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Abstract— This paper presents an integrated hardware-
software solution to perform fully automated robotic bush
trimming to user-specified shapes. In contrast to specialized
solutions that can trim only bushes of a certain shape, the
approach ensures flexibility via a vision-based shape fitting
module that allows fitting an arbitrary mesh into a bush at
hand. A trimming planning method considers the available
degrees of freedom of the robot arm to achieve effective cutting
motions. The performance of the mesh fitting module is assessed
in multiple experiments involving both artificial and real plants
with a variety of shapes. The trimming accuracy of the overall
approach is quantitatively evaluated by inspecting the bush
pointcloud before and after robotic trimming, and measuring
the change in the deviation from the originally computed target
mesh.

I. INTRODUCTION

Garden maintenance is a labor-intensive task which is

difficult to automate because of the variation in a natural

environment. Some basic gardening tasks have been auto-

mated, such as plants watering [1] or small-scale vegetable

gardening [2]. Another widespread commercial application

of automation in the maintenance of gardens is the robot

lawnmower, such as the Bosch Indego robot [3].

However, many gardens include some sort of trimmable

plants, like bushes and hedges. These plants require regular

trimming to keep their good aesthetic properties. Bush trim-

ming is a demanding task, the automation of which will be

of value. For example, elderly or otherwise weakened people

are unable to work with the heavy machinery required to trim

the plants. Another benefit of automating the trimming task

is the reduced labor costs for private and municipal gardens.

Finally, such kind of system would be helpful to keep the

shape of oddly-trimmed bushes for ornamental purposes, like

duck-shaped plants. Pruning such plants without losing the
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shape requires a high level of precision that is not easy to

reach by human gardeners.
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Fig. 1. The presented solution uses arm-mounted vision to scan a
target bush. A specified shape is fit into the reconstructed pointcloud. A
co-mounted trimming tool cuts the bush using an automatically planned
trajectory.

Some machinery already exists for automated bush trim-

ming in tree nurseries. Potatrice Automatica [4] is an exam-

ple of such a machine. It consists of a cutting frame that

can rotate around a bush. The size of the frame has to be

manually regulated in a fixed interval, and it can only deal

with spherical boxwood bushes.

Bush trimming fits into the research trend of precision

agriculture. Analogously to other precision agriculture tasks,

the automation of bush trimming has to face an unstructured

and dynamic environment, which requires advanced percep-

tion capabilities. In the last years multiple research works

investigated the topics of automated fruit harvesting [5], [6],

[7], tree pruning [8], precision orchard farming [9], flower

pollination [10], and vineyard maintenance [11].

So far, there is no robot able to trim bushes with variable

shapes. To trim differently shaped bushes, the present shape

of the bush including outgrown parts must be captured, and

a shape fitting algorithm must match the target shape to this

reconstruction. Since bush trimming is supposed to work in

bright sunlight, 3D sensors based on active light are not

suitable, and laser scanners are either limited in their scan

coverage, prohibitively expensive, or too bulky to be mounted

on the robot arm. RGB-stereo fares well in these aspects. The



(a) left input (b) FlyingThings3D (c) FlyingThings3D (d) DispNet-CSS [12] (e) binarized occlusions

disparity occlusion output from DispNet-CSS [12]

(f) right input (g) custom data with (h) custom data (i) DispNet-CSS with (j) binarized left-right

tight clustering disparity custom data consistency mask

Fig. 2. DispNet: the original DispNet-CSS (d) [12] was trained on the FlyingThings3D dataset (b,c). To simulate the locally complex plant geometry
(a,f), a custom version of the dataset with tightly clustered objects was rendered (g,h). Pretraining on FlyingThings3D and finetuning on the custom dataset
yields a network which is better able to resolve fine structures in the bush (i). Instead of the occlusion estimates of the published network (e), left-right
consistency is used to remove uncertain and thus probably wrong disparity pixels (j). This check also identifies occlusion areas.

cutting tool must be able to reach multiple locations in a wide

workspace and smoothly move along multiple directions in

space. Thus, high motion dexterity of a robot arm is needed.

The overall approach consists of four processing steps:

1) Scan the target bush using a preplanned robot arm

trajectory to acquire an informative bush pointcloud;

2) Fit a user-defined mesh into the reconstruction;

3) Plan a trimming trajectory based on the fitted mesh;

4) Execute trimming with a proprietary trimming tool;

After trimming, the pointcloud of the trimmed plant is com-

pared with the pointcloud before trimming and the original

target mesh, to evaluate trimming performance.

II. ROBOT ARM SETUP

A custom test rig was designed and built to test the trim-

ming pipeline. A Kinova Jaco2[13] robot arm was mounted

on the test rig. This arm is light-weight, does not need

a control box, and consumes little power, which allows

mounting it also on a mobile platform (not done for the

experiments in this paper). The 6 rotational joints of the

arm provide the dexterity needed for scanning and trimming

trajectories.

On the last joint of the arm, the trimming tool [14] and

a stereo camera1 were mounted as a rigid unit. Extrinsic

hand-eye calibration was done using HALCON [15]; stereo-

extrinsic and intrinsic calibration was done using Kalibr [16].

An overview of the hardware setup is shown in Fig. 1.

The software for the experiments was based on the Robot

Operating System (ROS) [17].

III. SCANNING + POINTCLOUD MERGING

A. DispNet for stereo vision

The arm-mounted RGB stereo camera was used to acquire

image data and corresponding depth maps. The depth map

was computed with DispNet [12], which is a deep network

1Resolution = 752×480, diagonal FoV ≈ 68
◦, baseline ≈ 5 cm

trained on synthetic data from FlyingThings3D [18] based on

objects from ShapeNet [19], to yield dense disparity maps

at interactive frame rates.

DispNet assumes that the images are rectified, and per-

forms correspondence search along horizontal scanlines.

Thus, the images are undistorted and rectified before being

fed into the network.

The stacked ”CSS” architecture from Ilg et al. [12] was

used. It consists of a stack of three encoder-decoder net-

works, with the first network including an explicit correlation

layer and warping layers between each subnetwork. The

network was pretrained on the FlyingThings3D dataset [18]

following the original stagewise approach [20], [12]: first the

first ”C” stage was trained in isolation; then weights at this

stage were frozen and the second ”S” stage was trained to

process the outputs of ”C”; finally both were frozen and the

third ”S” stage was trained on the outputs of ”CS”. These

three training steps used the Sshort schedule [20].

After such pretraining, this network was finetuned on a

custom version of FlyingThings3D in order to match the

specific challenges of the task and the used camera. To sim-

ulate the challenges of plants with their fine-detailed branch

structures and many occlusions, many ShapeNet objects

were tightly clustered together. Moreover, the images were

rendered with a simulated Bayer color filter to reduce the

domain gap between train and test data [21]. Samples from

this dataset and from FlyingThings3D are shown in Fig. 2.

Network finetuning used the Sfine learning rate schedule [20].

Both pretraining and finetuning used data augmentation in

color and geometry [21].

While DispNet yields disparity maps with state-of-the-art

accuracy, there are still some inaccurate estimates, especially

close to depth boundaries. These inaccuracies cause outliers

in the pointcloud. Therefore, the disparity maps were cleaned

up via a left-right-right-left consistency check, i.e., not only

the left-right disparity dL of a pair LR is computed, but also

the right-left disparity dR: by rotating both input images by



disparity left input right input

Fig. 3. DispNet can resolve fine structures of an outgrown boxwood bush,
such as twigs sticking out at the side or towards the camera. Such detailed
perception and dense coverage are needed when processing real plants.

180◦ and swapping them, the network sees

RL

and computes

a disparity map d Rfor the ”left” view

R

. Consequently,

dR is obtained from d Rby another 180◦ rotation. If for

a pixel (x, y) in dL, the left-right disparity dL(x, y) does

not agree with the corresponding right-left disparity dR(x−
dL(x, y), y), the point is marked as invalid in the disparity

map (shown as black pixels in Fig. 3.

Additionally, a gradient magnitude filter (to remove any

remaining ”depth curtain” artifacts) and a 5×5 median filter

are applied to the disparity map.

The capability of the DispNet-CSS architecture to directly

estimate occlusion areas and depth boundaries [12] was not

exploited because occlusions are not the only source of

inaccuracies in the disparity map. Lens flare, spurious false

matches, and oversmoothing due to repetitive or featureless

scene structure also contribute to this. Using the left-right

consistency check allows handling all of them reliably.

Fig. 2 compares the custom-finetuned network and left-right

consistency masking against a pretrained DispNet with built-

in occlusion estimation [12].

B. Scanning

A single viewpoint can only provide limited information

due to complex self-occlusions (see e.g. Fig. 3; a branch

sticking out can be perceived, but not the bush surface behind

it). As a consequence, fitting target shapes into a pointcloud

from a single view proved to be unreliable, especially with

significantly outgrown plants (see Fig. 4). Therefore, the

pointcloud was assembled from depth maps at multiple

viewpoints.

The robotic arm performed a predefined scanning motion,

shortly pausing at intermediate poses to avoid motion blur

when recording an image pair. For each of these poses a

disparity map is computed. Since DispNet runs at 4.5 fps,

the length of the pause is determined by the acceleration

limits of the arm and not by DispNet.

The disparity maps were converted to pointclouds in a

global space, and fused by simply accumulating all points

from all views using the poses reported by the arm. To

make the system robust to inaccuracies in reported arm

poses, experiments with ICP alignment of individual views’

pointclouds were conducted, but the arm proved to be

sufficiently precise. The procedure was rather limited by the

inaccuracy of the disparity maps. To make the shape fitting

more performant, the composite pointcloud was spatially

subsampled after each new view integration.

IV. SHAPE FITTING

The purpose of trimming is to cut the bush to a predefined

target shape. Fitting the target shape into the observed

pointcloud was done using a variant of Trimmed ICP [22]:

instead of ordering the point correspondences by distance

and then discarding a fixed ratio, all correspondences with

distances that exceed a fixed threshold are ignored. This

ensures the coverage of the scene-scanning trajectory to not

directly affect the fitting result: a clean spherical bush leads

to a good sphere fitting even from a single view with less than

50% correspondence coverage, whereas the experiments on

outgrown bushes required a much larger coverage for a good

fit (see Fig. 4 and Fig. 8). The fitting process was run online

during bush scanning and is fast enough to not limit the speed

of the scanning process. The bush position was initialized

using the pixel closest to the camera in the first obtained

disparity map.

After fitting, the mesh for the target shape was shrunk by

a user-defined amount (e.g. ”cut back by 2 cm”) and sent to

tool-motion planning and execution.

V. TRIMMING MOTION PLANNING

In an ideal bush trimming motion, the trimming point of

the trimming tool should be the one closest to the bush,

with other parts of the tool further away. The movement

of the trimming tool would then be such that the trimming

point is placed most upfront in the direction of movement,

thereby grasping and cutting branches before they come in

contact with other parts of the trimming tool. As the current

trimming tool could be used for omnidirectional trimming, in

these first tests such constraint was relaxed and side cutting

motions were allowed as well.

Trimming trajectories were planned according to the pro-

cedure described in [23]: first, the triangles belonging to the

target mesh are clustered according to spatial closeness and

surface normal similarity, thus defining a limited amount

of tool poses to be traversed for bush trimming. Then,

multiple arm configurations matching the desired tool poses

are queried to an inverse kinematics solver based on the arm

geometric model. Poses that turn out to be unreachable (e.g.

too close or too far away, or too close to the ground for

safe approach) are removed. Finally, the desired arm config-

urations schedule was computed by approximately solving a

Generalized Traveling Salesman Problem on the graph hav-

ing the retrieved arm configurations as nodes. The planning

cost function was defined to ensure regular arm movements

in the cutting phase, thus allowing an accurate and smooth

trimming action. For this, several motion optimality measures

can be used, such as path length or number of turns [24].

A suitable solution to the Generalized Traveling Salesman

Problem was retrieved using the Ant Colony Optimization

method [25]. The Edge Distance Function (EDF) between

each pair of candidate configurations was defined as such:



scan trajectory (left stereo view shown) with recorded disparity maps at nine stopping points

one viewpoint two viewpoints nine viewpoints

Fig. 4. Multiview scanning and fitting: with only a few viewpoints that do not sufficiently cover an unruly target object, shape fitting is unstable. More
views’ information progressively improves the result; in this case, nine views were needed for a stable fit. These nine views are shown in the top row.
Note that insufficient visibility of the plant is not the reason why early fitting fails; e.g. the second and forth view include almost the entire bush.

1) If the distance between the target tool poses is lower

than a threshold ∆max, and the corresponding tool

movement direction is not downward, the EDF is

defined as EDF (qi, qj) = ΣNJ

k=1|qi,k−qj,k|, where NJ

is the number of joints and qi,k is the k-th joint position

of the arm configuration qi.

2) Elsewhere, the EDF is assigned a threshold value.

Such a value indicates the need of a non-cutting arm

transition between the given target tool poses (i.e. a

retraction and a re-approaching motion). As the amount

of non-cutting transitions should be kept small for the

sake of efficiency in task time and energy consumption,

the threshold value is heuristically set as 100, which is

significantly higher than the average arm configuration

distance.

The goal is to search for a path q1, ...qNP
minimizing

the cost function ΣNP−1
i=1 EDF (qi, qi+1), where NP is the

number of tool poses.

reachable surface area computed tool path

Fig. 5. Example of planned trimming tool path on a sphere mesh.

VI. EXPERIMENTAL APPROACH

A. Data collection

To test the trimming pipeline, several bush shapes were

used. This included artificial, real pretrimmed bushes, and

outgrown bushes, with spherical, cubical, and cylindrical

shape. Furthermore, some composite shapes were added

to test fitting performance on non-symmetrical objects. A

sample of the bushes used in the evaluation is shown in

Fig. 6.

The following protocol was applied for each bush:

1) Place bush in the test rig;

2) Execute scanning trajectory and store acquired data;

3) Run shape fitting on stored data.

A sphere-shaped and a cube-shaped bush were selected for

trimming. For those bushes, the following trimming steps

were executed in addition:

4) Plan trimming path;

5) Execute trimming path;

6) Repeat scanning step 2 above;

7) Compare observations before and after trimming.

B. Evaluation of shape fitting

To evaluate shape fitting, the distances of 3D points in the

scene reconstruction to the fitted ideal shape were computed

and sorted into a histogram. To account for the variation in

3D reconstruction density due to incidental factors such as

lighting, data was normalized with respect to the number of

points in the point cloud. The distribution of points in the

histogram then indicates the quality of fitting: if the majority

of points is close to the fitted shape, then the shape is both

the correct geometry and size, and also well fitted into the

observation. If the bush is already well-shaped, all distances

should be close to zero. Branches of an outgrown bush will

lead to outliers in the histogram, but the majority of distances

should be small for a well-fitted shape. As shown in Fig. 7,



Fig. 6. A sample of the bushes used in evaluation. The sphere (top-left) and
pinecone (top-centre) are artificial bushes, the cube (top-right) and cylinder
(bottom-left) are real bushes, and the composite shapes (bottom-centre and
bottom-right) are a mixture of real and artificial bushes

the points belonging to the bush can be clearly separated

from the scene background by simple distance thresholding.

Thus, the distance range for evaluation was capped at 15 cm

from the fitted shape.

C. Evaluation of trimming

Trimming evaluation used the same distance histogram

measure as the evaluation for shape fitting. If on average

more points are closer to the target surface after trimming

than before, trimming was considered successful. Fig. 1

shows an example of this: the outgrowth of the cube bush is

removed.

scene reconstruction with reconstruction with

outgrown spherical bush fitted bush model
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Fig. 7. Histogram plot of scene point distances to a fitted sphere mesh.
The reconstruction of the bush itself is clearly separated from the rest of the
scene; for evaluation, distances beyond 15 cm (red line) are ignored. Bin
width = 2 cm.

VII. RESULTS AND DISCUSSION

Results are presented step-by-step through the pipeline,

evaluating the quality of shape fitting using the alignment of

the scene reconstruction point cloud against the fitted ideal

shape of a bush. First, fitting was tested on artificial bushes

with well-defined shapes, using only one scanning viewpoint.

This serves to show that DispNet produces correct depth

information, and that the fitting procedure is not generally

limited by low scan coverage. Next, more complicated shapes

are fitted. These require scanning from multiple viewpoints,

due to self-occlusions or bush size. With robust multiview

fitting established, real outgrown boxwood bushes are finally

scanned and trimmed.

Fig. 7 shows a complete reconstruction pointcloud and

distribution of point distances to a fitted shape. There is a

clear separation between points that are part of the bush and

points in the background; the rest of this section thus ignores

all points more than 15 cm away from the fitted shape.

single-view scan scan+fit fit
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Fig. 8. Fitting evaluation showing the distance of pointcloud points with
respect to the resulting mesh of artificial bushes: sphere, pinecone-shape,
and cube. A single viewpoint provided sufficient information for a good
fit, as seen in the ”scan+fit” column where the mesh overlapped the bush
pointcloud. Histograms are normalized over all reconstructed scene points
placed at most 15 cm from the target surface. Histogram bins are 0.6 cm
wide.

A. Scanning and shape fitting

1) Artificial bushes: The ideal case for fitting is a smooth

shape that is already close to the target shape. Fig. 8 shows



that for artificial bushes with clear shape, a single viewpoint

was already sufficient: for an artificial sphere, pinecone,

and cube, the majority of reconstructed scene points was

either within 0.6 cm from the fitted shape (i.e. in the first

histogram bin) or further away than 15 cm (i.e. not a part of

the target object). Within these shapes, the pinecone yielded

the worst quantitative result: this shape was modelled by

hand which makes it hard to get its dimensions exactly right.

The large-distance outliers for the pinecone were due to this

reconstruction and from including artefacts from the planting

pot and the adjacent floor.

2) Real plants and complex shapes: With more complex

shapes and real plants (which do not perfectly match the

target shape), a single viewpoint was not enough to provide

sufficient information for a good shape fit. Fig. 4 shows that

for this cylinder shape even two views’ worth of data did

not lead to a good fit; a stable result was only reached

after nine views had been fused. The scanning trajectory

producing these views was used for all multiview fitting and

trimming experiments. In Fig. 9, a cylinder-shaped boxwood

bush and an artificial complex shape (made up of a cube

and a hemisphere on top) were evaluated. The final pose

of the target shape conformed to the true position and

orientation, but noise in the depth data and irregularities in

the scanned objects decreased the fitting accuracy. As result,

the histogram is less focused compared to the simple artificial

shapes above, although most points stay within 5 cm of the

fitted mesh.

multi-view scan scan+fit fit
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Fig. 9. Fitting evaluation of a real cube bush with an artificial hemisphere
fixed on top, and a real cylinder-shaped bush. As highlighted in Fig. 4,
multiple viewpoints needed to be fused for these shapes to fit well. The
cylinder bush did not conform well to its target shape, as it was slightly
tilted. This is visible both in Fig. 4, as well as from the larger spreading of
the points in the histogram. Plots as in Fig. 8.

B. Mesh-based bush trimming

An example of a trimming plan based on a target spherical

mesh is shown in Fig. 5. During plan execution, the trimming

tool was correctly sent to its target poses and proved capable

of cutting outgrown branches. To evaluate trimming perfor-

mance, the histogram of scene point distances from the fitted

mesh before trimming is compared to the corresponding

histogram after trimming. For the sphere bush, applying the

initially fitted mesh on the trimmed pointcloud showed that

the plant had slightly changed its position. Thus, fitting a

new mesh on the trimmed bush turned out to be necessary

in order to extract meaningful results about the trimming

effect.

Figures 10 and 11 show the histograms of point distances

before and after trimming, respectively, for a cube-shaped

bush and a sphere-shaped bush. Both figures show that

point distances change after trimming, by increasing the

percentage of points having a low distance from the target

mesh. At the same time, the percentage of points being more

than 3 cm away from the mesh reduced from 30% to 20% for

the cube and from 35% to 26% for the sphere, indicating that

these points were most affected by the trimming operation.

From visually observing the experiments, it was found that

not all motions conformed well to the desirable behaviour as

described in section V. Also, it was observed that sometimes

branches were pushed aside instead of being trimmed. As

result, the trimming performance might have been lower than

one would have expected, although it still demonstrates the

functionality of the concept.

Improved trimming performance is expected by better

matching the planner behaviour to the desired cutting paths

and updating the trimming tool design to avoid branches

being pushed aside. In both cases, the trimming results

should approach the target mesh more closely, such that

after trimming the percentage of pointcloud points close

to the target mesh will increase with respect to the values

observed in these experiments. Another improvement step

was already performed when trimming the sphere as shown

in Fig. 11. After executing the trimming trajectory once, the

bush was rotated by 90◦ and trimmed again. The comparison

between the resulting three histograms shows that the point

distribution became closer to the target mesh after each

trimming execution. As can be observed from the images,

outgrowth was removed on the left and right side of the bush,

but some branches remained. Currently, trimming is limited

by how much of the bush surface can be reached by the

robot arm. Bush rotations were done using a rotating table,

but for example the top of the sphere remained unreachable.

Placing the arm on a mobile platform increases flexibility

in arm placement, thereby allowing to trim from multiple

positions. Such an approach would also allow to trim bushes

in a garden setting.

VIII. CONCLUSION

A working pipeline for autonomous bush trimming with

a robot arm equipped with a vision sensor was presented.

The robot arm scanned a scene to produce a composite
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Fig. 10. Trimming evaluation of the cube bush with outgrowth showcased
in Fig. 1. After trimming, more points are closer to the target shape than
before. Plots as in Fig. 8.

scene pointcloud, into which a predefined target mesh was

fitted. A coverage planning algorithm then used this mesh

to generate a bush trimming trajectory. In the final step, the

trimming trajectory was executed and trimming performance

was assessed. The presented approach was designed to effec-

tively deal with fitting and trimming of arbitrary plant shapes.

The performed experiments show that multiple shapes were

effectively handled.

It was shown that for artificial plants the fitting accuracy

was good, as over 50% of the bush points was less than

0.6 cm from the fitted mesh. When fitting real plants, this

percentage decreased due to the irregularity of the bush.

Nevertheless the majority of the points resulted to be less

than 3 cm from the target.

Concerning trimming, evaluation was performed by com-

paring the distribution of scene point distances from the

fitted mesh before and after the execution of the trimming

trajectory based on the initially computed mesh. For a

sphere-shaped and a cube-shaped bush, the percentage of

points further than 3 cm from the target was decreased by

25−33% (relative) after trimming. This shows that the robot

is able to effectively trim the bush using this approach.

As result, this work is a significant step towards a fully

automated, self-evaluating robotic trimming system, which

is able to take decisions based on the outcome of its own

trimming actions.
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