In recent years, multiple works approached semantic in-
stance segmentation both on natural and biological images
[1–3]. He et al. [4] proposed Mask-RCNN which shows re-
markably strong performance on natural images but cannot
deal with strongly overlapping objects due to the local non-
maximum suppression. In addition, GPU memory require-
ments get very high when working with images containing
many object instances. AffordanceNet [5] adds the possibil-
ity to deal with sub-part segmentation but suffers from the
same fundamental limitations as Mask-RCNN.

We thank the German Federal Ministry for Economic Affairs and Energy
(FKz. ZF4184101CR5) and the DFG (EXC 294) for funding our research.

Fig. 1. Our method segments touching (left) and overlapping
(middle) objects, at the same time assigning class labels to
them (circles of different colors). It can also perform subpart
segmentation (right).

In this work we aim at overcoming these restrictions. Our
method is based on the ISOODL architecture [6] which in-
cludes two separate parts: detection and segmentation. Out-
puts of both parts are merged in a post-processing step re-
sulting in binary object segmentation masks. The basic idea
of ISOODL is to shear the object segmentation masks. This
transformation converts them from 2D to 3D and makes them
spatially separable. The network predicts such sheared 3D
masks. To go back to the original 2D label space, we used the
predicted object detections. With ISOOV2

DL we pick up the
general idea and introduce multiple technical modifications
which substantially improve its performance. 1) We allow for
more flexible reference point selection in the object detection
module. 2) We improve the separation of objects with a small
distance between the reference points. 3) We introduce a 2D-
3D segmentation network that integrates prior knowledge on
valid configurations in all three dimensions of the label space,
leading to cleaner segmentation masks. 4) Due to the 3D ar-
chitecture, our framework supports sub-part segmentation out
of the box. 5) The modifications allow us to perform a simpli-
fied projection that does not require the detection step and can
be easily applied to the case of touching non-overlapping ob-
jects. We extensively evaluate the individual building blocks
and demonstrate that the final system defines a new state-of-
the art in instance segmentation of overlapping objects on a
series of datasets.
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Fig. 2. Hybrid two-headed 2D-3D U-Net architecture.

2. METHOD

We follow the notation of [6]. Every object is represented as
a tuple Ok := (mk, ck,bk,pk, yk), where mk is the object
mask, ck is the center of the bounding box, yk is the object
class label and bk is the bounding box size.

In the upcoming sections we present our improvements to
the three main blocks of our method: detection (which pre-
dicts the object class ŷk and the bounding box b̂k), segmenta-
tion (which predicts the sheared object masks (m̂′x, m̂′y)) and
post-processing (which merges the last two into the final in-
stance prediction Ôk). The overview of the network is shown
in Fig. 2.

2.1. Object bounding box prediction

Reference point location In ISOODL we assumed that the
reference points pk roughly coincide with the bounding box
centers ck of objects. Practically, it is often more convenient
to instead put the reference points to some unique and repre-
sentative object locations, e.g. centers of cell nuclei, which
can be easily detected but may be located far away from the
geometric bounding box centers (Fig. 3a).

Encoding arbitrary reference point locations requires a
slight parametrization change. Instead of predicting two di-
mensions bk = (wk, hk)> ∈ R2 along the image axes, we
predict the bounding box extents bk = (w`
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b
k)> ∈

R4 in all four directions (left, right, top, bottom) with respect
to the reference point pk, see Fig. 3a. Technically, we dis-
cretize each of the four extents into 8 bins and formulate the
task as a 32-fold classification.

Dynamic disk size adaptation We describe object refer-
ence points as disks which must be spatially isolated to sepa-
rate overlapping objects. The disk radius is thus an important
parameter to define. Smaller disks allow better separation of
objects whose reference points are very close to each other.
However, the prediction of small disks is particularly hard for
the network due to the class imbalance.

To alleviate the problem of manual disk radius selec-
tion (Fig. 3b), we allow the disks to shrink in the pres-
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Fig. 3. Comparison of ISOODL and ISOOV2
DL. a) We define

the extents of the bounding box in 4 directions w.r.t. the ob-
ject’s reference point. b) We introduce adaptive disk sizes to
prevent object merging. c) The hybrid 2D-3D network signif-
icantly improves the quality of predicted segmentation masks.
Colors encode the number of connected components (instance
candidates) along Z in m̂′x.

ence of nearby objects’ reference points. First, for ev-
ery reference point pk we compute the euclidean distance
dk = minj 6=k ||pk − pj ||22 to the nearest reference point of
another object. Then we calculate the new radius in pixels
r̂k := min(dk

2 − 2, rmax), where rmax is a manually chosen
maximum radius (here rmax = 9px). To re-balance the effect
of disks with different radii on the loss, we introduce per-
pixel loss weights wk := min(π(r2max − r̂2k), 10). As before,
we additionally force object separation by using inter-object
weights.

2.2. Sheared object segmentation mask prediction

In ISOODL, we solved the segmentation task by predicting
the silhouettes of sheared objects (m̂′x, m̂′y) in discretized
3D space using a 2D network. Such formulation has three
limitations. First, a 2D network does not optimally exploit
correlations in the z-direction of the label space. Second,
predicting one pixel-thick connected surfaces in 3D space
is challenging; small inaccuracies lead to object fragmenta-
tion. Finally, using the channel dimension of the network to
represent the spatial Z-coordinate only allows binary (fore-
ground/background) segmentation. Our new architecture
(Fig. 2) addresses all these issues.

We modify the sheared object segmentation masks to en-
code sub-classes: m′x,m′y : Ω × Z → {0, . . . , A}, where
A is the number of object sub-classes. We also increase their
thickness from 1px to 5px. To explicitly model the 3D struc-
ture of the output space, we extend the segmentation path with
a shallow 3D U-Net with one downsampling step.

In both sheared outputs, the network predicts pseudo-
probabilities for A classes and the background. A = 1 (cell



body) for the problem without sub-classes, and A = 2 (cell
body and nucleus) for the problem with sub-classes.

We trained the network with input image tiles of shape
508 × 508px, leading to an output shape of 324 × 324px for
the detection path. To avoid unnecessary computations and
save memory, we only use the valid part of the convolution
outputs and crop the input to the 3D sub-network so that we
obtain an output shape of 144×144×Z voxels. The Z-range
can be adapted to the dataset complexity: higher depth allows
a wider range of shearing angles and thus a better separation
of objects at the cost of longer training. The exact values of
Z are provided in the corresponding paragraphs of Sec. 3.

2.3. Post-processing

In ISOODL we compute the final object masks by applying
the inverse transformation, part of which is the weighted pro-
jection onto the central object planes. The detection results
are required to extract the corresponding objects from the
sheared masks. Here we propose a simpler and more robust
projection scheme that works even without using the detec-
tion outputs in the case of touching non-overlapping objects.

Consider a foreground/background segmentation task of
non-overlapping objects. The improved segmentation path
allows to extract the predicted 3D planes in both sheared
segmentation outputs via connected component labeling. To
identify the corresponding objects in two sheared outputs,
we consider all possible pairs of x-sheared and y-sheared
connected components. When projected to the x-y-plane,
binarized and multiplied, only masks belonging to the same
object produce a non-zero overlap.

When objects in the original image do overlap, the de-
scribed procedure generates some false positives – overlap-
ping regions. However, the predicted bounding boxes allow
to easily identify and discard those. We assign the bound-
ing boxes to their corresponding extracted connected compo-
nents using the Hungarian algorithm [7]; the costs are set to
1−IoU between the bounding box and the candidate segment.
Connected components which have a corresponding bound-
ing box are accepted as final object instance predictions.

In regions with many overlapping objects this simple ap-
proach fails due to merging of very closely located sheared
object masks. Therefore, we fall back to the original back-
projection based on reference points, if the IoU between a
segment and any bounding box drops below 0.3. If the final
IoU value between the segmentation mask and the best-fitting
bounding box is still smaller than 0.3, we simply replace the
segmentation mask by the filled bounding box.

With the same procedure, we can also identify sub-parts.
The only additional step is to make sure that only the sub-parts
belonging to the same object are matched after the connected
component extraction. This is achieved by multiplying the
sheared sub-part segmentation masks with the sheared binary
object segmentation masks.
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Fig. 4. Qualitative results on different datasets. a) DIC-Hela,
b) Duckweed (colors represent different object classes), c)
OSC-ISBI, d) OSC-ISBI-S (object contours and the corre-
sponding sub-parts have the same color).

3. EXPERIMENTS

3.1. Datasets

We test our method on 4 datasets. We use the ”DIC-Hela”
dataset from the ISBI Cell Tracking Challenge [8] for in-
stance segmentation of touching non-overlapping objects. We
downscale the images by a factor of two and hold out 50%
of the available training set for validation. Experiments with
overlapping objects are performed on the same datasets as
in [6]: ”Duckweed” and ”OSC-ISBI” [9]. The task in the
”Duckweed” dataset is to segment all leaflets of the duck-
weed rosettes and classify each object as either healthy or
showing chlorosis. This dataset is particularly challenging
because some leaflets are completely covered and there are
only very few small chlorosis areas.

The ”OSC-ISBI” dataset does not have sub-part annota-
tions for the test set, therefore it cannot be used to evaluate the
sub-part segmentation performance. Instead, we make use of
an existing dataset of synthetically generated cells [10]. We
call this dataset ”OSC-ISBI-S”. We do not use all 900 avail-
able test images, but restrict ourselves to the most complex
cases (images with at least 10 objects).

As in [11] and [6], we evaluate the performance with dice
coefficient DC, pixel-based true positive TPp and false posi-
tive FPp rates as well as with object-based false negative FPp
scores.

3.2. Results

In the first three experiments we analyze the performance of
individual modules of our pipeline.

1. Detection-only network. We compare the detection
performance with and without dynamic disk size adapta-



DC FNo TPp FPp
Phoulady et al. [12] .831±.079 .408±.163 .927±.098 .003±.002
Ramalho et al. [13] .856±.078 .501±.180 .899±.113 .002±.001
Lee et al. [14] .879±.087 .434±.168 .877±.123 .001±.001
ISOODL [6] .863±.074 .370±.141 .895±.107 .001±.001
ours .895±.079 .290±.151 .901±.108 .001±.001

Table 1. Results on the ”OSC-ISBI” dataset without sub-part
segmentation (Mean ± SD).

tion (see Fig. 3b) on the ”OSC-ISBI” dataset (segmenta-
tion branch not used). We compare the predicted bounding
boxes with the bounding boxes of the ground truth segmen-
tation masks and report an FNo of .361±.113 without and
.285±.111 with disk size adaptation.

2. Segmentation-only network. We compare the seg-
mentation branch of the original ISOODL 2D network with
the proposed hybrid 2D-3D network on the ”OSC-ISBI”
dataset. For this, we delete the detection branch of the
ISOOV2

DL network and compute the IoU between the sheared
ground truth and the predicted segmentation masks m̂′x and
m̂′y after binarization (binarization threshold is set to 0.5).
We trained the ISOODL network on the thickened (5px)
masks for fair comparison. We report an IoU of 0.29 and 0.33
without and with the stacked 3D network respectively. How-
ever, IoU alone does not account for object fragmentation
which is very important for our current projection method.
To analyze this property, we also calculate the ratio between
the number of predicted and the ground truth connected com-
ponents. We report 0.34 without and 0.5 with the 3D network
respectively. The low ratio for the 2D network demonstrates
that it leads to severe over-segmentation (Fig. 3c).

3. Projection. We test the performance of the projection
module on ”DIC-HeLa” which does not contain overlapping
objects and thus allows extracting predictions solely from the
segmentation masks. When using the new projection with-
out detections, we get DC and FNo scores of .911±.050 and
.083±.061 respectively versus .889±.067 and .113±.099 for
ISOODL. Due to the absence of overlapping objects, such
segmentation-only projection cannot produce false positives
mentioned in 2.3 and thus using detections is not required.
However, to show that our new way of integrating the seg-
mentation and detection results is more robust than the one
from ISOODL, we also evaluate the full projection and get a
DC of .903±.057 and an FNo of .093±.074. A slight drop
w.r.t. the segmentation-only case is due to some false nega-
tives produced by the detection module.

4. Instance segmentation of overlapping objects with-
out sub-parts. We test the performance on ”OSC-ISBI”
(Fig. 4.3). As in [6], we use the centers of mass of the cell nu-
clei as reference points. Since the ”OSC-ISBI” dataset does
not provide a mapping between the nuclei and their corre-
sponding cells, we assigned them as follows. We assume that
the nucleus is located in the cell center. First, we separate
merged nuclei using the Watershed transform, then we assign

DC FNo TPp FPp
ISOODL [6] (cl) .913±.077 .314±.202 .937±.068 .000±.000
ours (cl) .914±.071 .296±.187 .930±.061 .000±.000
ISOODL [6] (w/o cl) .929±.057 .129±.067 .939±.066 .000±.000
ours (w/o cl) .945±.051 .103±.062 .953±.063 .000±.000

Table 2. Results on the ”Duckweed” dataset (Mean ± SD).

the nucleus segments to cells using the Hungarian method
based on their distances from the cells’ centers of mass. Un-
matched nucleus segments are assigned to the closest cell (ac-
cording to the described metric). The dataset contains many
densely overlapping objects, therefore we decided to down-
sample the images with factor 0.5 and set Z = 100 to get
a higher shearing angle. We initialize the network with the
weights from 3.2.2 and train it for another 250K iterations.
We compare the performance to ISOODL and report a new
state-of-the-art in all metrics except for TPp (Tab. 1).

To show that our method generalizes to other types of
data, we apply it to ”Duckweed” (Fig. 4b). Similar to [6], we
use a lower resolution of Z = 64. The performance is com-
parable to [6] when computing the scores for each class indi-
vidually and then averaging over them (Tab. 2,”cl”). When
evaluating the performance without class distinction, our ap-
proach sets the new state of the art (Tab. 2,”w/o cl”).

5. Instance segmentation of overlapping objects with
sub-parts. For this experiment we extend our segmenta-
tion branch output by two extra channels, initialize it with
the weights from 3.2.4 and train it for 250K iterations.
The evaluation metrics stay the same with a small exten-
sion: we compute the quality of ”good” segmentation masks
(DC>0.7) not only for the cell body, but also for the nuclei
(written in scopes). We get an FNo of .210±.194, a DC of
.924(.848)±.069(.173), a TPp of .906(.842)±.102(.198) and
an FPp of .000(.000)±.001(.000). The segmentation results
for the nucleus are slightly worse than for the cell body for
several reasons. First, the class imbalance problem becomes
more relevant for small object parts, especially in 3D space.
Second, since we also want to separate the overlapping sub-
parts, we need to multiply the sub-part predictions with the
differently sheared cell body predictions in the projection
step; if any of the segmentations fails, the overall perfor-
mance will be bad. Finally, assignment of nuclei to their
corresponding cells is hard in high-density regions.

4. DISCUSSION

In this work we introduced a series of improvements to
the original ISOODL leading to significant performance in-
creases. Although theoretically ISOOV2

DL could solve any
instance segmentation problem, in practice the available GPU
memory limits the maximum object size. A possible solution
is to replace the memory-intensive dense 3D decoder with a
recent quadtree/octree-based network ( [15], [16]).
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