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Motivation Framework

Given an observed scene for 1 second
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Input Conditions

- Scene context. - Object's location history.

Contributions

—> Bringing the multimodality | L
of the future from top-view
to egocentric view

(a) Reachability Prior Network (RPN) (b) Reachability Transfer Network (RTN) (c) Future Localization Network (FLN)

Given a static scene observed at time t, RPN generates multiple owever, we need the reachability prior for the futue scene. RTN Then, FLN learns to predict a heatmap for the future of specific instance. Here the
hypotheses covering areas that are reachable by a class of transfers the solution to the future scene using the egomotion of the car. reachability prior from RTN serves as attention mechanism for FLN.
objects. Learning diverse hypotheses is done via EWTA [8]. Learning is done via self-supervised loss (L1). Emergence Prediction Network (EPN) is similar to FLN without the object mask.

—» This is achieved by introducing a new intermediate task (Reachability Prior) solving a
broader task, then narrowing down the solution to the future localization task.

Where could a pedestrian be in a scene?

Narrow down the|reachability prior given
the conditions jof future localization
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Transfer the solution

conditions: (object past observation)

(Reachability Prior) (Future Localization)

Where could a pedestrian emerge in the future?
e GO R TN T - S _‘ , e - _ , nuScenes |1] Waymo |2] FIT
P ., o P B | R (P . FDE ||IOU t|NLL |||FDE | {IOU 1|NLL | ||[FDE ||IOU 1|NLL |
Kalman [3] 45.02 | 0.31 — 31.69 | 0.39 — 38.33 | 0.36 —
DTP [4] 39.88 | 0.34 — 28.31 | 0.38 — 34.99 | 0.37 —
RNN-ED-XOE |5 30.47 | 0.34 — 25.23 | 0.36 — 35.74 | 0.36 —
STED [6] 27.711 039 | — |/ 2073|042 | — |/ 31.80]0.35 | —
FLN-Bayesian using [7]|| 28.51 | 0.37 | 19.75 || 23.75 | 0.38 | 18.80 || 32.64 | 0.38 | 20.56
FLN w/o RPN 1591 | 0.54 | 19.46 || 13.20 | 0.54 | 18.84 || 1&8.12 | 0.93 | 20.38
| FLN + RPN 12.82| 0.55 |{17.90(]10.35| 0.58 |16.63||15.41 | 0.54 | 19.08

—» For the first time, formulating the task of
predicting the emergence of new objects
in the future and addressing the
multimodality of it.

Considering this task is essential for safer
autonomous driving.

(Emergence Prediction)

Ours vs Related Work

Prediction Horizon (sec.) Target Objects Multimodality | Diversity g SR ' o ot | | % T || it > State-of-the-art results on three large and challenging datasets.
DTP [4] 1.0 pedestrians X X ’ 2ecs : 9 f ’
RNN-ED-XOE [5] 1.0 cars X X _
STED [6] 1.0 pedestrians X X Reachability FLN-Bayesian [7] FLN w/o RPN FLN + RPN >» Zero-shot t.ransfer to unseen datasets (Waymo) and noisy
Bayesian |7] 1.0 pedestrians v X datasets (Fit).
Ours 3.0 heterogeneous classes e v

Input (for 1 second) | Emergence prediction (after 1 second) {object class: car} > Exploiting the reachability prior improves the multimodality of
\ Yy i | / | | the prediction of both FLN and EPN.

References Acknowledgements

. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A., Pan, Y., Baldan, G., Beijbom,
O.: nuscenes: A multimodal dataset for autonomous driving. arXiv preprint arXiv:1903.11027 (2019)

. Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo, J., Zhou, Y., Chai, Y., Caine,
B., Vasudevan, V., Han, W., Ngiam, J., Zhao, H., Timofeev, A., Ettinger, S., Krivokon, M., Gao, A., Joshi,
A., Zhang, Y., Shlens, J., Chen, Z., Anguelov, D.: Scalability in perception for autonomous driving: Waymo
open dataset (2019)

. Kalman, R.E.: A new approach to linear filtering and prediction problems. ASME Journal of Basic Engineering
(1960)

. Styles, O., Ross, A., Sanchez, V.: Forecasting pedestrian trajectory with machine-annotated training data. In:

IV. (June 2019)
. Yao, Y., Xu, M., Choi, C., Crandall, D.J., Atkins, E.M., Dariush, B.: Egocentric vision-based future vehicle h b' I " /

localization for intelligent driving assistance systems. In: ICRA. (May 2019) I Reac a I Ity EPN W O RPN E PN + RPN
. Styles, O., Guha, T., Sanchez, V.. Multiple object forecasting: Predicting future object locations in diverse

environments. arXiv preprint arXiv:1909.11944 (2019)
. Bhattacharyya, A., Fritz, M., Schiele, B.: Long-term on-board prediction of people in traffic scenes under

uncertainty. In: CVPR. (June 2018)

. Makansi, O., Ilg, E., Cicek, O., Brox, T.: Overcoming limitations of mixture density networks: A sampling and
fitting framework for multimodal future prediction. In: CVPR. (June 2019)

nuScenes [1]

FDE [|[IOU TINLL || |3 Overcoming the mode collapse of the Bayesian baseline, both
EPN w/o RPN| 21.48 | 0.18 | 22.99 quanitatively and qualitatively.

EPN 4+ RPN [15.89| 0.19 [21.03

>» EPN reduces the solution space of the reachability prior to cover
only those areas where an object could emerge.




