
JOTA manuscript No.
(will be inserted by the editor)

Non-smooth Non-convex Bregman Minimization:
Unification and New Algorithms

Peter Ochs · Jalal Fadili · Thomas Brox

Received: date / Accepted: date

Abstract We propose a unifying algorithm for non-smooth non-convex op-
timization. The algorithm approximates the objective function by a convex
model function and finds an approximate (Bregman) proximal point of the
convex model. This approximate minimizer of the model function yields a de-
scent direction, along which the next iterate is found. Complemented with an
Armijo-like line search strategy, we obtain a flexible algorithm for which we
prove (subsequential) convergence to a stationary point under weak assump-
tions on the growth of the model function error. Special instances of the algo-
rithm with a Euclidean distance function are, for example, Gradient Descent,
Forward–Backward Splitting, ProxDescent, without the common requirement
of a “Lipschitz continuous gradient”. In addition, we consider a broad class of
Bregman distance functions (generated by Legendre functions), replacing the
Euclidean distance. The algorithm has a wide range of applications including
many linear and non-linear inverse problems in signal/image processing and
machine learning.

Keywords Bregman minimization · Legendre function · Model function ·
Growth function · Non-convex non-smooth · Abstract algorithm

Peter Ochs
Saarland University
Saarbrücken, Germany
ochs@math.uni-sb.de

Jalal Fadili
Normandie Université
ENSICAEN, CNRS, GREYC, France
Jalal.Fadili@ensicaen.fr

Thomas Brox
University of Freiburg
Freiburg, Germany
brox@cs.uni-freiburg.de

2 Peter Ochs et al.

Mathematics Subject Classification (2000) 49J52 · 65K05 · 65K10 ·
90C26

1 Introduction

When minimizing a non-linear function on the Euclidean vector space, a fun-
damental strategy is to successively minimize approximations to the actual
objective function. We refer to such an approximation as model (function).
A common model example in smooth optimization is linearization (first order
Taylor approximation) around the current iterate. However, in general, the
minimization of a linear function does not provide a finite solution, unless,
for instance, the domain is compact. Therefore, the model is usually comple-
mented by a proximity measure, which favors a solution (the next iterate)
close to the current iterate. For the Euclidean norm as proximity measure,
computing the next iterate (minimizer of the sum of the model function and
the Euclidean proximity measure) is equivalent to a Gradient Descent step,
i.e. the next iterate is obtained by moving along the direction of the negative
gradient at the current point for a certain step size.

Since sequential minimization of model functions does not require smooth-
ness of the objective or the model function, non-smoothness is handled natu-
rally. The crucial aspect is the “approximation quality” of the model function,
which is controlled by a growth function, that describes the approximation
error around the current iterate. Drusvyatskiy et al. [19] refer to such model
functions as Taylor-like models. The difference among algorithms lies in the
properties of such a growth function, rather than the specific choice of a model
function.

For the example of the Gradient Descent model function (linearization
around the current iterate) for a continuously differentiable function, the value
and the derivative of the growth function (approximation error) vanish at the
current iterate. In this case, a line search strategy is required to determine a
suitable step size that reduces the objective value. If the gradient of the objec-
tive function is additionally L-Lipschitz continuous, then the growth function
satisfies a quadratic growth globally, and step sizes can be controlled analyti-
cally.

A large class of algorithms, which are widely popular in machine learn-
ing, statistics, computer vision, signal and image processing can be cast in
the same framework. This includes algorithms such as Forward–Backward
Splitting [26] (Proximal Gradient Descent), ProxDescent [25,20] (or proximal
Gauss–Newton method), and many others. They all obey the same growth
function as Gradient Descent. This allows for a unified analysis of all these
algorithms, which is a key contribution of this paper. Moreover, we allow for a
broad class of (iteration dependent) Bregman proximity functions (e.g., gen-
erated by common entropies such as Boltzmann–Shannon, Fermi–Dirac, and

Title Suppressed Due to Excessive Length 3

Burg’s entropy), which leads to new algorithms. To be generic in the choice of
the objective, the model, and the Bregman functions, the algorithm is com-
plemented with an Armijo-like line search strategy. Subsequential convergence
to a stationary point is established for different types of growth functions.

The above mentioned algorithms are ubiquitous in applications of machine
learning, computer vision, image/signal processing, and statistics as is illus-
trated in Section 5 and in our numerical experiments in Section 6. Due to the
unifying framework, the flexibility of these methods is considerably increased
further.

2 Contributions and Related Work

For smooth functions, Taylor’s approximation is unique. However, for non-
smooth functions, there are only “Taylor-like” model functions [32,31,19].
Each model function yields another algorithm. Some model functions [32,31]
could also be referred to as lower-Taylor-like models, as there is only a lower
bound on the approximation quality of the model. Noll et al. [31] addressed
the problem by bundle methods based on cutting planes, which differs from
our setup.

The goal of Drusvyatskiy et al. [19] is to measure the proximity of an ap-
proximate solution of the model function to a stationary point of the original
objective, i.e., a suitable stopping criterion for non-smooth objectives is sought.
On the one hand, their model functions may be non-convex, unlike ours. On
the other hand, their growth functions are more restrictive. Considering their
abstract level, the convergence results may seem satisfactory. However, sev-
eral assumptions that do not allow for a concrete implementation are required,
such as a vanishing distance between successive iterates and convergence of
the objective values along a generated convergent subsequence to the objective
value of the limit point. This is in contrast to our framework.

We assume more structure of the subproblems: They are given as the sum
of a model function and a Bregman proximity function. With this mild as-
sumption on the structure and a suitable line-search procedure, the algorithm
can be implemented and the convergence results apply. We present the first
implementable algorithm in the abstract model function framework and prove
subsequential convergence to a stationary point.

Our algorithm generalizes ProxDescent [20,25] with convex subproblems,
which is known for its broad applicability. We provide more flexibility by con-
sidering Bregman proximity functions, and our backtracking line-search need
not solve the subproblems for each trial step.

4 Peter Ochs et al.

The algorithm and convergence analysis is a far-reaching generalization of
Bonettini et al. [11], which is similar to the instantiation of our framework
where the model function leads to Forward–Backward Splitting. The proxim-
ity measure of Bonettini et al. [11] is assumed to satisfy a strong convexity
assumption. Our proximity functions can be generated by a broad class of Leg-
endre functions, which includes, for example, the non-strongly convex Burg’s
entropy [13,3] for the generation of the Bregman proximity function.

3 Preliminaries and Notations

Throughout the whole paper, we work in a Euclidean vector space RN of di-
mension N ∈ N equipped with the standard inner product 〈·, ·〉 and associated
norm | · |.

Variational analysis. We work with extended-valued functions f : RN → R,
R := R ∪ {±∞}. The domain of f is dom f :=

{
x ∈ RN : f(x) < +∞

}
and

a function f is proper, if it is nowhere −∞ and dom f 6= ∅. It is lower semi-
continuous (or closed), if lim infx→x̄ f(x) ≥ f(x̄) for any x̄ ∈ RN . Let intΩ
denote the interior of Ω ⊂ RN . We use the notation of f -attentive convergence

x
f→ x̄ ⇔ (x, f(x)) → (x̄, f(x̄)), and the notation k

K→ ∞ for some K ⊂ N to
represent k →∞ where k ∈ K.

As in [19], we introduce the following concepts. For a closed function
f : RN → R and a point x̄ ∈ dom f , we define the slope of f at x̄ by

|∇f |(x̄) := lim sup
x→x̄, x 6=x̄

[f(x̄)− f(x)]+
|x− x̄|

,

where [s]+ := max{s, 0}. It is the maximal instantaneous rate of decrease of f
at x̄. For a differentiable function, it coincides with the norm of the gradient
|∇f(x̄)|. Moreover, the limiting slope

|∇f |(x̄) := lim inf
x

f→x̄
|∇f |(x)

is key. For a convex function f , we have |∇f |(x̄) = infv∈∂f(x̄) |v|, where ∂f(x̄) is

the (convex) subdifferential ∂f(x̄) :=
{
v ∈ RN : ∀x : f(x) ≥ f(x̄) + 〈x− x̄, v〉

}
,

whose domain is given by dom ∂f :=
{
x ∈ RN : ∂f(x) 6= ∅

}
. A point x̄ is a sta-

tionary point of the function f , if |∇f |(x̄) = 0 holds. Obviously, if |∇f |(x̄) = 0,
then |∇f |(x̄) = 0. We define the set of (global) minimizers of a function f by

Argmin
x∈RN

f(x) :=

{
x ∈ RN : f(x) = inf

x̄∈RN
f(x̄)

}
,

and the (unique) minimizer of f by argminx∈RN f(x), if Argminx∈RN f(x)
consists of a single element. As shorthand, we also use Argmin f and argmin f .

Title Suppressed Due to Excessive Length 5

Definition 3.1 (Growth function [19]) A differentiable univariate function
ω : R+ → R+ is called growth function if ω(0) = ω′+(0) = 0 holds. If, addition-
ally, ω′+(t) > 0 for t > 0 and equalities limt↘0 ω

′
+(t) = limt↘0 ω(t)/ω′+(t) = 0

hold, we say that ω is a proper growth function.

Concrete instances of growth functions will be generated for example by the
concept of ψ-uniform continuity, which is a generalization of Lipschitz and
Hölder continuity.

Definition 3.2 A mapping F : RN → RM is called ψ-uniformly continuous
with respect to a continuous function ψ : R+ → R+ with ψ(0) = 0, if the
following holds:

|F (x)− F (x̄)| ≤ ψ(|x− x̄|) for all x, x̄ ∈ RN .

Example 3.1 Let F be ψ-uniformly continuous. If, for some c > 0, we have
ψ(s) = csα with α ∈]0, 1], then F is Hölder continuous, which for α = 1 is the
same as Lipschitz continuity.

In analogy to the case of Lipschitz continuity, we can state a generalized De-
scent Lemma:

Lemma 3.1 (Generalized Descent Lemma) Let f : RN → R be continu-
ously differentiable and let ∇f : RN → RN be ψ-uniformly continuous. Then,
the following holds

|f(x)− f(x̄)− 〈∇f(x̄), x− x̄〉 | ≤
∫ 1

0

ϕ(s|x− x̄|)
s

ds for all x, x̄ ∈ RN ,

where ϕ : R+ → R+ is given by ϕ(s) := sψ(s).

Proof We follow the proof of the Descent Lemma for functions with Lipschitz
gradient:

|f(x)− f(x̄)− 〈∇f(x̄), x− x̄〉 | = |
∫ 1

0

〈∇f(x̄+ s(x− x̄))−∇f(x̄), x− x̄〉 ds|

≤
∫ 1

0

|∇f(x̄+ s(x− x̄))−∇f(x̄)||x− x̄| ds

≤
∫ 1

0

ψ(s|x− x̄|)|x− x̄| ds

=

∫ 1

0

ϕ(s|x− x̄|)
s

ds .

Example 3.2 The function ω(t) =
∫ 1

0
ϕ(st)
s ds is an example for a growth func-

tion. Obviously, we have ω(0) = 0 and, using the Dominated Convergence
Theorem (with majorizer sups∈[0,1] ψ(s) < +∞ for small t ≥ 0), we conclude

ω′+(0) = lim
t↘0

∫ 1

0

ϕ(st)

st
ds = lim

t↘0

∫ 1

0

ψ(st) ds =

∫ 1

0

lim
t↘0

ψ(st) ds = 0 .

6 Peter Ochs et al.

It becomes a proper growth function, for example, if ψ(s) = 0 ⇔ s = 0
and we impose the additional condition limt↘0 w(t)/ψ(t) = 0. The function
ψ(s) = csα with α > 0, i.e. ϕ(s) = cs1+α, is an example for a proper growth
function.

Bregman distance. In order to introduce the notion of a Bregman function
[12], we first define a set of properties for functions to generate nicely behaving
Bregman functions.

Definition 3.3 (Legendre function [4, Def. 5.2]) The proper, closed, con-
vex function h : RN → R is

(i) essentially smooth, if ∂h is both locally bounded and single-valued on its
domain,

(ii) essentially strictly convex, if (∂h)−1 is locally bounded on its domain and
h is strictly convex on every convex subset of dom ∂h, and

(iii) Legendre, if h is both essentially smooth and essentially strictly convex.

Note that we have the duality (∂h)−1 = ∂h∗ where h∗ denotes the conjugate
of h.

Definition 3.4 (Bregman distance [12]) Let h : RN → R be proper, closed,
convex and Gâteaux differentiable on int domh 6= ∅. The Bregman distance as-
sociated with h is the function Dh : RN × RN → [0,+∞] with

(x, x̄) 7→

{
h(x)− h(x̄)− 〈x− x̄,∇h(x̄)〉 , if x̄ ∈ int domh ;

+∞ , otherwise .

In contrast to the Euclidean distance, the Bregman distance is lacking sym-
metry.

We focus on Bregman distances that are generated by Legendre functions
from the following class:

L :=

h : RN → R :
h is a proper, closed, convex

Legendre function that is
Fréchet differentiable on int domh 6= ∅

 .

To control the variable choice of Bregman distances throughout the algorithm’s
iterations, we introduce the following ordering relation for h1, h ∈ L :

h1 � h ⇔ ∀x ∈ domh : ∀x̄ ∈ int domh : Dh1(x, x̄) ≥ Dh(x, x̄) .

As a consequence of h1 � h, we have domDh1
⊂ domDh.

In order to conveniently work with Bregman distances, we collect a few
properties.

Proposition 3.1 Let h ∈ L and Dh be the associate Bregman distance.

(i) Dh is strictly convex on every convex subset of dom ∂h with respect the
first argument.

Title Suppressed Due to Excessive Length 7

(ii) For x̄ ∈ int domh, it holds that Dh(x, x̄) = 0 if and only if x = x̄.
(iii) For x ∈ RN and x̄, x̂ ∈ int domh the following three point identity holds:

Dh(x, x̄) = Dh(x, x̂) +Dh(x̂, x̄) + 〈x− x̂,∇h(x̂)−∇h(x̄)〉 .

Proof (i) and (ii) follow directly from the definition of h being essentially
strictly convex. (iii) is stated in [16]. It follows from the definition of a Bregman
distance.

Associated with such a distance function is the following proximal mapping.

Definition 3.5 (Bregman proximal mapping [5, Def. 3.16]) Let Dh be
a Bregman distance associated with h ∈ L and f : RN → R. The Dh-prox (or
Bregman proximal mapping) associated with f is defined by

Phf (x̄) := argmin
x

f(x) +Dh(x, x̄) . (1)

In general, the proximal mapping is set-valued, however for a convex function,
the following lemma simplifies the situation.

Lemma 3.2 Let f : RN → R be a proper, closed, convex function that is
bounded from below, and h ∈ L such that int domh ∩ dom f 6= ∅. Then the
associated Bregman proximal mapping Phf is single-valued on its domain and
maps to int domh ∩ dom f .

Proof Single-valuedness follows from [5, Corollary 3.25(i)]. The second claim
is from [5, Prop. 3.23(v)(b)].

Proposition 3.2 Let f : RN → R be a proper, closed, convex function that
is bounded from below, and h ∈ L such that int domh ∩ dom f 6= ∅. For
x̄ ∈ int domh, x̂ = Phf (x̄), and any x ∈ dom f the following inequality holds:

f(x) +Dh(x, x̄) ≥ f(x̂) +Dh(x̂, x̄) +Dh(x, x̂) .

Proof See [16, Lemma 3.2].

For examples and more useful properties of Bregman functions, we refer the
reader to [3,5,6,30].

Miscellaneous. We make use of little-o notation f ∈ o(g) (or f = o(g)), which
indicates that the asymptotic behavior of a function f is dominated by that
of the function g. Formally, it is defined by

f ∈ o(g) ⇔ ∀ε > 0: |f(x)| ≤ ε|g(x)| for |x| sufficiently small.

Note that a function ω is in o(t) if, and only if ω is a growth function.

8 Peter Ochs et al.

4 Line Search Based Bregman Minimization Algorithms

In this paper, we solve optimization problems of the form

min
x∈RN

f(x) (2)

where f : RN → R is a proper, closed function on RN . We assume that
Argmin f 6= ∅ and f := min f > −∞. The main goal is to develop a provably
(subsequentially) convergent algorithm that finds a stationary point x of (2)
in the sense of the limiting slope |∇f |(x) = 0.

We analyze abstract algorithms that sequentially minimize convex models
of the objective function.

4.1 The Abstract Algorithm

For each x̄, we consider a proper, closed, convex model function fx̄ : RN → R
with

|f(x)− fx̄(x)| ≤ ω(|x− x̄|) , (3)

where ω is a growth function as defined in Definition 3.1. The model assump-
tion (3) is an abstract description of a (local) first order oracle. For examples,
we refer to Section 5.

Before delving further into the details, we need a bit of notation. Let

fhx̄,z̄(x) := fx̄(x) +Dh(x, z̄) and fhx̄ := fhx̄,x̄ ,

where h ∈ L . Note that fhx̄ (x̄) = f(x̄). Moreover, the following quantity
defined for generic points x̄, x and x̃ will be important:

∆h
x̄(x, x̃) := fhx̄ (x)− fhx̄ (x̃) . (4)

For x̃ = x̄, it measures the decrease of the surrogate function fhx̄ from the
current iterate x̄ to any other point x. Obviously, the definition implies that
∆h
x̄(x, x) = 0 for all x.

Algorithm. We consider the following Algorithm 4.1.

Title Suppressed Due to Excessive Length 9

Algorithm: Inexact Bregman Proximal Minimization Line Search

– Basic prerequisites: Fix γ ∈]0, 1[and h ∈ L . Let
– (xk)k∈N and (ỹk)k∈N be sequences in RN ;
– (fxk

)k∈N be a sequence of model functions
with infk∈N infx fxk

(x) > −∞;
– (hk)k∈N be a sequence in L with hk � h;
– (ηk)k∈N be a sequence of positive real numbers.

– Initialization: Select x0 ∈ dom f ∩ int domh.
– For each k ≥ 0: Generate the sequences such that the following rela-

tions hold:

∆hk
xk

(ỹk, xk) < 0 with ỹk ∈ int domh (5)

xk+1 = xk + ηk(ỹk − xk) ∈ int domh (6)

f(xk+1) ≤ f(xk) + γηk∆
hk
xk

(ỹk, xk) (7)

If (5) cannot be satisfied, then the algorithm terminates.

The algorithm starts with a feasible point1 x0. At each iteration, it computes a
point ỹk that satisfies (5), which is an inexact solution of the Bregman proximal
mapping

x̃k = Phk

fxk
(xk) := argmin

x∈RN

fxk
(x) +Dhk

(x, xk) (8)

that, at least, improves the (model) value compared to xk. Thanks to the class
of Legendre functions L , this proximal mapping is well-defined and single-
valued on its domain. The exact version of the algorithm solves the proximal
mapping exactly for the global optimal solution. The optimal solution of the
proximal mapping will always be denoted by x̃k instead of ỹk, which refers to
an approximate solution. The direction ỹk−xk can be considered as a descent
direction for the function f . Given this direction, the goal of (6) and (7) is the
estimation of a step size ηk (by line search, cf. Algorithm 4.1) that reduces
the value of the objective function. In case that the proximal mapping has a
solution but the first relation (5) can only be satisfied with equality, we will see
that xk = ỹk must be a stationary point of the objective, hence, the algorithm
terminates.

Remark 4.1 Instead of performing backtracking on the objective values as in
Algorithm 4.1, backtracking on the scaling of the Bregman distance in (5)
is also possible. For a special model function, this leads to ProxDescent [25,
20] (with Euclidean proximity function). If a scaled version of (5) yields a
descent on f , we can set ηk = 1, and accept this point. However, this can be
expensive when the proximal subproblem in (5) is hard to solve, since each trial
step requires to solve the subproblem. In order to break the backtracking, the

1 It is often easy to find a feasible point. Of course, there are cases, where finding an
initialization is a problem itself. We assume that the user provides a feasible initial point.

10 Peter Ochs et al.

new objective value must be computed anyway. Therefore, a computational
advantage of the line search (6) and (7) is to be expected (cf. Section 6.1).

Algorithm: Line Search for Algorithm 4.1

– Basic prerequisites: Fix δ, γ ∈]0, 1[, η̃ > 0, and k ∈ N.
– Input: Current iterates xk ∈ int domh and ỹk satisfy (5).
– Solve: Find the smallest j ∈ N such that η̃j := η̃δj satisfies (6) and (7).
– Return: Set the feasible step size ηk for iteration k to η̃j .

Algorithm 4.1–4.1 is well defined as the following lemmas show.

Lemma 4.1 (Well-definedness) Let ω in (3) be a growth function. Algo-
rithm 4.1 is well-defined, i.e., for all k ∈ N, the following holds:

(i) there exists ỹk that satisfies (5) or xk = x̃k and the algorithm terminates;
(ii) xk ∈ dom f ∩ int domh; and

(iii) there exists ηk that satisfies (6) and (7).

Proof (i) For xk ∈ int domh, Lemma 3.2 is used to show that Phk

fxk
maps

to int domhk ∩ dom fxk
⊂ int domh ∩ dom f and is single-valued. Thus, for

example, ỹk = x̃k satisfies (5). Otherwise, xk = x̃k, which shows (i). (ii) Since
x0 ∈ dom f∩int domh and f(xk+1) ≤ f(xk) by (7) it holds that xk ∈ dom f for
all k. Since xk ∈ int domh and ỹk ∈ domh, for small ηk also xk+1 ∈ int domh,
hence xk+1 ∈ dom f ∩ int domh. Inductively, we conclude the statement. (iii)
This will be shown in Lemma 4.2.

Lemma 4.2 (Finite termination of Algorithm 4.1) Consider Algorithm 4.1
and fix k ∈ N. Let ω in (3) be a growth function. Let δ, γ ∈]0, 1[, η̃ > 0, h̄ := hk,
and x̄ := xk, ỹ := ỹk be such that ∆h̄

x̄(ỹ, x̄) < 0. Then, there exists j ∈ N such
that η̃j := η̃δj satisfies

f(x̄+ η̃j(ỹ − x̄)) ≤ f(x̄) + γη̃j∆
h̄
x̄(ỹ, x̄) .

Proof This result is proved by contradiction. Define v := ỹ − x̄. By our as-
sumption in (3), we observe that

f(x̄+ η̃jv)− f(x̄) ≤ fx̄(x̄+ η̃jv)− f(x̄) + o(η̃j) . (9)

Using Jensen’s inequality for the convex function fx̄ provides:

fx̄(x̄+η̃jv)−fx̄(x̄) ≤ η̃jfx̄(x̄+v)+(1−η̃j)fx̄(x̄)−fx̄(x̄) = η̃j ·
(
fx̄(x̄+v)−fx̄(x̄)

)
.

(10)
Now, suppose γ∆h̄

x̄(ỹ, x̄) < 1
η̃j

(f(x̄ + η̃jv) − f(x̄)) holds for any j ∈ N. Then,

using (9) and (10), we conclude the following:

γ∆h̄
x̄(ỹ, x̄) < fx̄(x̄+ v)− fx̄(x̄) + o(η̃j)/η̃j

≤ fx̄(x̄+ v)− fx̄(x̄) +Dh̄(ỹ, x̄) + o(η̃j)/η̃j

= (f h̄x̄ (ỹ)− f h̄x̄ (x̄)) + o(η̃j)/η̃j = ∆h̄
x̄(ỹ, x̄) + o(η̃j)/η̃j ,

which for j →∞ yields the contradiction, since γ ∈]0, 1[and ∆h̄
x̄(ỹ, x̄) < 0.

Title Suppressed Due to Excessive Length 11

4.2 Finite Time Convergence Analysis

First, we study the case when the algorithm terminates after a finite number
of iterations, i.e., there exists k0 ∈ N such that (5) cannot be satisfied. Then,

the point ỹk0
is a global minimizer of f

hk0
xk0

and ∆
hk0
xk0

(ỹk0
, xk0

) = 0. Moreover,
the point xk0

turns out to be a stationary point of f .

Lemma 4.3 For x̄ ∈ dom f and a model fx̄ that satisfies (3), where ω is a
growth function, the following holds:

|∇fx̄|(x̄) = |∇f |(x̄) .

Proof Since ω(0) = 0, we have from (3) that fx̄(x̄) = f(x̄). This, together with
sub-additivity of [·]+, entails

[fx̄(x̄)− fx̄(x)]+
|x− x̄|

≤ [f(x̄)− f(x)]+ + [f(x)− fx̄(x)]+
|x− x̄|

≤ [f(x̄)− f(x)]+
|x− x̄|

+
|f(x)− fx̄(x)|
|x− x̄|

≤ [f(x̄)− f(x)]+
|x− x̄|

+
ω(|x− x̄|)
|x− x̄|

.

Passing to the lim sup on both sides and using that ω ∈ o(t), we get

|∇fx̄|(x̄) ≤ |∇f |(x̄).

Arguing similarly but now starting with |∇f |(x̄), we get the reverse inequality,
which in turn shows the claimed equality.

Proposition 4.1 (Stationarity for finite time termination) Consider
the setting of Algorithm 4.1. Let ω in (3) be a growth function. Let k0 ∈ N
be fixed, and set x̃ = ỹk0

, x̄ = xk0
, h̄ = hk0

, and x̄, x̃ ∈ dom f ∩ int domh. If
∆h̄
x̄(x̃, x̄) ≥ 0, then x̃ = x̄, ∆h̄

x̄(x̃, x̄) = 0, and |∇f |(x̄) = 0, i.e. x̄ is a stationary
point of f .

Proof Since x̃ is the unique solution of the proximal mapping, ∆h̄
x̄(x̃, x̄) = 0

and x̃ = x̄. Moreover, x̃ is the minimizer of f h̄x̄ , i.e. we have

0 = |∇f h̄x̄ |(x̃) = |∇f h̄x̄ |(x̄)

= lim sup
x→x̄
x 6=x̄

[fx̄(x̄)− fx̄(x)−Dh̄(x, x̄)]+
|x− x̄|

= |∇fx̄|(x̄) = |∇f |(x̄) ,

where we used that h̄ is Fréchet differentiable at x̄ and Lemma 4.3.

12 Peter Ochs et al.

4.3 Asymptotic Convergence Analysis

We have established stationarity of the algorithm’s output, when it terminates
after a finite number of iterations. Therefore, without loss of generality, we now
focus on the case where (5) can be satisfied for all k ∈ N. We need to make
the following assumptions.

Assumption 4.1 The sequence (ỹk)k∈N satisfies fhk
xk

(ỹk) ≤ inf fhk
xk

+εk for some
εk → 0.

Remark 4.2 Assumption 4.1 states that asymptotically (for k →∞) the Breg-
man proximal mapping (8) must be solved accurately. In order to obtain sta-
tionarity of a limit point, Assumption 4.1 is necessary, as shown by Bonettini
et al. [11, after Theorem 4.1] for a special setting of model functions.

Assumption 4.2 Let h ∈ L . For every bounded sequences (xk)k∈N and (x̄k)k∈N
in int domh, and (hk)k∈N such that hk � h, it is assumed that:

xk − x̄k → 0 ⇔ Dhk
(xk, x̄k)→ 0 .

Remark 4.3 (i) Assumption 4.2 states that (asymptotically) a vanishing Breg-
man distance reflects a vanishing Euclidean distance. This is a natural as-
sumption and satisfied, e.g., by most entropies such as Boltzmann–Shannon,
Fermi–Dirac, and Burg entropy.

(ii) The equivalence in Assumption 4.2 is satisfied, for example, when there
exists c ∈ R such that c h � hk holds for all k ∈ N and the following holds:

xk − x̄k → 0 ⇔ Dh(xk, x̄k)→ 0 .

Proposition 4.2 (Convergence of objective values) Consider the setting
of Algorithm 4.1. Let ω in (3) be a growth function. The sequence of objective
values (f(xk))k∈N is non-increasing and converging to some f∗ ≥ f > −∞.

Proof This statement is a consequence of (7) and (5), and the lower-boundedness
of f .

Asymptotically, under some condition on the step size, the improvement
of the model objective value between ỹk and xk must tend to zero. Since we
do not assume that the step sizes ηk are bounded away from zero, this is a
non-trivial result.

Proposition 4.3 (Vanishing model improvement) Consider the setting
of Algorithm 4.1. Let ω in (3) be a growth function. Suppose, either2 infk ηk > 0
or ηk is selected by the Line Search Algorithm 4.1. Then,

∞∑
k=0

ηk(−∆hk
xk

(ỹk, xk)) < +∞ and ∆hk
xk

(ỹk, xk)→ 0 as k →∞.

2 Note that infk ηk > 0 is equivalent to lim infk ηk > 0, as we assume ηk > 0 for all k ∈ N.

Title Suppressed Due to Excessive Length 13

Proof The first part follows from rearranging (7), and summing both sides for
k = 0, . . . , n:

γ

n∑
k=0

ηk(−∆hk
xk

(ỹk, xk)) ≤
n∑
k=0

(f(xk)−f(xk+1)) = f(x0)−f(xn+1) ≤ f(x0)−f∗ .

In the remainder of the proof, we show that ∆hk
xk

(ỹk, xk) → 0, which is not
obvious unless infk ηk > 0. The model improvement is bounded. Boundedness
from above is satisfied by construction of the sequence (ỹk)k∈N. Boundedness
from below follows from the following observation and the uniform bounded-
ness of the model functions from below:

∆hk
xk

(ỹk, xk) = fhk
xk

(ỹk)− fhk
xk

(xk) ≥ fhk
xk

(x̃k)− f(xk) ≥ fxk
(x̃k)− f(x0) .

Therefore, there existsK ⊂ N such that the subsequence∆hk
xk

(ỹk, xk) converges

to some ∆∗ as k
K→∞. Suppose ∆∗ < 0. Then, the first part of the statement

implies that the step size sequence must tend to zero, i.e., ηk → 0 for k
K→∞.

For k ∈ K sufficiently large, the line search procedure in Algorithm 4.1 reduces
the step length from ηk/δ to ηk. (Note that ηk can be assumed to be the “first”
step length that achieves a reduction in (7)). Before multiplying with δ, no
descent of (7) was observed, i.e.,

(ηk/δ)γ∆
hk
xk

(ỹk, xk) < f(xk + (ηk/δ)vk)− f(xk) ,

where vk = ỹk − xk. Using (9) and (10), we can make the same observation as
in the proof of Lemma 4.2:

γ∆hk
xk

(ỹk, xk) < fxk
(xk + v)− fxk

(xk) + o(ηk/δ)/(ηk/δ)

≤ fxk
(xk + v)− fxk

(xk) +Dhk
(ỹk, xk) + o(ηk)/ηk

= (fhk
xk

(ỹk)− fhk
xk

(xk)) + o(ηk)/ηk

= ∆hk
xk

(ỹk, xk) + o(ηk)/ηk ,

which for ηk → 0 yields a contradiction, since γ ∈]0, 1[and ∆hk
xk

(ỹk, xk) < 0.

Therefore, any cluster point ∆∗ of (∆hk
xk

(ỹk, xk))k∈K must be 0, which con-
cludes the proof.

4.3.1 Asymptotic Stationarity with a Growth Function

In order to establish stationarity of limit points generated by Algorithm 4.1
additional assumptions are required. We consider three different settings for
the model assumption (3): ω in the model assumption (3) is a growth function
(this section), ω is a proper growth function (Section 4.3.2), and ω is global
growth function of the form ω = Dh (Section 4.3.3).

Assumption 4.3 Let x∗ be a limit point of (xk)k∈N and xk
f→ x∗ as k

K→ ∞
with K ⊂ N. Then

|∇fxk
|(xk) = |∇f |(xk)→ 0 as k

K→∞ .

14 Peter Ochs et al.

Remark 4.4 Assumption 4.3 is common for abstract algorithms. Attouch et al.
[2], for example, use a condition of the form |∇f |(xk+1) ≤ b|xk+1− xk|, b ∈ R
(relative error condition). A weaker sufficient condition for Assumption 4.3 is
|∇f |(xk+1) ≤ ψ(|xk+1 − xk|) for some continuous function ψ : R+ → R+ with
ψ(0) = 0; See Corollary 4.1. See also Remark 4.6. For explicit examples, we
refer to Section 5.1.

Using this assumption, we can state one of our main theorems, which shows
convergence to a stationary point under various condition. The conditions are
easily verified in many applications (see Section 5).

Theorem 4.1 (Asymptotic stationarity with a growth function) Con-
sider the setting of Algorithm 4.1. Let ω in (3) be a growth function. Moreover,
let either infk ηk > 0 or ηk be selected by the Line Search Algorithm 4.1. Let
(xk)k∈N and (ỹk)k∈N be bounded sequences such that Assumptions 4.1 and 4.2
hold and let fxk

obey (3) with growth function ω. Then, xk − ỹk → 0 and
for x̃k = Phk

fxk
(xk), it holds that xk − x̃k → 0 and x̃k − ỹk → 0. Moreover,

f(xk) − f(ỹk) → 0 and f(x̃k) − f(xk) → 0 as k → ∞. Suppose Assump-
tion 4.3 is satisfied. If x∗ is a limit point of the sequence (xk)k∈N, and one of
the following conditions is satisfied:

(i) f is continuous on the closure of domh,
(ii) x∗ ∈ int domh,

(iii) x∗ ∈ domh and Dhk
(x∗, ỹk)→ 0 as k

K→∞,
(iv) x∗ ∈ cl domh and

– for all x ∈ int domh ∩ dom f holds that Dhk
(x, x̃k) − Dhk

(x, xk) → 0

as k
K→∞,

– and for all x ∈ dom f the model functions obey fxk
(x) → fx∗(x) as

k
K→∞,

then x∗ is a stationary point of f .

Proof First, we show that for k → ∞ the pairwise distances between the se-
quences (xk)k∈N, (ỹk)k∈N, and (x̃k)k∈N vanishes. Proposition 3.2, reformulated
in our notation, can be stated as

∆hk
xk

(x, x̃k) = fhk
xk

(x)− fhk
xk

(x̃k) ≥ Dhk
(x, x̃k) , ∀x ∈ dom f . (11)

As a direct consequence, using x = ỹk together with Assumptions 4.1 and 4.2,
we obtain

Dhk
(ỹk, x̃k)→ 0 thus x̃k − ỹk → 0 .

Moreover, from Proposition 4.3, we have ∆hk
xk

(ỹk, xk)→ 0, and from

∆hk
xk

(ỹk, xk) = ∆hk
xk

(ỹk, x̃k)−∆hk
xk

(xk, x̃k) ≤ ∆hk
xk

(ỹk, x̃k)−Dhk
(xk, x̃k) , (12)

and Assumptions 4.1 and 4.2, we conclude that xk − x̃k → 0, hence also
xk − ỹk → 0.

Title Suppressed Due to Excessive Length 15

The next step is to show that f(xk) − f(ỹk) → 0 as k → ∞. This follows
from the following estimation:

|f(xk)− f(ỹk)| ≤ |fxk
(xk)− fxk

(ỹk)|+ ω(|ỹk − xk|)
≤ |fhk

xk
(xk)− fhk

xk
(ỹk)|+Dhk

(ỹk, xk) + ω(|ỹk − xk|)
= |∆hk

xk
(xk, ỹk)|+Dhk

(ỹk, xk) + ω(|ỹk − xk|) ,
(13)

where the right hand side vanishes for k →∞. Analogously, we can show that
f(x̃k)− f(xk)→ 0 as k →∞.

Let x∗ be the limit point of the subsequence (xk)k∈K for some K ⊂ N.
The remainder of the proof shows that f(ỹk) → f(x∗) as k → ∞. Then

f(xk) − f(ỹk) → 0 implies that xk
f→ x∗ as k

K→ ∞, and by Assumption 4.3,
the slope vanishes, hence the limiting slope |∇f |(x∗) at x∗ also vanishes, which
concludes the proof.

(i) implies f(ỹk) → f(x∗) as k → ∞ by definition. For (ii) and (iii), we
make the following observation:

f(ỹk)− ω(|ỹk − xk|) ≤ fhk
xk

(ỹk) = fhk
xk

(x̃k) + (fhk
xk

(ỹk)− fhk
xk

(x̃k))

≤ fhk
xk

(x∗) +∆hk
xk

(ỹk, x̃k) , (14)

where x̃k = Phk

fxk
(xk). Taking “lim sup

k
K→∞

” on both sides, Dhk
(x∗, xk) → 0

(Assumption 4.2 for (ii) or the assumption in (iii)), and ∆hk
xk

(ỹk, x̃k) → 0
(Assumption 4.1) shows that lim sup

k
K→∞

f(ỹk) ≤ f(x∗). Since f is closed,

f(ỹk)→ f(x∗) holds.
We consider (iv). For all x ∈ int domh ∩ dom f , we have (11) or, reformu-

lated, fhk
xk

(x)−Dhk
(x, x̃k) ≥ fhk

xk
(x̃k), which implies the following:

fxk
(x) +Dhk

(x, xk)−Dhk
(x, x̃k)−Dhk

(x̃k, xk) ≥ f(x̃k)− ω(|x̃k − xk|) .

Note that for any x the limits for k
K→ ∞ on the left hand side exist. In

particular, we have

Dhk
(x, xk)−Dhk

(x, x̃k)−Dhk
(x̃k, xk)→ 0 as k

K→∞ ,

by the assumption in (iv), and Assumption 4.2 together with x̃k − xk → 0.
The limit of fxk

(x) exists by assumption and coincides with fx∗(x). Choosing

a sequence (zk)k∈N in int domh∩ dom f with zk → x∗ as k
K→∞, in the limit,

we obtain
f(x∗) ≥ lim

k
K→∞

f(x̃k) =: f∗ ,

since fx∗(zk) → fx∗(x∗) = f(x∗) for zk → x∗ as k
K→ ∞. Invoking that f

is closed, we conclude f∗ = lim infk→∞ f(xk) ≥ f(x∗) ≥ f∗, the f -attentive
convergence.

16 Peter Ochs et al.

Remark 4.5 Existence of a limit point x∗ is guaranteed by assuming that
(xk)k∈N is bounded. Alternatively, we could require that f is coercive (i.e.
f(xk)→∞ for |xk| → ∞), which implies boundedness of the lower level sets
of f , hence by Proposition 4.2 the boundedness of (xk)k∈N.

Remark 4.6 From Theorem 4.1, clearly, also ỹk
f→ x∗ and x̃k

f→ x∗ as k
K→∞

holds. Therefore, Assumption 4.3 could also be stated as the requirement

|∇f |(x̃k)→ 0 or |∇f |(ỹk)→ 0 as k
K→∞ ,

in order to conclude that limit points of (xk)k∈N are stationary points.

As a simple corollary of this theorem, we replace Assumption 4.3 with the
relative error condition mentioned in Remark 4.4.

Corollary 4.1 (Asymptotic stationarity with a growth function) Con-
sider the setting of Algorithm 4.1. Let ω in (3) be a growth function. Moreover,
let either infk ηk > 0 or ηk be selected by the Line Search Algorithm 4.1. Let
(xk)k∈N and (ỹk)k∈N be bounded sequences such that Assumptions 4.1 and 4.2
hold and let fxk

obey (3) with growth function ω. Suppose there exists a con-
tinuous function ψ with ψ(0) = 0 such that |∇f |(xk+1) ≤ ψ(|xk+1 − xk|) is
satisfied. If x∗ is a limit point of the sequence (xk)k∈N and one of the con-
ditions (i)–(iv) in Theorem 4.1 is satisfied, then x∗ is a stationary point of
f .

Proof Theorem 4.1 shows that ỹk − xk → 0. Therefore, infk ηk > 0 implies
xk+1 − xk → 0 by (6). Therefore, the relation |∇f |(xk+1) ≤ ψ(|xk+1 − xk|)
shows that Assumption 4.3 is automatically satisfied and we can apply Theo-
rem 4.1 to deduce the statement.

Some more results on the limit point set. In Theorem 4.1 we have shown that
limit points of the sequence (xk)k∈N generated by Algorithm 4.1 are station-
ary, and in fact the sequence f -converges to its limit points. The following
proposition shows some more properties of the set of limit points of (xk)k∈N.
This is a well-known result [10, Lem. 5] that follows from xk+1 − xk → 0 as
k →∞.

Proposition 4.4 Consider the setting of Algorithm 4.1. Let ω in (3) be a
growth function and infk ηk > 0. Let (xk)k∈N and (ỹk)k∈N be bounded sequences
such that Assumptions 4.1, 4.2 and 4.3 hold. Suppose one of the conditions
(i)–(iv) in Theorem 4.1 is satisfied for each limit point of (xk)k∈N. Then, the

set S :=
{
x∗ ∈ RN : ∃K ⊂ N : xk → x∗ as k

K→∞
}

of limit points of (xk)k∈N

is connected, each point x∗ ∈ S is stationary for f , and f is constant on S.

Proof Theorem 4.1 shows that ỹk − xk → 0. Thus, boundedness of ηk away
from 0 implies xk+1 − xk → 0 by (6). Now, the statement follows from [10,
Lem. 5] and Theorem 4.1.

Title Suppressed Due to Excessive Length 17

4.3.2 Asymptotic Stationarity with a Proper Growth Function

Our proof of stationarity of limit points generated by Algorithm 4.1 under the
assumption of a proper growth function ω in (3) relies on an adaptation of
a recently proved result by Drusvyatskiy et al. [19, Corollary 5.3], which is
stated in Lemma 4.4 before the main theorem of this subsection. The credits
for this lemma should go to [19].

Lemma 4.4 (Perturbation result under approximate optimality) Let
f : RN → R be a proper closed function. Consider bounded sequences (xk)k∈N
and (ỹk)k∈N with xk − ỹk → 0 for k →∞, and model functions fhk

xk
according

to (3) with proper growth functions. Suppose Assumption 4.1 and 4.2 hold. If
(x∗, f(x∗)) is a limit point of (xk, f(xk))k∈N, then x∗ is stationary for f .

Proof Recall εk from Assumption 4.1. Theorem 5.1 from [19] guarantees, for
each k and any ρk > 0, the existence of points ŷk and zk such that the following
hold:

(i) (point proximity)

|ỹk − zk| ≤
εk
ρk

and |zk − ŷk| ≤ 2 · ω(|zk − xk|)
ω′+(|zk − xk|)

,

under the convention 0
0 = 0 ,

(ii) (value proximity) f(ŷk) ≤ f(ỹk) + 2ω(|zk − xk|) + ω(|ỹk − xk|), and
(iii) (near-stationarity) |∇f |(ŷ) ≤ ρk + ω′+(|zk − xk|) + ω′+(|ŷk − xk|),

Setting ρk =
√
εk, using εk → 0 and point proximity, shows that |ỹk−zk| → 0.

Moreover |zk−xk| ≤ |zk− ỹk|+|ỹk−xk| → 0, which implies that |zk− ŷk| → 0.

Now, we fix a convergent subsequence (xk, f(xk))→ (x∗, f(x∗)) as k
K→∞ for

some K ⊂ N. Using (11), we observe x̃k − ỹk → 0, hence xk − x̃k → 0.
From Proposition 4.3 and Assumption 4.1, we conclude that ∆hk

xk
(ỹk, xk)→ 0,

and, therefore f(xk) − f(ỹk) → 0 using (13). Consider the value proximity.
Combined with the lower semi-continuity of f , it yields

f(x∗) ≤ lim inf
k

K→∞
f(ŷk) ≤ lim sup

k
K→∞

f(ŷk) ≤ lim sup
k

K→∞

f(ỹk) ≤ f(x∗) ,

hence (ŷk, f(ŷk)) → (x∗, f(x∗)) as k
K→ ∞. Near-stationarity implies that

|∇f |(ŷk)→ 0, which proves that |∇f |(x∗) = 0, hence x∗ is a stationary point.

Remark 4.7 The setting in [19, Corollary 5.3] is recovered when (xk)k∈N is
given by xk+1 = ỹk.

Theorem 4.2 (Asymptotic stationarity with a proper growth func-
tion) Consider the setting of Algorithm 4.1. Let ω in (3) be a proper growth
function. Moreover, let either infk ηk > 0 or ηk be selected by the Line Search
Algorithm 4.1. Let (xk)k∈N and (ỹk)k∈N be bounded sequences such that As-
sumptions 4.1 and 4.2 hold. If x∗ is a limit point of the sequence xk and one
of the conditions (i)–(iv) in Theorem 4.1 is satisfied, then x∗ is a stationary
point of f .

18 Peter Ochs et al.

Proof Propositions 4.2 and 4.3, and the proof of f -attentive convergence from
Theorem 4.1 only rely on a growth function. Instead of assuming that the
slope vanishes, here we apply Lemma 4.4 to conclude stationarity of the limit
points.

Of course, Proposition 4.4 can also be stated in the context here.

4.3.3 Asymptotic Analysis with a Global Growth Function

Suppose, for x̄ ∈ int domh for some h ∈ L , the model error can be estimated
as follows:

|f(x)− fx̄(x)| ≤ LDh(x, x̄) ∀x . (15)

Since h is Fréchet differentiable on int domh, the right hand side is bounded by
a growth function. Without loss of generality, we restrict ourselves to a fixed
function h ∈ L (this section analyses a single iteration). In order to reveal
similarities to well-known step size rules, we scale h in the definition of fhx̄ to
Dh/α = 1

αDh with α > 0 instead of Dh. Here, decreasing objective values can
be assured without the line search procedure (see Proposition 4.5), i.e., ηk = 1
is always feasible.

In order to obtain the result of stationarity of limit points (Theorem 4.1
or 4.2), we can either verify by hand that Assumption 4.3 holds or we need to
assume that Dh(x, x̄) is bounded by a proper growth function.

Proposition 4.5 Consider the setting of Algorithm 4.1 and let (15) be satis-
fied.

(i) For points ỹ that satisfy ∆h
x̄(ỹ, x̄) < 0,

1− αL
α

Dh(ỹ, x̄) ≤ f(x̄)− f(ỹ)

holds, where the left-hand-side is strictly larger than 0 for α ∈]0, 1/L[.
(ii) For points x̃ = Phfx̄(x̄), the following descent property holds:

1 + ρ− αL
α

Dh(x̃, x̄) ≤ f(x̄)− f(x̃) ,

where the left-hand-side is strictly larger than 0 for α ∈]0, (1 + ρ)/L[, and

ρ := inf
{
Dh(x,x̄)
Dh(x̄,x) : x, x̄ ∈ int domh , x 6= x̄

}
(see [6]) is the Bregman sym-

metry factor.

Proof The following relations hold:

∆h
x̄(ỹ, x̄) ≤ 0 ⇔ fhx̄ (ỹ) ≤ fhx̄ (x̄) ⇔ fx̄(ỹ)+

1

α
Dh(ỹ, x̄) ≤ fx̄(x̄) = f(x̄) .

(16)
Bounding the left hand side of the last expression using (15), we obtain

f(ỹ)− LDh(ỹ, x̄) +
1

α
Dh(ỹ, x̄) ≤ f(x̄) , (17)

Title Suppressed Due to Excessive Length 19

which proves part (i). Part (ii) follows analogously. However, thanks to the
three point inequality from Proposition 3.2 and optimality of x̃ the rightmost
inequality of (16) improves to

fx̄(x̃) +
1

α
Dh(x̃, x̄) +

1

α
Dh(x̄, x̃) ≤ fx̄(x̄) = f(x̄) ,

and the statement follows.

4.4 A Remark on Convex Optimization

In this section, let f be convex, and consider the following global model as-
sumption

0 ≤ f(x)− fx̄(x) ≤ LDh(x, x̄) . (18)

We establish a convergence rate of O(1/k) for Algorithm 4.1 with ηk ≡ 1. For
Forward–Backward Splitting, this has been shown by Bauschke et al. [6]. We
only require fx̄ to be a model w.r.t. (18).

Proposition 4.6 Consider Algorithm 4.1 with ηk ≡ 1 and model functions

that obey (18). For xk+1 = P
h/α
fxk

(xk) and α = 1
L , the following rate of conver-

gence on the objective values holds:

f(xk+1)− f(x) ≤ LDh(x∗, x0)

2k
(= O(1/k)) .

Proof The three point inequality in Proposition 3.2 combined with the model
assumption (18) yields the following inequality:

f(x̃) +
1− αL
α

Dh(x̃, x̄) +
1

α
Dh(x, x̃) ≤ f(x) +

1

α
Dh(x, x̄)

for all x. Restricting to 0 < α ≤ 1
L , we obtain

f(x̃)− f(x) ≤ 1

α
(Dh(x, x̄)−Dh(x, x̃)) . (19)

Let x∗ be a minimizer of f . We make the following choices:

x = x∗ , x̃ = xk+1 , and x̄ = xk .

Summing both sides up to iteration k and the descent property yield the
convergence rate:

f(xk+1)− f(x) ≤ Dh(x∗, x0)

2αk

α= 1
L=
LDh(x∗, x0)

2k
. (20)

Example 4.1 This section goes beyond the Forward–Backward Splitting set-
ting, e.g., we may specialize Example 5.3 to convex problems of the form
minx g(F (x)), for instance, F (x) = (f1(x), f2(x)) and g(z1, z2) = max{z1, z2}.

20 Peter Ochs et al.

5 Examples

We discuss several classes of problems that can be solved using our framework.
To apply Algorithm 4.1, in Section 5.1, we define a suitable model and mention
the associated algorithmic step that arises from exactly minimizing the sum of
the model and an Euclidean proximity measure. However our algorithm allows
for inexact solutions and very flexible (also iteration dependent) Bregman
proximity functions. Examples are provided in Section 5.2. For brevity, we
define the symbols Γ0 for the set of proper, closed, convex functions and C1

for the set of continuously differentiable functions.

5.1 Examples of Model Functions

Example 5.1 (Forward–Backward Splitting) Problems of the form

f = f0 + f1 with f0 ∈ Γ0 and f1 ∈ C1

can be modeled by

fx̄(x) = f0(x) + f1(x̄) + 〈x− x̄,∇f1(x̄)〉 .

This model is associated with Forward–Backward Splitting (FBS). We assume
that one of the following error models is satisfied:

|f(x)− fx̄(x)| = |f1(x)− f1(x̄)− 〈x− x̄,∇f1(x̄)〉 |

≤


L
2 |x− x̄|

2 , if ∇f1 is L-Lipschitz ;∫ 1

0
ϕ(t|x−x̄|)

t dt , it ∇f1 is ψ-uniformly continuous ;

ω(|x− x̄|) , otherwise ,

which is the linearization error of the smooth part f1. The first case obeys a
global (proper) growth function, derived from the common Descent Lemma.
The second case is the generalization to a ψ-uniformly continuous gradient

with ϕ(s) = sψ(s) as in Lemma 3.1. The bound
∫ 1

0
ϕ(t|x−x̄|)

t dt is a growth
function but not necessarily a proper growth function. The third case is the
most general and assumes that the error obeys a growth function. In any case,
the model satisfies the model consistency required in Theorem 4.1(iv). For any
x ∈ dom f and x̄→ x∗,

|f0(x) + f1(x̄) + 〈x− x̄,∇f1(x̄)〉 − (f0(x) + f1(x∗) + 〈x− x∗,∇f1(x∗)〉)| → 0

holds, thanks to the continuous differentiability of f1 and continuity of the
inner product.

Title Suppressed Due to Excessive Length 21

In order to verify Assumption 4.3, we make use of Remark 4.6 and show

that |∇f |(x̃k) → 0 as k
K→ ∞ where K ⊂ N is such that xk

K→ x∗. Note that
x̃k satisfies the following relation:

0 ∈ ∂f0(x̃k) +∇f1(xk) +∇hk(x̃k)−∇hk(xk)

⇒ ∇f1(x̃k)−∇f1(xk) +∇hk(xk)−∇hk(x̃k) ∈ ∂f0(x̃k) +∇f1(x̃k) = ∂f(x̃k)

Moreover, we know that x̃k − xk → 0 as k
K→ ∞. Since ∇f1 is continuous,

if |∇hk(xk) − ∇hk(x̃k)| → 0 for k
K→ ∞, then Assumption 4.3/Remark 4.6

is satisfied. The condition |∇hk(xk) − ∇hk(x̃k)| → 0 is naturally fulfilled by
many Legendre functions, e.g., if ∇hk is ψ-uniformly continuous (uniformly in
k) with α > 0 or uniformly continuous (independent of k) on bounded sets or
continuous at x∗ (uniformly w.r.t. k), and will be discussed in more detail in
Section 5.2.

Example 5.2 (Variable metric FBS) We consider an extension of Examples 5.1.
An alternative feasible model for a twice continuously differentiable function
f1 is the following:

fx̄(x) = f0(x) + f1(x̄) + 〈x− x̄,∇f1(x̄)〉+
1

2
〈x− x̄, B(x− x̄)〉 ,

where B := [∇2f1(x̄)]+ is a positive definite approximation to ∇2f1(x̄), which
leads to a Hessian driven variable metric FBS. It is easy to see that the model
error satisfies the growth function ω(s). Again, Theorem 4.1(iv) obviously
holds and the same conclusions about Assumption 4.3 can be made as in
Example 5.1.

Example 5.3 (ProxDescent) Problems of the form

f0 + g ◦ F with f0 ∈ Γ0 , F ∈ C1 , and g ∈ Γ0 finite-valued ,

which often arise from non-linear inverse problems, can be approached by the
model function

fx̄(x) = f0(x) + g(F (x̄) +DF (x̄)(x− x̄)) ,

where DF (x̄) is the Jacobian matrix of F at x̄. The associated algorithm is
connected to ProxDescent [25,20]. If g is a quadratic function, the algorithm
reduces to the Levenberg–Marquardt algorithm [27]. The error model can be
computed as follows:

|f(x)− fx̄(x)| = |g(F (x))− g(F (x̄) +DF (x̄)(x− x̄))|
≤ `|F (x)− F (x̄)−DF (x̄)(x− x̄)|

≤


`L
2 |x− x̄|

2 , if DF is L-Lipschitz and g is `-Lipschitz ;

`
∫ 1

0
ϕ(t|x−x̄|)

t dt , if DF is ψ-uniformly continuous and
g is `-Lipschitz ;

ω(|x− x̄|) , otherwise ,

(21)

22 Peter Ochs et al.

where ` is the (possibly local) Lipschitz constant of g around F (x̄). Since g
is convex and finite-valued, it is always locally Lipschitz continuous. Since
F is continuously differentiable, for x sufficiently close to x̄, both F (x) and
F (x̄) +DF (x̄)(x− x̄) lie in a neighborhood of F (x̄) where the local Lipschitz
constant ` of g is valid, which shows the first inequality in (21). The second case
uses the concept of ψ-uniform continuity from Definition 3.2 and Lemma 3.1.
The third case is the assumption that the error obeys a growth function. With
a similar reasoning as above, we can show that Theorem 4.1(iv) is satisfied.

We consider Assumption 4.3 (see also Remark 4.6). Let xk → x∗ as k
K→∞

for K ⊂ N and x̃k−xk → 0. Since g is finite-valued, using [7, Corollary 16.38]
(sum-rule for the subdifferential), and [36, Theorem 10.6], we observe that

0 ∈ ∂f0(x̃k) +DF (xk)∗∂g(F (xk) +DF (xk)(x̃k − xk)) +∇hk(x̃k)−∇hk(xk) ,
(22)

where DF (xk)∗ denotes the adjoint of DF (xk). We can assume that, for k large
enough, F (xk) +DF (xk)(x̃k − xk) and F (x̃k) lie a neighborhood of F (x∗) on
which g has the Lipschitz constant ` > 0. By [36, Theorem 9.13], ∂g is locally
bounded around F (x∗), i.e. there exists a compact set G such that ∂g(z) ⊂ G
for all z in a neighborhood of F (x∗). We conclude that

sup
v∈∂g(F (xk)+DF (xk)(x̃k−xk))

w∈∂g(F (x̃k))

|DF (xk)∗v −DF (x̃k)∗w|

≤ sup
v,w∈G

|DF (xk)∗v −DF (x̃k)∗w| → 0

for k
K→∞ since DF (xk)→ DF (x∗) and DF (x̃k)→ DF (x∗). Again assuming

that ∇hk(x̃k)−∇hk(xk)→ 0 we conclude that the outer set-limit of the right
hand side of (22) is included in ∂f(x̃k) and, therefore, the slope |∇f |(x̃k)

vanishes for k
K→∞.

Example 5.4 Problems of the form

f0 + g ◦ F with f0 ∈ Γ0 , g ∈ C1 ,∇gi ≥ 0 ,

and F = (F1, . . . , FM) is Lipschitz with Fi ∈ Γ0

can be modeled by

fx̄(x) = f0(x) + g(F (x̄)) + 〈F (x)− F (x̄),∇g(F (x̄))〉 .

Such problems appear for example in non-convex regularized imaging problems
in the context of iteratively reweighted algorithms [33]. For the error of this

Title Suppressed Due to Excessive Length 23

model function, we observe the following:

|f(x)− fx̄(x)| = |g(F (x))− (g(F (x̄)) + 〈F (x)− F (x̄),∇g(F (x̄))〉)|

≤


`
2 |F (x)− F (x̄)|2 , if ∇g is `-Lipschitz ;∫ 1

0
ϕ(t|F (x)−F (x̄)|)

t dt , if ∇g is ψ-uniformly continuous ;

ω(|F (x)− F (x̄)|) , otherwise ;

≤


`L2

2 |x− x̄|
2 , if ∇g is `-Lipschitz and F is L-Lipschitz ;∫ 1

0
ϕ(tL|x−x̄|))

t dt , if ∇g is ψ-uniformly continuous and
F is L-Lipschitz ;

ω(|x− x̄|) , otherwise ,

which shows the same growth functions are obeyed as in Example 5.1 and 5.3.
The explanation for the validity of the reformulations are analogue to those of
Example 5.3. It is easy to see that Theorem 4.1(iv) holds.

We consider Assumption 4.3/Remark 4.6. Let xk → x∗ as k
K→ ∞ for

K ⊂ N and x̃k−xk → 0. Since g is continuously differentiable, the sum-formula
for the subdifferential holds. Moreover, we can apply [36, Corollary 10.09]
(addition of functions) to see that x̃k satisfies the following relation:

0 ∈ ∂f0(x̃k) +

M∑
i=1

∂Fi(x̃k)(∇g(F (xk)))i +∇hk(x̃k)−∇hk(xk) ,

Note that
∑M
i=1 ∂Fi(x̃k)(∇g(F (x̃k)))i is the subdifferential of g◦F at x̃k by [36,

Theorem 10.49]. As in Example 5.3, using the Lipschitz continuity of F , hence
local boundedness of ∂F , and using the continuous differentiability of g, the
sequence of sets

∑M
i=1 ∂Fi(x̃k)(∇g(F (xk)))i − ∂Fi(x̃k)(∇g(F (x̃k)))i vanishes

for k
K→∞, which implies that the slope |∇f |(x̃k) vanishes for k

K→∞.

Example 5.5 (Problem adaptive model function) Our framework allows for a
problem specific adaptation using a combination of Examples 5.1, 5.2, 5.3, and
5.4. Consider the following objective function3 f : RN ×R2 → R with a ∈ RN
and b ∈ R: f(x, z) = f1(z) + δ[−1,1]2(z) + f2(x) with

f1 ∈ C2(R2) is strongly convex ;

and f2(x) := max{(〈a, x〉 − b)2, 1− exp(−|x|)} .

We define our model function as: f(x̄,z̄)(x, z) = f̄1(z; z̄) + δ[−1,1](z) + f̄2(x; x̄)
with

f̄1(z; z̄) := f1(z̄) + 〈∇f1(z̄), z − z̄〉+
1

2

〈
z − z̄,∇2f1(z̄)(z − z̄)

〉
;

f̄2(x; x̄) := max{(〈ai, x〉 − bi)2, 1 + exp(−|x̄|)(|x| − |x̄| − 1)} .

3 The example is not meant to be meaningful and the model function to be algorithmically
the best choice. This example shall demonstrate the flexibility and problem adaptivity of
our framework.

24 Peter Ochs et al.

The strong convexity of f1 allows for a convex second order approximation
with positive definite Hessian. We linearize only the second component of the
“max” (w.r.t. |x|) in f2 to obtain a convex approximation that is as close as
possible to original function f2.

As ∇f1 is Lipschitz continuous on the compact set [0, 1]2, the growth func-
tion w.r.t. z is of the form L|z− z̄|2. Moreover, using 1-Lipschitz continuity of
exp on R−, we can bound | exp(−|x|)− exp(−|x̄|)(1 + |x̄| − |x|)| by ||x| − |x̄||2
and, using Lipschitz continuity of |x|, by |x− x̄|2. Therefore, the model error
is given by a growth function w(t) = max{1, L}t2.

5.2 Examples of Bregman functions

Let us explore some of the Bregman functions, that are most important to our
applications and show that our assumptions are satisfied.

Example 5.6 (Euclidean Distance) The most natural Bregman proximity func-
tion is the Euclidean distance

Dh(x, x̄) =
1

2
|x− x̄|2 ,

which is generated by the Legendre function h(x) = 1
2 |x|

2. The domain of
h is the whole space RN , which implies that Condition (ii) in Theorem 4.1
is satisfied for any limit point. Assumption 4.2 is trivial, and for the model
functions in Section 5.1, Assumption 4.3 is satisfied, if xk − x̄k → 0 implies
∇h(xk)−∇h(x̄k)→ 0, which is clearly true. Therefore, for the models in Sec-
tion 5.1 combined with the Euclidean proximity measure, we conclude subse-
quential convergence to a stationary point.

Example 5.7 (Variable Euclidean Distance) A simple but far-reaching exten-
sion of Example 5.6 is the following. Let (Ak)k∈N be a sequence of symmetric
positive definite matrices such that the smallest and largest eigenvalues are in
[c1, c2] for 0 < c1 < c2 < +∞, i.e. 0 < infk 〈x,Akx〉 < supk 〈x,Akx〉 < +∞
for all x ∈ RN . Each matrix Ak induces a metric on RN via the inner product
〈x,Ax̄〉 for x, x̄ ∈ RN . The induced norm is a Bregman proximity function

Dhk
(x, x̄) =

1

2
|x− x̄|2Ak

:=
1

2
〈x− x̄, Ak(x− x̄)〉 ,

generated analogously to Example 5.6. Except the boundedness of the eigen-
values of (Ak)k∈N there are no other restrictions. All the conditions mentioned
in Example 5.6 are easily verified.

From now on, we restrict to iteration-independent Bregman distance functions,
knowing that we can flexibly adapt the Bregman distance in each iteration.

Title Suppressed Due to Excessive Length 25

Example 5.8 (Boltzmann–Shannon entropy) The Boltzmann-Shannon entropy
is

Dh(x, x̄) =

N∑
i=1

(
x(i)(log(x(i))− log(x̄(i)))− (x(i) − x̄(i))

)
where x(i) denotes the i-th coordinate of x ∈ RN . Dh is generated by the
Legendre function h(x) =

∑N
i=1 x

(i) log(x(i)), which has the domain [0,+∞[N .
Since h is additively separable, w.l.o.g., we restrict the discussion to N = 1 in
the following.

We verify Assumption 4.2. Let (xk)k∈N and (x̄k)k∈N be bounded sequences
in int domh =]0,+∞[with xk − x̄k → 0 for k → ∞. For any convergent

subsequence xk → x∗ as k
K→ ∞ for some K ⊂ N also x̄k → x∗ as k

K→ ∞
and x∗ ∈ [0,+∞[. Since h is continuous on cl domh = [0,+∞[(we define
h(0) = 0 log(0) = 0), Dh(xk, x̄k) → 0 for any convergent subsequence, hence
for the full sequence. The same argument shows that the converse implication
is also true, hence the Boltzmann-Shannon entropy satisfies Assumption 4.2.

For the model functions from Section 5.1, we show that Assumption 4.3
holds for x∗ ∈ int domh, i.e. ∇h(xk)−∇h(x̄k)→ 0 for sequence (xk)k∈N and

(x̄k)k∈N with xk → x∗ and xk − x̄k → 0 for k
K→ ∞ for some K ⊂ N. This

condition is satisfied, because ∇h is continuous on int domh, and therefore
lim

k
K→∞
∇h(xk) = lim

k
K→∞
∇h(x̄k) = ∇h(x∗).

Since domh = cl domh, it suffices to verify Condition (iii) of Theorem 4.1
to guarantee subsequential convergence to a stationary point. For x∗ ∈ [0,+∞[
and a bounded sequence (ỹk)k∈N in int domh as in Theorem 4.1, we need to

show that Dh(x∗, ỹk) → 0 as k
K→ ∞ for K ⊂ N such that ỹk → x∗ as

k
K→ ∞. This result is clearly true for x∗ > 0, thanks to the continuity of

log. For x∗ = 0, we observe x∗ log(ỹk) → 0 for k
K→ ∞, hence Condition (iii)

of Theorem 4.1 holds, and subsequential convergence to a stationary point is
guaranteed.

Example 5.9 (Burg’s entropy) For optimization problems with non-negativity
constraint, Burg’s entropy is a powerful distance measure. The associated
Bregman distance

Dh(x, x̄) =

N∑
i=1

(
x(i)

x̄(i)
− log

(x(i)

x̄(i)

)
− 1

)
is generated by the Legendre function h(x) = −

∑N
i=1 log(x(i)) which is defined

on the domain]0,+∞[N . Approaching 0, the function h grows towards +∞.
In contrast to the Bregman functions in the examples above, Burg’s entropy
does not have a Lipschitz continuous gradient, and is therefore interesting for
objective functions with the same deficiency.

W.l.o.g. we consider N = 1. Assumption 4.2 for two bounded sequences
(xk)k∈N and (x̄k)k∈N in]0,+∞[reads

xk − x̄k → 0 ⇔ xk
x̄k
− log

(xk
x̄k

)
→ 1 ,

26 Peter Ochs et al.

which is satisfied if the limit points lie in]0,+∞[, since xk − x̄k → 0 if and

only if xk/x̄k → 1 for k
K→∞ and log is continuous at 1.

For model functions in Section 5.1, Assumption 4.3 requires ∇h(xk) −
∇h(x̄k)→ 0 for sequence (xk)k∈N and (x̄k)k∈N in int domh with xk → x∗ and

xk − x̄k → 0 for k
K→ ∞ for some K ⊂ N. By continuity, this statement is

true for any x∗ > 0. For x∗ = 0, the statement is in general not true. Also
Condition (iv) in Theorem 4.1 can, in general, not be verified. Therefore, if
a model functions is complemented with Burg’s entropy, then the objective
should be continuous on the cl domh. Stationarity of limit points is obtained,
if they lie in int domh.

6 Applications

We discuss in this section some numerical experiments whose goal is to illus-
trate the wide applicability of our algorithmic framework. The applicability of
our results follows from the considerations in Section 5. Actually, the consid-
ered objective functions are all continuous, i.e. Theorem 4.1(i) is satisfied.

6.1 Robust Non-linear Regression

We consider a simple non-smooth and non-convex robust regression problem
[22] of the form

min
u:=(a,b)∈RP×RP

M∑
i=1

‖Fi(u)− yi‖1 , Fi(u) :=

P∑
j=1

bj exp(−ajxi) , (23)

where (xi, yi) ∈ R × R, i = 1, . . . ,M is a sequence of covariate-observation
pairs. We assume that (xi, yi) are related by yi = Fi(u) + ni, where ni is
the error term and u = (a, b) are the unknown parameters. We assume that
the errors are iid with Laplacian distribution, in which case the data fidelity
devised by a maximum likelihood argument is `1-norm as used in (23).

We define model functions by linearizing the inner functions Fi as suggested
by the model function in Example 5.3. Complemented by an Euclidean prox-
imity measure (with τ > 0) the convex subproblem (5) to be solved inexactly
is the following:

ũ = argmin
u∈RP×RP

M∑
i=1

‖Kiu− y�i ‖1 +
1

2τ
|u− ū|2 , y�i := yi − F (ū) +Kiū ,

where Ki := DFi(ū) : RP × RP → R is the Jacobian of Fi at the current
parameters ū. We solve the (convex) dual problem (cf. [14,18]) with warm
starting up to absolute step difference 10−3.

As mentioned in Remark 4.1, backtracking on τ could be used (cf. Prox-
Descent [25]); denoted prox-linear and prox-linear2 in the following. This

Title Suppressed Due to Excessive Length 27

0 1 2 3 4
·105

400

600

800

1,000

1,200

Accumulated subproblem iterations

O
b

je
ct

iv
e

v
a
lu

e

prox-linear

prox-linear2

prox-linear-LS

Fig. 1 Objective value vs. accumu-
lated number of subproblem itera-
tions for (23).

Fig. 2 Deblurring and Poisson noise removal by
solving (24). From left to right: clean, noisy, and
reconstructed image (PSNR: 25.86).

requires to solve the subproblem for each trial step. This is the bottleneck
compared to evaluating the objective. The line search in Algorithm 4.1 only
has to evaluate the objective value. This variant is denoted prox-linear-LS

in the following. A representative convergence result in terms of the number of
accumulated iterations of the subproblems is shown in Figure 1. For this ran-
dom example, the maximal noise amplitude is 12.18, and the maximal absolute
deviation of the solution from the ground truth is 0.53, which is reasonable for
this noise level. Algorithm prox-linear-LS requires significantly fewer sub-
problem iterations than prox-linear and prox-linear2. For prox-linear2

the initial τ is chosen such that initially no backtracking is required.

For large scale problems, frequently solving the subproblems can be pro-
hibitively expensive. Hence, ProxDescent cannot be applied, whereas our al-
gorithm is still practical.

6.2 Image Deblurring under Poisson Noise

Let b ∈ Rnx×ny represent a blurry image of size nx× ny corrupted by Poisson
noise. Recovering a clean image from b is an ill-posed inverse problem. It is a
common problem, for example, in fluorescence microscopy and optical/infrared
astronomy; see [8] and references therein. A popular way to solve it is to
formulate an optimization problem [40] of the form

min
u∈Rnx×ny

f(u) := DKL(b,Au) +
λ

2

nx∑
i=1

ny∑
j=1

φ(|(Du)i,j |2) , s.t. ui,j ≥ 0 , (24)

where A is a circular convolution (blur) operator. The first term (coined data
term) in the objective f is the Kullback–Leibler divergence (Bregman distance
generated by the Boltzmann–Shannon entropy x log(x)), which, neglecting ad-

28 Peter Ochs et al.

ditive constant terms, is given by

f1(u) := DKL(b,Au) :=
∑
i,j

(Au)i,j − bi,j log((Au)i,j) ,

f1 is well-suited for Poisson noise removal [38]. The second term (regulariza-
tion term) involves a penalty φ : R2 → R applied to spatial finite differences
(Du)i,j := ((Du)1

i,j , (Du)2
i,j)
> in horizontal direction (Du)1

i,j := ui+1,j − ui,j
for all (i, j) with i < nx, and 0 otherwise; and vertical direction (Du)2

i,j (de-
fined analogously). The function φ in the regularization is usually chosen to
favor “smooth” images with sharp edges. The relative importance of both the
data and regularization terms is weighted by λ > 0.

For convex penalties φ, algorithms for solving problem (24) are available
(e.g. primal-dual proximal splitting) provided that φ is simple (in the sense
that its Euclidean proximal mapping can be computed easily). But if one
would like to exploit the gradient of f1 explicitly, things become more intricate.
The difficulty comes from the lack of global Lipschitz continuity of ∇f1(u). A
remedy is provided by Bauschke et al. [6]. They have shown that, instead of
the global Lipschitz continuity, the key property is the convexity of Lh − f1

for a Legendre function h and sufficiently large L, which can be achieved using
Burg’s entropy h(u) = −

∑
i,j log(ui,j) ([6, Lemma 7]).

However, non-convex penalties φ are known to yield a better solution [21,
9,29]. In this case, the algorithmic framework of Bauschke et al. [6] is not
applicable anymore, whereas our framework is applicable. Due to the lack
of strong convexity of Burg’s entropy also the algorithm of Bonettini et al.
[11] cannot be used. Note that Burg’s entropy is strongly convex on bounded
subsets of]0,+∞[, however, the subset cannot be determined a priori.

The abstract framework proposed in this paper appears to be the first
algorithm with convergence guarantees for solving (24) with a smooth non-
convex regularizer.

In our framework, we choose φ : t ∈ R2 7→ log(1 + ρ|t|2), which is smooth
but non-convex. The model functions are defined as in Example 5.1. We also
use h as the Burg’s entropy to generate the Bergman proximity function (see
Example 5.9). Thus, the subproblems (5) which emerge from linearizing the
objective f in (24) around the current iterate ū

ũ = argmin
u∈Rnx×ny

〈u− ū,∇f(ū)〉+
1

τ

∑
i,j

(
ui,j
ūi,j
− log

(ui,j
ūi,j

))
can be solved exactly in closed-form ũi,j = ūi,j/(1 + τ(∇f(ū))i,j ūi,j) for all
i, j. A result for the successful Poisson noise removal and deblurring is shown
in Figure 2.

6.3 Structured Matrix Factorization

Structured matrix factorization problems are crucial in data analysis. It has
many applications in various areas including blind deconvolution in signal

Title Suppressed Due to Excessive Length 29

processing, clustering, source separation, dictionary learning, etc.. There is a
large body of literature on the subject and we refer to e.g. [17,15,37,39] and
references therein for a comprehensive account.

The problem. Given a data matrix A ∈ RM×N whose N M -dimensional
columns are the data vectors. The goal is to find two matrices U ∈ RM×K
and Z ∈ RK×N such that

A = UZ +Q ,

where Q ∈ RM×N accounts for an unknown error. The matrices U and Z
(called also factors) enjoy features arising in a specific application at hand
(see more below).

To solve the matrix factorization problem, we adopt the optimization ap-
proach and we consider the non-convex and non-smooth minimization problem

min
U∈U,Z∈Z

f(A,UZ) + λg(Z) , f(A,UZ) :=
1

2
‖A− UZ‖2F . (25)

The term f(A,UZ) stands for proximity function that measures fidelity of the
approximation of A by the product UZ of the two factors. We here focus on
the classical case where the fidelity is measured via the Frobenius norm ‖ · ‖F ,
but other data fidelity measures can also be used just as well in our framework,
such as divergences (see [17] and references therein). The sets U , Z, which are
non-empty closed and convex, and the function g ∈ Γ0 are used to capture
specific features of the matrices U and Z arising in a specific application as we
will exemplify shortly. The influence of g is weighted by the parameter λ > 0.

Many (if not most) algorithms to solve the matrix factorization prob-
lem (25) are based on Gauss-Seidel alternating minimization with limited con-
vergence guarantees [17,15,37]4. The PALM algorithm proposed recently by
Bolte et al. [10], was designed specifically for the structure of the optimiza-
tion problem (25). It can then be successfully applied to solve instances of
such a problem with provably guaranteed convergence under some assumptions
including the Kurdyka- Lojasiewicz property. However, though it can handle
non-convex constraint sets and functions g, it does not allow to incorporate
Bregman proximity functions.

In the following, we show how our algorithmic framework can be applied
to a broad class of matrix factorization instances. In particular, a distinctive
feature of our algorithm is that it can naturally and readily accommodate for
different Bregman proximity functions and it has no restrictions on the choice
of the step size parameters (except positivity). A descent is enforced in the
line search step, which follows the proximal step.

4 For very specific instances, a recent line of research proposes to lift the problem to the
space of low-rank matrices, and then use convex relaxation and computationally intensive
conic programming that are only applicable to small-dimensional problems; see, e.g., [1] for
blind deconvolution.

30 Peter Ochs et al.

A generic algorithm. We apply Algorithm 4.1 to solve this problem, where the
model functions are chosen to linearize the data fidelity function f(A,UZ), ac-
cording to Example 5.1. The convex subproblems to be solved in the algorithm
have the following form:

(Ũ , Z̃) = argmin
U∈U,Z∈Z

λg(Z)+
〈
Z − Z̄, Ū>(Ū Z̄ −A)

〉
F

+DhZ
(Z, Z̄)

+
〈
U − Ū , (Ū Z̄ −A)Z̄>

〉
F

+DhU
(U, Ū)

where 〈·, ·〉F stands for the Frobenius inner product. The Bregman proximity
functions DhZ

(·, ·) and DhU
(·, ·) provide the flexibility to handle a variety of

constraint sets U and Z. In the following, we list different choices for the
constraint sets and explain how to incorporate them into the optimization
procedure. Due to the structure of the optimization problem, the variables
U and Z can be handled separately. The only coupling is the data fidelity
function f , which is linearized and therefore easy to incorporate.

Examples of constraints U . There are many possible choices for the set U
depending on the application at hand.

– Unconstrained case:
U1 = RM×K .

In the unconstrained case, a suitable Bregman proximity function is given
by the Euclidean distance DhU

(U, Ū) = 1
2τU
‖U − Ū‖2F with step size pa-

rameter τU . The resulting update step with respect to the dictionary U is
a gradient descent step.

– Zero-mean and normalization:

U2 =

{
U ∈ RM×K : ∀j :

M∑
i=1

U2
i,j ≤ 1 ,∀j ≥ 2:

M∑
i=1

Ui,j = 0

}
.

This choice of the constraint set leads to a natural normalization of the
columns of U that removes the scale ambiguity due to bilinearity. This
choice is very classical in dictionary learning, see, e.g., [39]. As in dictionary
learning, the average of the first column may not be enforced to be zero,
in order to allow the first column to absorb the mean value of the data
points.
By separability of U2, the Euclidean projection onto it is simple. This pro-
jector is column-wise achieved by subtracting the mean, and then pro-
jecting the result onto the Euclidean unit ball. Therefore we advocate
DhU

(U, Ū) = 1
2τU
‖U − Ū‖2F with step size parameter τU . In turn, the

subproblem with respect to U amounts to a projected gradient descent
step.

– Non-negativity and normalization:

U3 =

{
U ∈ RM×K : ∀j :

M∑
i=1

Ui,j = 1 , ∀i, j : Ui,j ≥ 0

}
.

Title Suppressed Due to Excessive Length 31

This choice is adopted in non-negative matrix factorization (NMF) [24].
The constraint set U3 is column-wise a unit simplex constraint. This con-
straint can be handled by DhU

(U, Ū) = 1
τU

∑
i,j Ui,j(log(Ui,j)− log(Ūi,j))−

Ui,j + Ūi,j , which is generated by hU (U) = 1
τU

∑
i,j Ui,j log(Ui,j) with step

size parameter τU . This is a more natural choice than the Euclidean prox-
imity distance. Indeed, the update step with respect to U results in

Ũi,j =
Ūi,j exp(−τU (CU)i,j)∑M
p=1 Ūp,j exp(−τU (CU)p,j)

∀i = 1, . . . ,M ; ∀j = 1, . . . ,K ,

where we use the shorthand notation CU := ∇Uf(A, ŪZ̄) = Ū>(Ū Z̄ −A)
for the partial gradient of f with respect to U . The exponential function
is applied entry-wise, hence naturally preserving positivity. Note that the
Euclidean projector onto U3 necessitates to compute the projector on the
simplex which can be achieved with sorting [28].

Examples of constraints Z. There are also several possible choices for the set
Z and regularizing function g depending on the application at hand.

– Unconstrained case:

Z1 = RK×N and g(Z) = 0 .

This case can be handled using a gradient descent step, analogously to the
related update step with the constraint set U1.

– Non-negativity :

Z2 =
{
Z ∈ RK×N : ∀i, j : Zi,j ≥ 0

}
and g(Z) = 0 .

This constraint is used in conjunction with U3 in NMF. It can be handled
either with a Euclidean proximity (which amounts to projecting on the
non-negative orthant), or via a Bregman proximity DhZ

(Z, Z̄) generated
by the Boltzmann–Shannon entropy (hZ(Z) = 1

τZ

∑
i,j Zi,j log(Zi,j)) or,

alternatively, Burg’s entropy (hZ(Z) = − 1
τZ

∑
i,j log(Zi,j)), with step size

parameter τZ . The update with respect to Z then reads

Z̃i,j = Z̄i,j exp(−τZ(CZ)i,j) ∀i = 1, . . . ,K ; ∀j = 1, . . . , N ,

where we use the shorthand notation CZ := ∇Zf(A, ŪZ̄) = (Ū Z̄ − A)Z̄>

for the partial gradient of f with respect to Z.
– Sparsity constraints:

Z3 = RK×N and g(Z) = ‖Z‖1 .

The introduction of sparsity has been of prominent importance in several
matrix factorization problems, including dictionary learning [34], NMF [23]

32 Peter Ochs et al.

5 and source separation [37]. The Euclidean proximal mapping of the `1-
norm is the entry-wise soft-thresholding, hence giving the update step with
respect to Z as

Z̃i,j = max{0, 1− λτZ/|Z̄i,j − τZ(CZ)i,j |}(Z̄i,j − τZ(CZ)i,j)

∀i = 1, . . . ,K ; ∀j = 1, . . . , N .

– Low rank constraint :

Z3 = RK×N and g(Z) = ‖Z‖∗ .

The nuclear norm or 1-Schatten norm ‖Z‖∗ is the sum of the singular
values. It is known to be the tightest convex relaxation to the rank and
was shown to promote low rank solutions [35]. Such a regularization would
be useful in the situation where columns of A are (to a good approximation)
clustered on a few linear subspaces spanned by the columns of U , i.e. the
columns of A can be explained by columns of U from the same subspace
(“cluster”).
The Euclidian proximal mapping of the nuclear norm is the soft-thresholding
applied to the singular values. In turn, the update step with respect to Z
reads

Z̃i,j = Wdiag((max{0, 1− λτZ/σi}σi)i)V >,

where W , V are respectively the matrices of left and right singular vectors
of Z̄ − τZCZ , and σ is the associated vector of singular values.

7 Conclusions

We have presented an algorithmic framework, that unifies the analysis of sev-
eral first order optimization algorithms in non-smooth non-convex optimiza-
tion such as Gradient Descent, Forward–Backward Splitting, ProxDescent, and
many more. The algorithm combines sequential Bregman proximal minimiza-
tion of model functions, which is the key concept for the unification, with an
Armijo-like line search strategy. The framework reduces the difference between
algorithms to the model approximation error measured by a growth function.
For the developed abstract algorithmic framework, we establish subsequential
convergence to a stationary point and demonstrate its flexible applicability
in several difficult inverse problems from machine learning, signal and image
processing.

5 Strictly speaking, Z3 should be the non-negative orthant for sparse NMF. But this does
not change anything to our discussion since computing the Euclidean proximal mapping of
the `1 norm restricted to the non-negative orthant is easy.

Title Suppressed Due to Excessive Length 33

References

1. A. Ahmed, B. Recht, and J. Romberg. Blind deconvolution using convex programming.
IEEE Transactions on Information Theory, 60(3):1711–1732, 2014.

2. H. Attouch, J. Bolte, and B. Svaiter. Convergence of descent methods for semi-algebraic
and tame problems: proximal algorithms, forward–backward splitting, and regularized
Gauss–Seidel methods. Mathematical Programming, 137(1-2):91–129, 2013.

3. H. Bauschke and J. Borwein. Legendre functions and the method of random Bregman
projections. Journal of Convex Analysis, 4(1):27–67, 1997.

4. H. Bauschke, J. Borwein, and P. Combettes. Essential smoothness, essential strict
convexity, and Legendre functions in Banach spaces. Communications in Contemporary
Mathematics, 3(4):615–647, Nov. 2001.

5. H. Bauschke, J. Borwein, and P. Combettes. Bregman monotone optimization algo-
rithms. SIAM Journal on Control and Optimization, 42(2):596–636, Jan. 2003.

6. H. H. Bauschke, J. Bolte, and M. Teboulle. A descent lemma beyond Lipschitz gradient
continuity: First-order methods revisited and applications. Mathematics of Operations
Research, 42(2):330–348, Nov. 2016.

7. H. H. Bauschke and P. L. Combettes. Convex analysis and monotone operator theory
in Hilbert spaces. Springer, 2011.

8. M. Bertero, P. Boccacci, G. Desiderà, and G. Vicidomini. Image deblurring with Poisson
data: from cells to galaxies. Inverse Problems, 25(12):123006, 2009.

9. A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, Cambridge, MA, 1987.
10. J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for

nonconvex and nonsmooth problems. Mathematical Programming, 146(1-2):459–494,
2014.

11. S. Bonettini, I. Loris, F. Porta, and M. Prato. Variable metric inexact line-search based
methods for nonsmooth optimization. SIAM Journal on Optimization, 26(2):891–921,
Jan. 2016.

12. L. M. Bregman. The relaxation method of finding the common point of convex sets and
its application to the solution of problems in convex programming. USSR Computational
Mathematics and Mathematical Physics, 7(3):200–217, 1967.

13. J. Burg. The relationship between maximum entropy spectra and maximum likelihood
spectra. Geophysics, 37(2):375–376, Apr. 1972.

14. A. Chambolle. An algorithm for total variation minimization and applications. Journal
of Mathematical Imaging and Vision, 20:89–97, 2004.

15. S. Chaudhuri, R. Velmurugan, and R. Rameshan. Blind Image Deconvolution. Springer,
2014.

16. G. Chen and M. Teboulle. Convergence analysis of proximal-like minimization algorithm
using bregman functions. SIAM Journal on Optimization, 3:538–543, 1993.

17. A. Cichocki, R. Zdunek, A. Phan, and S. Amari. Nonnegative Matrix and Tensor
Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source
Separation. Wiley,, New York, 2009.

18. P. Combettes, D. Dũng, and B. Vũ. Dualization of signal recovery problems. Set-Valued
and Variational Analysis, 18(3-4):373–404, Dec. 2010.

19. D. Drusvyatskiy, A. D. Ioffe, and A. S. Lewis. Nonsmooth optimization using Taylor-
like models: error bounds, convergence, and termination criteria. ArXiv e-prints, Oct.
2016. arXiv: 1610.03446.

20. D. Drusvyatskiy and A. S. Lewis. Error bounds, quadratic growth, and linear conver-
gence of proximal methods. ArXiv e-prints, Feb. 2016. arXiv:1602.06661.

21. S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 6:721–741, 1984.

22. F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. Robust Statistics:
The Approach Based on Influence Functions. MIT Press, Cambridge, MA, 1986.

23. P. Hoyer. Non-negative matrix factorization with sparseness constraints. J. Mach.
Learn. Res., 5:1457–1469, 2004.

24. D. Lee and H. Seung. Learning the part of objects from nonnegative matrix factorization.
Nature, 401:788–791, 1999.

25. A. Lewis and S. Wright. A proximal method for composite minimization. Mathematical
Programming, 158(1-2):501–546, July 2016.

34 Peter Ochs et al.

26. P. L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators.
SIAM Journal on Applied Mathematics, 16(6):964–979, 1979.

27. D. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. So-
ciety for Industrial and Applied Mathematics, 11:431–441, 1963.

28. C. Michelot. A finite algorithm for finding the projection of a point onto the canonical
simplex of Rn. J. Optim. Theory Appl., 50:195–200, 1986.

29. D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions and
associated variational problems. Communications on Pure and Applied Mathematics,
42:577–685, 1989.

30. Q. Nguyen. Forward–Backward Splitting with Bregman Distances. Vietnam Journal
of Mathematics, pages 1–21, Jan. 2017.

31. D. Noll. Convergence of non-smooth descent methods using the Kurdyka– Lojasiewicz
inequality. Journal of Optimization Theory and Applications, 160(2):553–572, Sept.
2013.

32. D. Noll, O. Prot, and P. Apkarian. A proximity control algorithm to minimize nons-
mooth and nonconvex functions. Pacific Journal of Optimization, 4(3):571–604, 2008.

33. P. Ochs, A. Dosovitskiy, T. Brox, and T. Pock. On iteratively reweighted algorithms
for nonsmooth nonconvex optimization in computer vision. SIAM Journal on Imaging
Sciences, 8(1):331–372, 2015.

34. B. Olshausen and D. Field. Sparse coding with an overcomplete basis set: A strategy
employed by V1? Vision Research., 37, 1996. 3311–3325.

35. B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM review, 52(3):471–501, 2010.

36. R. T. Rockafellar and R.-B. Wets. Variational Analysis, volume 317. Springer Berlin
Heidelberg, Heidelberg, 1998.

37. J.-L. Starck, F. Murtagh, and J. Fadili. Sparse image and signal processing: wavelets,
curvelets, morphological diversity. Cambridge University Press, 2nd edition, 2015.

38. Y. Vardi, L. Shepp, and L. Kaufman. A statistical model for positron emission tomog-
raphy. Journal of the American Statistical Association, 80(389):8–20, 1985.

39. Y. Xu, Z. Li, J. Yang, and D. Zhang. A survey of dictionary learning algorithms for
face recognition. IEEE Access, 5:8502–8514, 2017.

40. R. Zanella, P. Boccacci, L. Zanni, and M. Bertero. Efficient gradient projection methods
for edge-preserving removal of Poisson noise. Inverse Problems, 25(4), 2009.

