
Group Pruning using a Bounded-`p norm for
Group Gating and Regularization

Chaithanya Kumar Mummadi1,2[0000−0002−1173−2720], Tim
Genewein1[0000−0001−8039−4027]?, Dan Zhang1[0000−0003−0930−9162], Thomas

Brox2[0000−0002−6282−8861], and Volker Fischer1[0000−0001−5437−4030]

1 Bosch Center for Artificial Intelligence, Robert Bosch GmbH, Germany
2 University of Freiburg, Germany

Abstract. Deep neural networks achieve state-of-the-art results on sev-
eral tasks while increasing in complexity. It has been shown that neural
networks can be pruned during training by imposing sparsity inducing
regularizers. In this paper, we investigate two techniques for group-wise
pruning during training in order to improve network efficiency. We pro-
pose a gating factor after every convolutional layer to induce channel
level sparsity, encouraging insignificant channels to become exactly zero.
Further, we introduce and analyse a bounded variant of the `1 regularizer,
which interpolates between `1 and `0-norms to retain performance of
the network at higher pruning rates. To underline effectiveness of the
proposed methods, we show that the number of parameters of ResNet-164,
DenseNet-40 and MobileNetV2 can be reduced down by 30%, 69%, and
75% on CIFAR100 respectively without a significant drop in accuracy.
We achieve state-of-the-art pruning results for ResNet-50 with higher
accuracy on ImageNet. Furthermore, we show that the light weight Mo-
bileNetV2 can further be compressed on ImageNet without a significant
drop in performance.

1 Introduction

Modern deep neural networks are notoriously known for requiring large computa-
tional resources, which becomes particularly problematic in resource-constrained
domains, such as in automotive, mobile or embedded applications. Neural net-
work compression methods aim at reducing the computational footprint of a
neural network while preserving task performance (e.g. classification accuracy)
[4, 34]. One family of such methods, Network pruning, operates by removing
unnecessary weights or even whole neurons or convolutional featuremaps (“chan-
nels”) during or after training, thus reducing computational resources needed
at test time or deployment. A simple relevance-criterion for pruning weights
is weight-magnitude: “small” weights contribute relatively little to the overall
computation (dot-products and convolutions) and can thus be removed.

However, weight-pruning leads to unstructured sparsity in weight matri-
ces and filters. While alleviating storage demands, it is non-trivial to exploit

? Currently at DeepMind

2 C. K. Mummadi et al.

unstructured sparsity for reducing computational burden during forward-pass
operation. This effect becomes even more pronounced on today’s standard hard-
ware for neural network computation (GPUs), which is typically designed for
massively parallel operation. In contrast to individual-weight pruning, neuron-
and featuremap-pruning allows dropping whole slices of weight matrices or ten-
sors, which straightforwardly leads to a reduction of forward-pass FLOPS, energy
consumption as well as on- and off-line memory requirements. However, it is
more intricate to determine the relevance of whole neurons/featuremaps than
that of weights.

In this paper, we propose and evaluate a method for group-wise pruning. A
group typically refers to all weights that correspond to a neuron or convolutional
filter, but could in principle also be chosen to correspond to different sub-structures
such as larger parts of a layer or even whole blocks/layers in architectures with
skip-connections. The central idea of our method is the addition of a “trainable
gate”, that is a parameterized, multiplicative factor, per group. During training,
the gate-parameter is learned for each gate individually, allowing the network
to learn the relevance of each neuron/featuremap. After training, groups of low
relevance can be straightforwardly identified and pruned without significant loss in
accuracy. The resulting highly structured sparsity patterns can be readily used to
reduce the size of weight-matrices or -tensors. An important aspect of our method
is that we use a sparsity-inducing regularizer during training to force a maximally
large number of gates towards zero. We empirically compare different choices for
this sparsity-inducing regularizer and in addition to previously proposed `1 or
`2 norms, we propose and evaluate a smoothened version of the `0 norm (which
can also be viewed as a saturating version of an `p norm). The latter allows for a
certain decoupling of parameter-importance and parameter-magnitude, which is
in contrast to standard regularizers that penalize parameters of large magnitude
regardless of their importance.

– We investigate the effect of group pruning using bounded `p norms for
group gating and regularization on different network architectures (LeNet5,
DenseNet, ResNet and MobileNetV2) and data-sets (MNIST, CIFAR100,
ImageNet) achieving comparable or superior compression and accuracy.

– We show that our gating function drives the gating factors to become exactly
zero for the insignificant channels during training.

– Applying `2 regularizer on our gating parameters, rather than on weights,
leads to significant pruning for ResNet and DenseNet without a drop in accu-
racy and further improves the accuracy of MobileNetV2 on both CIFAR100
and ImageNet.

– We also propose a bounded variant of the common `1 regularizer to achieve
higher pruning rates and retain generalization performance.

2 Related work

Neural Network compression. Most approaches in the literature resort to
quantization and/or pruning. In this context, quantization refers to the reduction

Group Pruning using Bounded-`p norm for Group Gating and Regularization 3

of required bit-precision of computation — either of weights only [3, 9, 12, 40]
or both weights and activations [5, 33, 20, 11, 38]. Network pruning attempts to
reduce the number of model parameters and is often performed in a single step
after training, but some variants also perform gradual pruning during training [7,
12, 14] or even prune and re-introduce weights in a dynamic process throughout
training [13, 10]. In contrast to individual weight pruning [12], group-pruning
methods (pruning entire neurons or feature-maps that involve groups of weights)
lead to highly structured sparsity patterns which easily translate into on-chip
benefits during a forward-pass [36, 41, 2].

Pruning and quantization can also be combined [12, 35, 6, 1]. Additionally,
the number of weights can be reduced before training by architectural choices
as in SqueezeNet [21] or MobileNets [17]. As we show in our experiments, even
parameter-optimized architectures such as MobileNets can still benefit from
post-training pruning.

Relevance determination and sparsity-inducing regularization. Many
pruning methods evaluate the relevance of each unit (weight, neuron or fea-
turemap) and remove units that do not pass a certain relevance-threshold [12,
10, 13, 24]. Importantly, optimizing the relevance-criterion that is later used for
pruning thus becomes a secondary objective of the training process — in this
case via weight-magnitude regularization. An undesirable side-effect of `1- or `2-
weight-decay [15] when used for inducing sparsity is that important, non-pruned
weights still get penalized depending on their magnitude, leading to an entan-
glement of parameter-importance and magnitude. An ideal sparsity-inducing
regularizer would act in an (approximately) binary fashion, similar to how the
`0 norm simply counts number of non-zero parameters, but is not affected by
the magnitude of the non-zero parameters. The problem of determining the
relevance of model parameters has also been phrased in a Bayesian fashion via
automatic relevance determination (ARD) and sparse Bayesian learning [22, 28,
31], which has recently been successfully applied to weight-pruning [29], weight
ternarization [1] and neuron-/featuremap-pruning by enforcing group-sparsity
constraints [8, 25, 6, 32]. These methods require (variational) inference over the
parameter posterior instead of standard training.

Neuron-/featuremap-pruning. Determining the importance of neurons
or feature maps is non-trivial [36, 41, 2]. Approaches are based on thresholding
the norm of convolutional kernels or evaluating activation-statistics. However,
both approaches come with certain caveats and shortcomings [30, 39]. Some
methods try to explicitly remove neurons that do not have much impact on
the final network prediction [18, 23, 30]. Other methods propose a more complex
optimization procedure with intermediate pruning steps and fine-tuning [16, 27],
such that the non-pruned network can gradually adjust to the missing units.

Our approach is closely related to [26], who also use trainable, multiplica-
tive gates for neuron-/featuremap-pruning. However, in their formulation gates
Bernoulli random variables. Accordingly, learning of their gate parameters is
done via (variational) Bayesian inference. In contrast, our method allows network
training in a standard-fashion (with an additional regularizer term) without

4 C. K. Mummadi et al.

requiring sampling of gate parameters, or computing expected gradients across
such samples. Other closely related works are [24, 39], who induce sparsity on
the multiplicative scaling factor γ of Batch Normalization layers and later use
the magnitude of these factors for pruning channels/featuremaps. Similarly, [19]
use a trainable, linear scaling factor on neurons / featuremaps with an `1-norm
sparsity-inducing regularizer. We perform experiments to directly compare our
method against all the above closely related works. Additionally, we reimplement
the technique proposed by [24] and treat it as a baseline to compare our results
against it in all experiments.

3 Bounded-`p,0 norm

The p-norm (a.k.a. `p-norm) and 0-norm of a vector x ∈ Rn of dimension n are
respectively defined as:

‖x‖p ..=

(
n∑
i=1

|xi|p
)1/p

‖x‖0 ..=

n∑
i=1

(1− 10(xi)). (1)

Here, 1a(b) being the function which is one iff a = b and zero otherwise. While
the p-norms constitute norms in the mathematical sense, the 0-norm (a.k.a.
discrete metric), does not due to the violation of the triangle inequality. It is
constant almost everywhere and hence gradient based optimization techniques
are unusable. We use a differentiable function adapted from [37], which around 0
interpolates, controlled by a parameter σ > 0, between the p- and 0-norm:

Definition 1. For σ > 0, we call the mapping ‖.‖bound-p,σ : Rn → R+ with

‖x‖bound-p,σ ..=

n∑
i=1

1− exp

(
−|xi|

p

σp

)
(2)

the bounded-`p,0 norm or bounded-`p norm. Fig. 1 illustrates the bounded-
`p,0 norm with p = 1, 2 and different σ. One sees that ‖x‖bound-p,σ is bounded to
[0, n) and differentiable everywhere except xi = 0 for one or more coefficients of x.
Further, in contrast to the 0-norm, it has a non-zero gradient almost everywhere.

Lemma 1. The bounded-`p,0 norm has the following properties:

– For σ → 0+ the bounded-norm converges towards the 0-norm:

lim
σ→0+

‖x‖bound-p,σ = ‖x‖0. (3)

– In case |xi| ≈ 0 for all coefficients of x, the bounded-norm of x is approxi-
mately equal to the p-norm of x weighted by 1/σ:

‖x‖bound-p,σ ≈
∥∥∥x
σ

∥∥∥p
p

(4)

Proof. See Section A1 for proof.

Group Pruning using Bounded-`p norm for Group Gating and Regularization 5

4 Methodology

With the use of the bounded-`p norm introduced in the previous section, we
subsequently present a simple and straightforward technique to perform group
wise pruning in deep CNNs. Here, group is referred to as a set of weights, e.g., a
filter in a convolutional layer associated to a feature map or, in case of a fully
connected layer, a single target neuron.

Fig. 1. Illustration of bounded-`p,0 (b`p,0) norms with p ∈ {1, 2}: Interpolation from
`1-norm to 0-norm (left) and from `2-norm to 0-norm (right) with different σ.

Bounded-`1 regularizer: It is a common practice to use sparsity inducing
`1 penalty to shrink parameters during training. [24] has performed channel-wise
pruning by imposing `1 penalty on the scaling factor γ of Batch Normalization
(BN) layers that correspond to featuremaps in convolutional layers. We denote
these scaling factors as linear gates in this work. Thus, the total loss L consists
of the standard empirical loss l and an additional `1 penalty on the linear gates:

L =
∑
(x,y)

l (f (x,W) , y) + λ
∑
γ∈G
|γ| (5)

where f denotes the deep neural network, x, y denote training input and target,
W denotes the network weights, γ denotes a single scaling factor from the
aggregated set of all linear gates G. The `1 regularizer acts upon all linear gates
and pushes them towards zero. The channels with linear gates whose magnitude
is less than the relevance threshold are then pruned to obtain a narrow network.
Here, the linear gates should accomplish two different tasks i) get optimized
along the other network parameters to improve the network performance and ii)
shrink down towards zero to induce channel level sparsity in the network. The
hyperparameter λ defines the strength of the regularizer and controls the trade-
off between primary objective and `1 penalty. Increasing λ would yield higher
pruning rates at the cost of reduced network performance. The `1 regularizer
penalizes each parameter at a same rate irrespective of its role and importance
in accomplishing the primary objective. In general, not all parameters should
receive equal penalty. We address this issue by employing a norm as defined

6 C. K. Mummadi et al.

in Equation (2) as a sparsity inducing regularizer with p = 1 and denote it as
bounded-`1 regularizer as it is bounded to [0, 1].

Figure 1 (left) shows that the bounded-`1 norm is a variant of the normal `1
norm and both penalize larger parameters. Importantly for the bounded variant,
the penalty on larger weights does not increase as strong as for the normal norm,
and only smaller weights are penalized comparably. Larger parameters, for which
the bounded variant saturates, become primarily subject to the task loss. In
other words, for the bounded variant, the penalty for large parameters becomes
decoupled from the size of the parameters and converges to a constant value
whereas for small parameters the penalty is relative large and forces them to
even smaller values. Similar to the `1 penalty, the bounded `1 norm can be added
as a regularization term in the objective function.

L∗ =
∑
(x,y)

l (f (x,W) , y) + λ
∑
γ∈G

[
1− e−

|γ|
σ

]
(6)

The gradient of the parameter γ w.r.t. `1 and bounded-`1 regularization equals:

∂Lreg

∂γ
= λ · sign (γ) ,

∂L∗reg
∂γ

= λ · sign (γ)
e−

|γ|
σ

σ
(7)

The above equations indicate that the `1 norm updates gradients at a scale of λ
irrespective of their magnitude. On the other hand, bounded-`1 norm provides
no or small gradients for parameters with higher magnitude and large gradients
for smaller parameters. In this manner, parameters with larger values receive
gradients mainly from the first part of L∗, being informative to accomplish the
primary classification task.

Another interesting property of such norm is: The hyperparameter σ scales
the regularization strength by controlling the interpolation between the `1- and 0-
norm. As σ gets smaller, the bounded-`1 norm converges to the 0-norm according
to Lemma 1. Larger σ allows regularization of all parameters whereas smaller σ
guides the regularizer to penalize only parameters of smaller magnitude while
liberating the larger ones. Larger values of σ enforce weaker regularization and
smaller values enforce stronger regularization (also compare Fig. 1).

Given the behavior of σ, we can schedule it by gradually reducing its value
during training. In doing so, the norm initially regularizes a larger number
of parameters and then gradually shrinks down the insignificant ones towards
zero while simultaneously filtering out the important ones. We can imagine the
scheduling of σ as opening the gates of the 0-norm to make it differentiable which
allows the insignificant parameters to fall into the valley of the norm and gradually
close the gates to leave out the important parameters. It is fairly straightforward
to include the hyperparameter σ also in the case of the `1 norm by replacing |γ|
with |γ|σ in Equation (5) but it is similar to scaling the hyperparameter λ to λ

σ in
this case. The scheduling of σ in `1-norm increases its regularization strength
and pushes down all the parameters towards zero which affects task performance
of the network.

Group Pruning using Bounded-`p norm for Group Gating and Regularization 7

Bounded-`2 for group gating: Both the `1 and bounded-`1 regularizers
bring down the scalar parameters towards zero but never make them exactly
zeros (refer Figure 3). This limitation always demands the setting of a relevance
threshold to prune the parameters and then later requires fine-tuning for a
number of iterations to stabilize the task performance of the pruned network.
To this end, we propose to use the same bounded-`p norm that is defined in
Equation (2) as an additional layer in the network with p = 2 and σ = 1. To
this, we refer to as a gating layer of exponential gates (with gating parameters
g) which is placed after every convolutional or fully connected layer or before a
BN layer in the network. This layer serves as a multiplicative gating factor for
every channel in the preceding convolutional layer. The gating layer has the same
number of gates as the number of channels where each gate gets multiplied to an
output channel of a convolutional layer.

x = conv (input) ; yk = xk ·
(

1− e−g
2
k

)
(8)

where x and y are the output of the convolutional and gating layer respectively
and k indexes the channel of the convolutional layer. Since the gates are added
as a layer in the network, we train the gating parameters g together with the
network weights W . In contrast to the linear gates γ of BN, we impose the
penalty only on the parameters g of exponential gates, yielding the loss function:

L =
∑
(x,y)

l (f (x, g,W) , y) + λ
∑
g∈G

R (g) (9)

The first part of the loss function corresponds to the standard empirical loss
of the neural network and R(.) is the penalty term on the gating parameters
g which could be either `2, `1, or the bounded-`1 regularizer. Two interesting
properties of the exponential gates which makes them distinctive from the linear
gates are i) its values are bounded to the range [0, 1), ii) the quadratic exponential
nature of the gates fused with the regularizer shrink down the outcome of the
gates towards zero rapidly. The regularized exponential gates which are jointly
optimized with the network weights act as a channel selection layer in the network.
These gates actively differentiate the insignificant channels from significant ones
during the training phase and gradually turn them off without affecting the
network’s performance. In Section 5, we empirically show that these exponential
gating layers assist the regularizers to drive the insignificant channels to become
exactly zero and later compress the network after removing such channels.

The exponential gating layer can be added to the network with or without
BN. In case the gating layer is followed by BN, the statistics from the nulled-
out channels remains constant across all the mini-batches since the gate is
deterministic and gets multiplied to every input sample. Thus, both the running
estimates of its computed mean and variance of the BN is zero for the nulled-out
channels. The multiplicative scaling factor γ of BN does not show any effect on
those channels but its additive bias β might change the zero channels to non-zero.
This can be seen as adding a constant to the zero channels which can be easily

8 C. K. Mummadi et al.

alleviated by few iterations of fine-tuning the pruned network. In case the gating
layers are added to a CNN without BN, we can prune channels in the network
without any need of explicit fine-tuning since the insignificant channels become
exactly zero after getting multiplied with the gates during the training phase.
As a final note, the additional exponential gating layer increases the number
of trainable parameters in the network but these gates can be merged into the
weights of the associated convolutional filter after pruning.

In next section, we empirically evaluate the above-proposed techniques to
achieve channel level sparsity, namely, i) bounded-`1 norm to prune a larger
number of parameters and preserve the task accuracy, and ii) additional gating
layer in CNNs to support the regularizers to achieve exactly zero channels.

5 Experimental Results

We demonstrate the significance of both, the exponential gating layer and the
bounded-`1 regularizer, on different network architectures and datasets, i.e.,
LeNet5-Caffe on MNIST, DenseNet-40, ResNet-164, MobileNetV2 on CIFAR100
and ResNet-50, MobileNetV2 on ImageNet dataset. We refer to Sec. A2 for the
experiment details such as data preprocessing, architecture configuration, and
hyperparameter selection. We use the threshold point 10−4 on the linear gates
and threshold zero on the exponential gates to prune the channels.

CIFAR100 The results are summarized in Figure 2. We compare the trade-
off between classification accuracy on test data against the pruning rates obtained
from different regularizers and gates. We report the average results over 3 different
runs. Here, σconstant refers to the hyperparameter σ that is set to a constant value
throughout the training process. We also investigated the influence of scheduling
σ in case of bounded-`1 regularizer and compared the results against scheduling
σ in `1 regularizer.

From Figure 2, it can be seen that the bounded-`1 regularizer on the linear
gates results in a higher pruning rate with an accuracy comparable to the `1
regularizer in ResNet-164 and provides a higher accuracy than the `1 regularizer
in MobileNetV2. On the other hand, the addition of exponential gating layers in
ResNet-164 and MobileNetV2 greatly increases the pruning rates and accuracy
upon the linear gate. The bounded-`1 regularizer further improves the accuracy
of ResNet-164 with exponential gating layer to 77.28% and 76.58% at different
regularization strengths with pruning rates 30.73% and 47% respectively. In case
of MobileNetV2, `1 on exponential gating layer results pruning rate of 75.83%
with an accuracy 75.33%.

In contrast to the other networks, the pruning results of bounded-`1 regularizer
and exponential gating layer in DenseNet-40 are identical to the results of the `1
regularizer on linear gate. However, the addition of exponential gating layer when
combined with the `2 regularizer encourages channel pruning with a marginal
drop in performance in both ResNet-164 and DenseNet-40 architectures, whereas
the gate improves the classification performance in case of MobileNetV2. We
can also observe that scheduling σ for the `1 regularizer significantly drops the

Group Pruning using Bounded-`p norm for Group Gating and Regularization 9

Fig. 2. Comparing trade-off between pruning rates and accuracies of different regular-
izers `2, `1 and bounded-`1 with different gates (linear, exponential) at constant and
scheduled σ on DenseNet-40, ResNet-164 and MobileNetV2 on CIFAR100. In DenseNet-
40, the scheduled `1 regularizer on exponential gate achieves slightly higher pruning and
accuracy rate than the other methods. In ResNet-164, two identical markers represent
settings with different regularization strengths. Here, bounded-`1 on exponential gate
achieves higher pruning rates with approximately same line of accuracy with other
methods. In MobileNetV2, bounded-`1 on linear gate outperforms `1 on linear gate
in terms of accuracy with approximately similar pruning rate for both the cases of σ
(constant and scheduled). However, `1 on exponential gate with constant σ preserves
the accuracy with higher pruning rate. Thus, the networks with exponential gating
layers has higher pruning rates than the linear gates with the accuracy close to baseline.
On the other hand, bounded-`1 improves accuracy on linear gates in MobileNetV2 and
on both gates in ResNet-164 when compared with `1 regularizer.

accuracy and increases the pruning rate in both MobileNetV2 and ResNet-164.
Scheduling in the bounded-`1 regularizer also increases the pruning rate while
retaining the accuracy close to the baseline margin. In MobilenetV2, scheduling
the regularizer in bounded-`1 yields higher accuracy and pruning rate on linear
gate when compared to the scheduled `1 regularizer. In ResNet-164, the pruning
rate raises from 47% to 58.5% with an accuracy drop from 76.58% to 76.23% in
case of exponential gate with scheduled bounded-`1 regularizer. On the other
hand, the impact of the scheduler remains comparable, for both the regularizers
in DenseNet-40 and scheduling `1 regularizer on exponential gate increases the
pruning rate to 69% with 74.42% accuracy.

We compare pruning rates between linear and exponential gates and their
accuracy trade-off at different threshold points in Figure 3. We prune channels
with gate values less or equal to the threshold and further fine-tune the network
for a maximum of three epochs. Across the three different architectures both
gates maintain the same accuracy until a critical threshold. The pruning rate of
the exponential gates are significantly larger than the linear gates in ResNet-164,
MobileNetV2 and comparable in DenseNet-40. In particular, the magnitude of
non-zero exponential gates lies in [10−3, 0.1] and pruning at the threshold larger
than 10−3 removes all channels in the network. Below 10−3 the exponential gates
achieve the optimum performance, i.e., largest pruning rate without loss of the
classification accuracy. It is noted that the threshold zero is attainable, indicating

10 C. K. Mummadi et al.

Fig. 3. Comparison of pruning rates (top row) and accuracies (bottom row) on CI-
FAR100 over different threshold points between linear gate (blue) and the exponential
gate (red), both of which are applied in combination with `1 regularization. Units that

do not pass the threshold on the gate values |g| for the linear gates and (1 − e−g2)
for exponential gates are pruned. Here, pruning rate of networks with exponential
gates is superior or comparable to the linear gate at different threshold values. With
the exponential gates, the achieved best pruning rates are insensitive to the selection
of the threshold within the range [0, 10−3]. In particular, the threshold zero being
(nearly) optimum indicates that the exponential gates can exactly zeroing out removable
channels. This observation also holds when combining with the `2 and bounded-`1
regularizers.

that exponential gates can exactly null out removable channels. On contrary, the
linear ones gate them with a sufficiently small value (about 10−5 in the case of
Figure 3), thereby necessitating the search of a precise pruning threshold.

MNIST We also test our method on the MNIST dataset using the LeNet5-
Caffe model. We compare our results with `0 regularization from [26]. We present
different models that are obtained from different regularizers and the weight
decay is set to be zero when using the `1 or bounded-`1 regularization. From
the results shown in Table 1, it can be observed that network with exponential
gating layer on different regularizers yield more narrow models than the previous
method with lower test errors.

ImageNet We also present pruning results of ResNet-50 and MobileNetV2
for the ImageNet dataset. On ResNet-50, we primarily investigate the significance
of the exponential gating layer with `1 and `2 regularization. From Figure 4, it

Group Pruning using Bounded-`p norm for Group Gating and Regularization 11

Table 1. Comparing pruning results of architecture LeNet-5-Caffe 20-50-800-500 on
MNIST dataset from different regularizers like `0 from [26] and `1, `2, Bounded-`1
on the network with exponential gating layers. We show the resulting architectures
obtained from different pruning methods and their test error rate. It can be seen that
our architectures are narrower than the one from previous method with comparable or
smaller test error rates.

Method Pruned architecture Error(%)

`0, [26] 20-25-45-462 0.9

`0, [26] 9-18-65-25 1.0

`2, λ2 = 5e-4 8-19-117-24 0.79

`1, λ1 = 1e-3 8-13-37-25 0.98

bounded-`1, λ1 = 4e-3 9-17-43-25 0.92

bounded-`1, λ1 = 3e-3 9-20-54-27 0.67

Table 2. Results on MobileNetV2 trained for 100 epochs on ImageNet. Bounded-`1 on
linear gate achieves higher accuracy than `1 on linear gate and closer to the standard
training with reduced number of parameters. On the other hand, exponential gate with
`1 regularizer reduces number of parameters without a significant drop in accuracy and
improves accuracy when combined with `2 regularizer. Here M stands for Millions.

Network- MobileNetV2 Top-1 % Top-5 % #Params #FLOPS

Standard training λ2=1e-5 70.1 89.25 3.56 M 320.2 M

`1 + lin, λ1 = 5e-5, λ2 = 1e-5 69.54 89.14 3.37 M 275.0 M

bounded-`1 + lin, λ1 = 5e-5, λ2 = 1e-5 69.9 89.17 3.40 M 280.0 M

`2 + exp, λ2 = 4e-5 70.7 90.0 3.56 M 312.8 M

`1 + exp, λ1 = 5e-5, λ2 = 4e-5 69.9 89.438 3.00 M 280.0 M

can be seen that the exponential gating layer combined with the `2 regularizer
outperforms ResNet-101(v1) from [39] in terms of pruning rate and accuracy. `1
regularization further penalizes the gating parameters and achieves 39% and 73%
sparsity in the network with a drop of 1.3% and 5.4% Top-1 accuracy respectively
at different regularization strengths. We compare these results and show that
our method prunes more parameters than the previous pruning methods with
the same line of accuracy.

On MobileNetV2, we compare `1 against bounded-`1 on linear gate and `1
against `2 on exponential gate. From Table 2, it can be observed that the bounded-
`1 on linear gate achieves higher accuracy than its counterpart `1 on linear gate
with a slightly higher number of parameters. On the other hand, `1 penalty on
exponential gate prunes a larger number of parameters and approximately keeps

12 C. K. Mummadi et al.

Fig. 4. Comparing our pruning results of ResNet-50 (`2 & `1 on exponential gating
layer, `2 + exp and `1 + exp) on ImageNet dataset against the previous methods
like ResNet-101(v1) and ResNet-101(v2) from [39], ResNet-32 and ResNet-26 which
are obtained from block pruning on ResNet-50 [19]. We also compared our results
against the method `1 on linear gate (`1 + lin) from [24] by implementing it on
ResNet-50. Here, ’Standard’ refers to the baseline model without pruning. We show the
trade-off between top1-accuracy and number of remaining parameters of the network
from different methods. It can be seen that the network from `2 + exp has about
similar accuracy as ResNet-101(v1) but prunes 1.75M more parameters than the latter.
Similarly, network from `1 + exp with λ1 = 5e-5 and 1e-4 prunes 2M and 3.5M more
parameters respectively and has comparable accuracy with the other methods.

the accuracy of standard training whereas `2 on exponential gate improves the
Top-1 accuracy by 0.6%.

6 Conclusion

In this work, we propose a straightforward and easy to implement novel approach
for group-wise pruning of DNNs. We introduce exponential gating layers, which
learn importance of the channels during training and drive the insignificant chan-
nels to become exactly zero. Additionally, we propose bounded-`1 regularization
to penalize the gate parameters based on their magnitude. Different combinations
of these techniques (gating functions and regularizers) are evaluated for a set of
common DNN architectures for image classification. We found that the combina-
tion of exponential gating function with an `1 or its bounded variant is superior
than the other approaches (cf. Fig. 2). Finally, these techniques result in higher
compression rates with accuracy comparable to existing pruning approaches on
ImageNet (cf. Fig. 4).

Group Pruning using Bounded-`p norm for Group Gating and Regularization 13

References

1. Achterhold, J., Koehler, J.M., Schmeink, A., Genewein, T.: Variational network
quantization. ICLR2018 (2018)

2. Alvarez, J.M., Salzmann, M.: Learning the number of neurons in deep networks. In:
Adv. in Neural Info. Process. Syst. (NIPS). pp. 2270–2278 (2016)

3. Chen, W., Wilson, J., Tyree, S., Weinberger, K., Chen, Y.: Compressing neural
networks with the hashing trick. Int. Conf. on Machine Learning (ICML) pp.
2285–2294 (2015)

4. Cheng, Y., Wang, D., Zhou, P., Zhang, T.: A survey of model compression and
acceleration for deep neural networks. arXiv:1710.09282 (2017)

5. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks: Training deep neural networks with weights and activations constrained
to + 1 or -1. arXiv:1602.02830 (2016)

6. Federici, M., Ullrich, K., Welling, M.: Improved Bayesian compression.
arXiv:1711.06494 (2017)

7. Frankle, J., Carbin, M.: The lottery ticket hypothesis: Finding small, trainable
neural networks. arXiv:1803.03635 (2018)

8. Ghosh, S., Yao, J., Doshi-Velez, F.: Structured variational learning of Bayesian
neural networks with horseshoe priors. arXiv:1806.05975 (2018)

9. Gong, Y., Liu, L., Yang, M., Bourdev, L.: Compressing deep convolutional networks
using vector quantization. arXiv:1412.6115 (2014)

10. Guo, Y., Yao, A., Chen, Y.: Dynamic network surgery for efficient dnns. Adv. in
Neural Info. Process. Syst. (NIPS) pp. 1379–1387 (2016)

11. Gysel, P., Pimentel, J., Motamedi, M., Ghiasi, S.: Ristretto: A framework for
empirical study of resource-efficient inference in convolutional neural networks.
IEEE Trans. on Neural Networks and Learning Syst. (2018)

12. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural networks
with pruning, trained quantization and Huffman coding. In: Int. Conf. on Learning
Representations (ICLR) (2016)

13. Han, S., Pool, J., Narang, S., Mao, H., Tang, S., Elsen, E., Catanzaro, B., Tran,
J., Dally, W.J.: Dsd: Regularizing deep neural networks with dense-sparse-dense
training flow. Int. Conf. on Learning Representations (ICLR) (2017)

14. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. Adv. in Neural Info. Process. Syst. (NIPS) pp. 1135–1143
(2015)

15. Hanson, S.J., Pratt, L.Y.: Comparing biases for minimal network construction with
back-propagation. Adv. in Neural Info. Process. Syst. (NIPS) pp. 177–185 (1989)

16. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural
networks. In: International Conference on Computer Vision (ICCV). vol. 2 (2017)

17. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,
Andreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv:1704.04861 (2017)

18. Hu, H., Peng, R., Tai, Y.W., Tang, C.K.: Network trimming: A data-driven neuron
pruning approach towards efficient deep architectures. arXiv:1607.03250 (2016)

19. Huang, Z., Wang, N.: Data-driven sparse structure selection for deep neural networks.
arXiv:1707.01213 (2017)

20. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neural
networks: Training neural networks with low precision weights and activations. J.
of Machine Learning Research (JMLR) 18(1), 6869–6898 (2017)

14 C. K. Mummadi et al.

21. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.:
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model
size. arXiv:1602.07360 (2016)

22. Karaletsos, T., Rätsch, G.: Automatic relevance determination for deep generative
models. arXiv:1505.07765 (2015)

23. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient
convnets. Int. Conf. on Learning Representations (ICLR) (2017)

24. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convo-
lutional networks through network slimming. In: Computer Vision (ICCV), 2017
IEEE International Conference on. pp. 2755–2763. IEEE (2017)

25. Louizos, C., Ullrich, K., Welling, M.: Bayesian compression for deep learning.
Advances in Neural Information Processing Systems (2017)

26. Louizos, C., Welling, M., Kingma, D.P.: Learning sparse neural networks through
l0 regularization. ICLR 2018 (2018)

27. Luo, J.H., Wu, J., Lin, W.: Thinet: A filter level pruning method for deep neural
network compression. ICCV2017 (2017)

28. MacKay, D.J.: Probable networks and plausible predictions - a review of practical
Bayesian methods for supervised neural networks. Network: Computation in Neural
Systems 6(3), 469–505 (1995)

29. Molchanov, D., Ashukha, A., Vetrov, D.: Variational dropout sparsifies deep neural
networks. ICML 2017 (2017)

30. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional
neural networks for resource efficient inference. ICLR2017 (2017)

31. Neal, R.M.: Bayesian Learning for Neural Networks. Ph.D. thesis, University of
Toronto (1995)

32. Neklyudov, K., Molchanov, D., Ashukha, A., Vetrov, D.: Structured Bayesian
pruning via log-normal multiplicative noise. arXiv:1705.07283 (2017)

33. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet classi-
fication using binary convolutional neural networks. In: European Conference on
Computer Vision. pp. 525–542. Springer (2016)

34. Sze, V., Chen, Y.H., Yang, T.J., Emer, J.: Efficient processing of deep neural
networks: A tutorial and survey. arXiv:1703.09039 (2017)

35. Ullrich, K., Meeds, E., Welling, M.: Soft weight-sharing for neural network com-
pression. ICLR 2017 (2017)

36. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in
deep neural networks. In: Advances in Neural Information Processing Systems. pp.
2074–2082 (2016)

37. Weston, J., Elisseeff, A., Schölkopf, B., Tipping, M.: Use of the zero-norm with
linear models and kernel methods. J. of Machine Learning Research (JMLR)

38. Wu, S., Li, G., Chen, F., Shi, L.: Training and inference with integers in deep neural
networks. arXiv:1802.04680 (2018)

39. Ye, J., Lu, X., Lin, Z., Wang, J.Z.: Rethinking the smaller-norm-less-informative
assumption in channel pruning of convolution layers. arXiv:1802.00124 (2018)

40. Zhou, A., Yao, A., Guo, Y., Xu, L., Chen, Y.: Incremental network quantization:
Towards lossless cnns with low-precision weights. arXiv:1702.03044 (2017)

41. Zhou, H., Alvarez, J.M., Porikli, F.: Less is more: Towards compact cnns. In:
European Conference on Computer Vision. pp. 662–677. Springer (2016)

Group Pruning using a Bounded-`p norm for
Group Gating and Regularization

Supplementary material

A1 Proof of Lemma 1 (Lemma 1):

To improve readability, we will restate Lemma 1 from the main text:
The mapping ‖.‖bound-p,σ has the following properties:

– For σ → 0+ the bounded-norm converges towards the 0-norm:

lim
σ→0+

‖x‖bound-p,σ = ‖x‖0. (1)

– In case |xi| ≈ 0 for all coefficients of x, the bounded-norm of x is approximately
equal to the p-norm of x weighted by 1/σ:

‖x‖bound-p,σ ≈
∥∥∥x
σ

∥∥∥p
p

(2)

Proof: The first statement Equation (1) can easily be seen using:

lim
σ→0

exp(−|xi|
p

σp
) = 10(xi)

For the second statement Equation (2) we use the taylor expansion of exp around
zero to get:

‖x‖bound-p,σ =

n∑
i=1

1− exp

(
−|xi|

p

σp

)

=

n∑
i=1

1−
∞∑
j=0

(
−|xi|

p

σp

)j
1

j!

(3)

For |xi| ≈ 0 we keep only the leading coefficient j = 1 yielding:

‖x‖bound-p,σ ≈
n∑
i=1

|xi|p

σp
=
∥∥∥x
σ

∥∥∥p
p
.

2 C. K. Mummadi et al.

A2 Experiment Details

Both CIFAR100 and ImageNet datasets are augmented with standard techniques
like random horizontal flip and random crop of the zero-padded input image and
further processed with mean-std normalization. The architecture MobileNetV2
is originally designed for the task of classification on ImageNet dataset. We
adapt the network1 to fit the input resolution 32× 32 of CIFAR100. ResNet-164
is a pre-activation ResNet architecture containing 164 layers with bottleneck
structure while DenseNet with 40 layer network and growth rate 12 has been used.
All the networks are trained from scratch (weights with random initialization
and bias is disabled for all the convolutional and fully connected layers) with
a hypeparameter search on regularization strengths λ1 for `1 or bounded-`1
regularizers and weight decay λ2 on each dataset. The scaling factor γ of BN is
initialized with 1.0 in case of exponential gate while it is initialized with 0.5 for
linear gate as described in [24] and bias β to be zero. The hyperparameter σ in
bounded-`1 regularizer is set to be 1.0 when the scheduling of this parameter is
disabled. All the gating parameters g are initialized with 1.0.

We use the standard categorical cross-entropy loss and an additional penalty
is added to the loss objective in the form of weight decay and sparsity induced
`1 or bounded-`1 regularizers. Note that `1 and bounded-`1 regularization acts
only on the gating parameters g whereas weight decay regularizes all the network
parameters including the gating parameters g. We reimplemented the technique
proposed in [24] which impose `1 regularization on scaling factor γ of Batch
Normalization layers to induce channel level sparsity. We refer this method as `1
on linear gate and compare it against our methods bounded-`1 on linear gate, `1
on exponential gate and bounded-`1 on exponential gate. We train ResNet-164,
DenseNet-40 and ResNet-50 for 240, 130 and 100 epochs respectively. Further-
more, learning rate of ResNet-164, DenseNet-40 and ResNet-50 is dropped by a
factor of 10 after (30, 60, 90), (120, 200, 220), (100, 110, 120) epochs. The networks
are trained with batch size 128 using the SGD optimizer with initial learning rate
0.1 and momentum 0.9 unless specified. Below, we present the training details of
each architecture individually.

LeNet5-Caffe: Since this architecture does not contain Batch Normalization
layers, we do not compare our results with the method `1 on linear gate. We train
the network with exponential gating layers that are added after every convolu-
tion/fully connected layer except the output layer and apply different regularizers
like `1, bounded-`1 and weight decay separately to evaluate their pruning results.
We set the weight decay to zero when training with `1 or bounded-`1 regularizers.
The network is trained for 200 epochs with the weight decay and 60 epochs in
case of other regularizers.

1 We changed the average pooling kernel size from 7× 7 to 4× 4 and the stride from
2 to 1 in the first convolutional layer and also in the second block of bottleneck
structure of the network.

Group Pruning using Bounded-`p norm for Group Gating and Regularization 3

ResNet-50 : We train the network with exponential gating layers that are added
after every convolutional layer on ImageNet dataset. We evaluate performance of
the network on different values of regularization strength λ1 like 10−5, 5× 10−5

and 10−4. The weight decay λ2 is enabled for all the settings of λ1 and set to be
10−4. We analyzed the influence of exponential gate and compared against the
existing methods.

ResNet-164 : We use a dropout rate of 0.1 after the first Batch Normalization
layer in every Bottleneck structure. Here, every convolutional layer in the network
is followed by an exponential gating layer.

DenseNet-40 : We use a dropout of 0.05 after every convolutional layer in the
Dense block. Here, the exponential gating layer is added after every convolutional
layer in the network except the first convolutional layer.

MobileNetV2 : On CIFAR100, we train the network for 240 epochs where learning
rate drops by 0.1 at 200 and 220 epochs. A dropout of 0.3 is applied after the
global average pooling layer. On ImageNet, we train this network for 100 epochs
which is in contrast to the standard training of 400 epochs. We start with learning
rate 0.045 and reduced it by 0.1 at 30, 60 and 90 epochs. We evaluate performance
of the network on exponential gate over the linear gate with `1 regularizer and
also tested the significance of bounded-`1 on linear gate. Exponential gating layer
is added after every standard convolutional/depthwise separable convolutional
layer in the network.

On CIFAR100, we investigate the influence of weight decay, `1 and bounded-`1
regularizers, the role of linear and exponential gates on every architecture. We
also study the influence of scheduling σ in both `1 and bounded-`1 regularizers
on this dataset. For MobileNetV2, we initialize σ with 2.0 and decay it at a rate
of 0.99 after every epoch. In case of ResNet-164 and DenseNet-40, we initialize
the hyperparameters λ1 and λ2 with 10−4 and 5× 10−4 respectively and σ with
2.0. We increase the λ1 to 5× 10−4 after 120 epochs and σ drops by 0.02 after
every epoch until the value of σ reaches to 0.2 and later decays at a rate of 0.99.

