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Abstract

Contemporary neural networks are limited in their abil-

ity to learn from evolving streams of training data. When

trained sequentially on new or evolving tasks, their ac-

curacy drops sharply, making them unsuitable for many

real-world applications. In this work, we shed light on

the causes of this well known yet unsolved phenomenon –

often referred to as catastrophic forgetting – in a class-

incremental setup. We show that a combination of simple

components and a loss that balances intra-task and inter-

task learning can already resolve forgetting to the same

extent as more complex measures proposed in literature.

Moreover, we identify poor quality of the learned represen-

tation as another reason for catastrophic forgetting in class-

IL. We show that performance is correlated with secondary

class information (dark knowledge) learned by the model

and it can be improved by an appropriate regularizer. With

these lessons learned, class-incremental learning results on

CIFAR-100 and ImageNet improve over the state-of-the-art

by a large margin, while keeping the approach simple.

1. Introduction

The ability to learn from continuously evolving data is

important for many real-world applications. Latest machine

learning models, especially artificial neural networks, have

shown great ability to learn the task at hand, but when con-

fronted with a new task, they tend to override the previous

concepts. Deep networks suffer heavily from this catas-

trophic forgetting [19] when trained with a sequence of

tasks, impeding continual or lifelong learning.

In this work, we focus on class-incremental learning

(class-IL) [23]. It is one of the three scenarios of contin-

ual learning as described in [27], where the objective is to

learn a unified classifier over incrementally occurring sets

of classes. Since all the incremental data cannot be retained

for unified training, the major challenge is to avoid forget-

ting previous classes while learning new ones.

The three crucial components of a class-IL algorithm

include a memory buffer to store few exemplars from old

classes, a forgetting constraint to keep previous knowledge

while learning new tasks, and a learning system that bal-

ances old and new classes. Although several methods have

been proposed to address each of these components, there

is not yet a common understanding of best practices.

Prabhu et al. [22] provides an overview over current

state of continual learning methods for classification. It

shows that a simple greedy balanced sampler-based ap-

proach (GDumb) can outperform various specialized for-

mulations in most of the continual learning settings, how-

ever, it finds class-IL particularly challenging. In this work,

we propose a complementary approach to [22] for class-IL,

where softmax outputs are masked appropriately with data

balancing to outperform previous sophisticated approaches.

Contributions. We propose a compositional class-IL

(CCIL) model that isolates the underlying reasons for catas-

trophic forgetting in class-IL and combines the most simple

and most effective components to build a robust base model.

It employs plain knowledge distillation [11] as a forgetting

constraint and selects exemplar samples simply randomly.

For the loss evaluation, we propose important changes in

the output normalization. The goal of this part (Section 3 &

4) is to show that a balanced usage of simple components

is sufficient to produce a strong model with state-of-the-art

performance.

In addition, we study the influence of the learned repre-

sentation’s properties on forgetting and show that the degree

of feature specialization (overfitting) correlates with the de-

gree of forgetting. We study some common regularization

techniques and show that only those that keep, or even im-

prove, the so-called secondary class information – also re-

ferred as dark knowledge by [11] – have a positive influence

on class-incremental learning, whereas others make things

much worse. The source code of this paper is available 1.

2. Related Work

iCaRL was the first approach that formally introduced

the class-IL problem [23]. iCaRL is a decoupled approach

1Source code: https : / / github . com / sud0301 /

essentials_for_CIL



for feature representation learning and classifier learning. It

alleviates catastrophic forgetting via knowledge distillation

and a replay-based approach. Later Castro et al. [3] ex-

tended it to an end-to-end learning model based on a com-

bination of distillation and cross-entropy loss to show im-

proved results over iCaRL. Successive works usually ded-

icated their contribution to one of the three components in

class-IL.

Exemplar selection: Replay-based approaches have been

shown to be quite effective in mitigating catastrophic for-

getting. Typically, a memory buffer is allocated to store

exemplar samples of old classes, which are replayed while

learning a new task to mitigate forgetting. Many works [3,

12, 23, 29] use herding heuristics [28] for exemplar selec-

tion. Herding selects and retains samples closest to the

mean sample for each class. Liu et al. [17] parameterized

the exemplars to optimize them jointly with the model. Is-

cen et al. [13] introduced a memory efficient approach to

store feature descriptors instead of images. In our work,

we simply sample from each class randomly to compile the

exemplar set.

Forgetting-constraint: Knowledge distillation (KD) was

first introduced by Li et al. [16] for multi-task incremental

learning. Thereafter, various works [3, 23, 29] have adopted

it in class-IL to restore previous knowledge. Lately, several

works have proposed new forgetting constraints with an ob-

jective to preserve the structure of old-class embeddings.

Hou et al. [12] proposed the usage of feature-level distilla-

tion by penalizing change is the feature representation from

the old model. Yu et al. [31] utilized an embedding net-

work to rectify the semantic drift, Tao et al. [25] proposed

a Hebbian graph-based approach to retain the topology of

the feature space. In this work, we utilize plain knowledge

distillation, which is based on logits to avoid forgetting.

Bias removal methods: Various works [12, 29, 33] have

pointed out that class-imbalance between old and new

classes creates a bias in the class weight vectors in the last

linear layer, due to which the network predictions are biased

towards new classes. To rectify this bias, Wu et al. [29]

trained an extra bias-correction layer using the validation

set, Belouadah et al. [2] proposed to rectify the final activa-

tions using the statistics of the old task predictions, Zhao et

al. [33] adjusted the norm of new class-weight vectors to

those of the old class-weight vectors, and Hou et al. [12]

applied cosine normalization in the last layer. The focus of

these works is limited to the bias in the last layer, but ulti-

mately catastrophic forgetting is an issue that affects the en-

tire network: class imbalance causes the model to overfit to

the new task, deteriorating the performance on the old ones.

Some works [3, 15] also fine-tune the model to avoid over-

fitting to the current task. We propose a learning system that

resolves this bias without the need of any post-processing,

by fixing the underlying issues; see Section 4.

3. Class-Incremental Learning

3.1. Problem Definition

The objective of class-incremental learning (class-IL) is

to learn a unified classifier from a sequence of data from

different classes. Data arrives incrementally as a batch of

per-class sets X i.e. (X1, X2, ..., Xt), where Xy contains

all images from class y. Learning from a batch of classes

can be considered as a task T . At each incremental step,

the data for the new task Ti arrives, which contains samples

of the new set of classes. At each step, complete data is

only available for new classes X i.e. (Xs+1, ..., Xt). Only

a small amount of exemplar data Pold i.e. (P 1, ..., P s) from

previous classes i.e. (X1, ..., Xs) is retained in a memory

buffer of limited size. The model is expected to classify all

the classes seen so far.

The problem definition with strictly separated batches

may appear a bit specific. In many practical applications,

the data will arrive in a more mixed-up fashion. However,

this strict protocol allows the comparison of techniques and

it covers the key issues with class-incremental learning.

3.2. Evaluation Metrics for Class­IL

Class-IL models are evaluated using three metrics: av-

erage incremental accuracy, forgetting rate and feature re-

tention. After each incremental step, all classes seen so far

are evaluated using the latest model. After N incremental

tasks, the accuracy An over all (N + 1) steps is averaged

and reported. It is termed as average incremental accuracy

(Avg Acc), introduced by Rebuffi et al. [23]. We also eval-

uate the forgetting rate F proposed by Liu et al. [17]. The

forgetting rate measures the performance drop on the first

task. It is the accuracy difference on the classes of the first

task X1:s
test, using Θ0 and ΘN . Therefore, it is independent

of the absolute performance on the initial task T0. We intro-

duce another metric, referred as Rφ, to measure retention

in the feature extractor φ(·). It measures how much infor-

mation is retained in the feature extractor while learning the

tasks incrementally as compared to a jointly trained model.

To measure Rφ: after the final incremental step, parameters

of the feature extractor are frozen and the last linear layer

is learned using all the data from all the classes. Rφ is the

accuracy difference between this model and a model where

the whole network is trained on all the classes with com-

plete data access.



(a) (b)

Figure 1: The comparison between a (a) standard loss system and our proposed (b) compositional loss system (right). σ shows the softmax

function span over all the network output logits. σold and σnew shows softmax span over the set of old and new class logits respectively.

3.3. A Basic Class­IL Framework

The network model Θ consists of a feature extractor φ(·)
and a fully-connected layer fc(·) for classification. Similar

to a standard multi-class classifier, the output logits o are

processed through a softmax activation function σ(·) before

cross-entropy loss LCE is evaluated corresponding to the

correct class. For the initial base task T0, the model Θs

learns a standard classifier for the first (y ∈ y[1 : s]) classes.

In the incremental step, the fc layer is adapted to learn new

classes (y ∈ y[s + 1 : t]) by adding new output nodes,

whereas the other part of the network remains unchanged,

resulting into a new model Θt. The three main elements of

class-IL are set up as follows.

Exemplar selection: We compile the exemplar set by

randomly selecting an equal number of samples (m) for

each class. The samples are sorted in ascending order ac-

cording to the distance from the mean of the feature vectors

µi for each class separately. Since the size of the limited

memory is fixed (K), some samples of old classes are re-

moved to accommodate exemplars from new classes. Sam-

ples with larger distances to the mean vector are removed

first. Detailed steps are shown in Algorithm 2.

Forgetting constraint: Our model uses knowledge distil-

lation as the forgetting constraint. Knowledge distillation

penalizes the change with respect to the output of the old

model (Θs) using KL-divergence, thus preserving the net-

work’s knowledge about the old classes. The distillation

loss (LKD) is computed for the exemplar sets (P) as well as

for samples from the new classes (X ). The final loss for our

CCIL model is a combination of cross-entropy loss LCE

for classification and distillation loss LKD for mitigating

catastrophic forgetting as shown in Algorithm 1-Line 15.

Learning system: We propose a new compositional

learning system which addresses the weight-bias issue in

class-IL. The proposed loss isolates inter-task and intra-task

learning for a balanced processing of data by appropriately

normalizing the output logits. The task-agnostic parts are

shared to yield improved efficiency. The details are pre-

sented in the next section.

4. Compositional Learning System

For each gradient update, the CCIL model receives data

in separate mini-batches from the set of new classes X and

the set of exemplarsP . P is the updated exemplar set which

also includes equal size of exemplars from the current new

classes (see Algorithm 1-Line 3). The losses on set X and

P are computed as:

LX = LCE
X + λ ∗ LKD

X (1)

LP = LCE
P + λ ∗ LKD

P (2)

Intra-task Learning: The classification loss for the new

classes (LCE
X

) is computed using a dedicated softmax func-

tion σnew comprising logits of new classes only (Figure 1b)

Algorithm 1: CCIL: IncrementalStep

Input: X = (Xs+1, ..., Xt),Ps = (P1, ..., Ps) // new

classes data, old exemplar sets

Input: K,Θs, Θ̂s // memory size, current model,

frozen current model

Output: Θt // model trained on t classes

1 m← K/t // number of exemplars per class

2 Θt ← Θs // add output nodes for new classes

3 P ← UpdateExemplarSets(X ;Ps,m,Θs)
4 for (x, y) ∈ X do //

update for mini-batch data in X
5 o = Θt(x) // o = {oold, onew}
6 softmax over new class logits σnew(onew)

7 compute classification loss LCE
X

(Eq. 3)

8 softmax over old class logits σold(oold)

9 compute distillation loss LKD
X

(Eq. 4)

10 load a mini-batch from exemplars set

(x′, y′) ∼ P
11 o′ = Θt(x′)
12 softmax over all logits σ(o′)

13 compute classification loss LCE
P

(Eq. 5)

14 compute distillation loss LKD
P

(Eq. 6)

15 L = (LCE
X

+ LCE
P

) + λ ∗ (LKD
X

+ LKD
P

)

16 end



computed as:

LCE
X = −

t
∑

i=s+1

y[i] · log(pnew[i]) (3)

for (x, y) ∈ X , where pnew = σnew(onew), o = Θt(x)
and output logits comprise o = {oold, onew}. This allows

the classifier weights for the new classes to be learned in-

dependently of the previous classes – while sharing the fea-

ture extractor, thus effectively eliminating the weight bias.

Distillation loss (LKD
X

) is always computed using σold (see

Figure 1b), since output of new network pold = σold(oold)
are compared against the output of previous model p̂ =
σold(Θ̂

s(x)) as:

LKD
X = DKL(p̂||pold) (4)

In case of a unified softmax, the weights of the old classes

are suppressed by the larger amount of new class samples

during training. A similar intra-task learning method using

separate-softmax has been concurrently proposed in [1].

Inter-task Learning: The separate softmax helps intra-

task learning for the new classes, but this does not yet dis-

criminate the new from the old classes. For inter-task learn-

ing, we plan a balanced interaction between the samples

of old and new classes. We compile an exemplar set P
which contains equal numbers of samples from all classes

including old and new classes. However small, such exem-

plar set enables the model to capture the inter-task relation-

ship through the loss LCE
P

, which uses a combined softmax

function σ evaluated on all classes (see Figure 1b).

LCE
P = −

t
∑

i=1

y′[i] · log(q[i]) (5)

for (x′, y′) ∈ P , where q = σ(o′) and o′ = Θt(x′). The

distillation loss is computed similar to Eq. 4,

LKD
P = DKL(q̂||qold) (6)

where q̂ = σold(Θ̂
s(x′)) and qold = σold(o

′
old). This exem-

plar set is compiled before learning the incremental task,

contrary to previous works, where it is always compiled

after the incremental step. Figure 1 shows how the loss

terms are calculated using a separate softmax function 1b

and also compares it to the unified softmax 1a used in pre-

vious works.

Transfer Learning: We observed that a separate softmax

does not remove the bias completely. Another cause for un-

balanced class-weight vectors, and catastrophic forgetting

in general, is the change in the data distribution between

Algorithm 2: UpdateExemplarSets

Input: X ,Pold // new class data, old exemplar set

Input: Θs,m // old model, new exemplar size per

class

Output: Pnew // new Exemplar sets

1 for i = 1, ..., s do

2 Pi ← (p1, ..., pm) // keep first m samples

3 end

/* add new class exemplars */

4 for i = s+ 1, ..., t do

5 Pi ← (p1, ..., pm) ⊂ Xi) // randomly pick m

samples

6 µi ←
1

m

∑m

j=1
φ(pj) // mean feature

/* sort exemplars based on

distance from µi */

7 for k = 1, ...,m do

8 pk ← argmin ||µi − φ(pk)||
9 end

10 end

different tasks. We hypothesize that the effect of this dis-

tribution shift in the training data is more harmful to the

previous knowledge when the transfer learning from old to

new classes is poor, resulting in strong alteration of the pa-

rameters of the network. We propose to reduce the learn-

ing rate for the incremental steps as a simple way to im-

prove transfer learning and mitigate the adverse effect of

distribution shift. This further helps reduce the weight bias.

The reduced learning rate on incremental steps depends on

the scale and relevance of features learned in the base task,

therefore it is determined experimentally. Although low-

ering the learning rate is a standard technique when fine-

tuning a network on a new dataset, its importance is under-

estimated and often missing in incremental learning works.

Section 6.2 contains ablation studies to show its importance.

5. Improving Feature Representations for In-

cremental Learning

Intuitively, poorly transferable embeddings will force the

model to alter its parameters significantly in order to learn

new concepts. This destroys the knowledge accumulated

for the previous tasks. In this section, we explore this novel

direction – aiming to learn robust representations that are

transferable to a new task and effectively retain previous

knowledge in class-IL. In particular, we study the detrimen-

tal effects of overfitting and loss of secondary class infor-

mation. We find that: 1) both phenomena strongly correlate

with catastrophic forgetting; 2) regularization methods can

significantly improve robustness against forgetting, but only

as long as they enhance the secondary class information of

the learned model.
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Figure 2: The effect of overfitting on class-IL performance on the

CIFAR-100 dataset. Figure shows the overfitting behavior on the

initial base task. The validation loss (red curve) starts increas-

ing monotonically after the 100
th epoch. The green curve shows

the average incremental accuracy (right y-axis) for class-IL exper-

iments performed over different snapshots at every 100
th epoch.

5.1. Measuring the Quality of Secondary Logits

Secondary information captures semantic relationship

between the target and non-target classes. In literature, the

term secondary information is interchangeably used to de-

note the non-target and non-maximum scores of a classi-

fier [30]. Here, for evaluation purposes, the term denotes

the non-maximum scores produced by the networks. When

applying the maximum operation to the scores predicted by

a classifier, part of the information produced by the model

is discarded. For each individual sample this information

represents the model’s belief about the semantic nature of

the image, in relation to the other classes. It is important to

learn this secondary information, such that the model can

re-use it to learn new classes with least modification to pre-

vious concepts. We argue that semantically similar classes

should lie closer in the representation space as compared to

the dissimilar classes since they share more features, and

higher secondary information is an indicator of such an ef-

ficient non-redundant feature space. Appendix includes an

analysis on feature representations to support this argument.

No proper annotations exist for secondary information,

therefore we define a proxy evaluation objective, exploit-

ing the coarse-labeling of the CIFAR-100 dataset, which

partitions the 100 fine-classes into 20 superclasses. The 5

classes belonging to each superclass are mostly semanti-

cally related, and have been previously used for evaluating

secondary information [30]. As a proxy evaluation measure

for secondary class information we propose to use the clas-

sification performance on the superclasses, restricting the

network output to the non-maximum logits. We define two

new metrics for this purpose: Secondary Superclass NLL

and Secondary Superclass Accuracy.

Secondary Superclass-NLL (SS-NLL): Negative Log

Likelihood is a commonly used cost function for classifica-

Epoch
SS- SS-

F ↓ Rφ↓NLL ↓ Acc ↑

100 2.54 38.68 16.03 9.04

200 2.89 32.88 16.04 9.27

300 3.03 30.09 16.94 9.51

400 3.09 29.04 18.38 9.68

500 3.11 27.97 18.57 10.00

Table 1: The effect of overfitting on class-IL performance and

its correlation with secondary information, on the CIFAR-100

dataset. Table shows the performance of the snapshots taken at

every 100
th epoch and the corresponding class-IL model. SS-Acc

decreases and SS-NLL increases as more overfitted models are

evaluated. Forgetting rate F and feature retention metric Rφ also

correlate with overfitting. Results are averaged over 5 runs, stan-

dard deviation is reported in Appendix.

tion, also known as Cross-Entropy Loss. Here we compute

the NLL induced by the secondary (non-maximum) logits

on the superclass classification problem. Given a set of su-

perclasses S , we can group the fine-grained classes into sub-

sets C according to their coarse-label, and compute:

SS-NLL(x, y) = −
∑

j∈S

[

1Cj
(y) log

∑

k∈Cj

σ̂k

(

f(x)
)

]

,

(7)

where 1Cj
(y) is an indicator function which evaluates to 1

if the true class y belongs to superclass j, σ̂ is a softmax

function over the secondary fine-logits (i.e. it suppresses

the maximum logit). The network prediction (logits) is de-

noted as f(x). A lower SS-NLL indicates better superclass

classification, thus higher secondary information quality.

Secondary Superclass-Accuracy (SS-Acc): Secondary

superclass accuracy computes the percentage of correct su-

perclass predictions. As for SS-NLL, the largest logit score

is excluded from the prediction to focus the measure on the

quality of secondary information. Higher SS-Acc values in-

dicate higher quality of the secondary information.

5.2. Forgetting starts before the incremental step

In this section, we study how the quality of the represen-

tations learned during the initial base task correlates with in-

cremental learning performance. We experimentally show

how a decline in quality of the learned features–measured

as overfitting and loss of secondary information – leads

to higher catastrophic forgetting, motivating our following

search for a suitable regularizer.

Experiment details: We set up a class-IL experiment

(with 5 incremental tasks) on CIFAR-100.The initial base

network is trained for up to 500 epochs. We employ a SGD



Model
Avg. Acc.↑ SS Metrics Forgetting F. Retention

ECE↓
5 tasks 10 tasks SS-NLL ↓ SS-Acc. ↑ F ↓ Rφ↓

CCIL 66.44 64.86 2.784 34.83 17.13 9.70 0.100

CCIL + SD 67.17 65.86 2.675 37.26 16.81 8.88 0.094

CCIL + H-Aug 71.66 69.88 2.051 47.69 13.37 6.73 0.018

CCIL + LS 63.08 61.99 3.103 24.25 18.79 12.83 0.049

CCIL + Mixup 62.31 57.75 2.791 31.57 24.56 16.01 0.024

Table 2: Effect of regularization class-IL average accuracy, secondary information (on the first-task model), forgetting rate and feature

retention (5 tasks), on CIFAR-100. All the values are averaged over 3 runs. ↓ and ↑ in the column headings indicate that lower and higher

values are better respectively. Values that are better than the CCIL baseline are marked in green whereas the worse ones are marked in red.

SD:self-distillation, LS:label-smoothing, H-Aug:heavy data augmentation. Standard deviation in Appendix A.

optimizer with a base learning of 1e-1. We use a step learn-

ing rate schedule, where the learning rate is divided by 10

at 60th and 90th epochs.

Analysis: Figure 2 shows that the validation loss (red

curve) starts increasing after about 100 epochs, showing

an overfitting effect. Thereafter, we perform five different

class-IL experiments, each based on a different snapshot of

the base network (every 100th epoch). As the validation

loss of the snapshot increases, incremental learning perfor-

mance of the corresponding class-IL model drops (green

curve), and both forgetting rate (F ) and feature retention

metric (Rφ) worsen (Table 1). The worsening Rφ metric

indicates that the issue is rooted in the feature representa-

tions, and cannot be mitigated by acting on the last layer

bias. Along with these metrics, we observe that overfit-

ting causes the quality of secondary information to deterio-

rate (SS-Acc decreases and the SS-NLL increases, Table 1).

This loss of secondary information could also be linked to

increasing overconfidence of the network, measured as Ex-

pected Calibration Error (ECE) [9] (details in Appendix A).

These results indicate that: 1) the quality of the features

learned during the first base task influences the performance

of the class-IL model, and as such it should be expressly ad-

dressed. 2) secondary information can be considered as an

indicator of the features’ quality and their fitness for incre-

mental learning. In the next section we will show experi-

mental evidence in support of these hypotheses.

5.3. Analyzing Catastrophic Forgetting with Regu­
larization

Having established a link between early feature qual-

ity and catastrophic forgetting, we hypothesize that the

application of adequate regularization techniques can im-

prove model performance on the task at hand. We apply

four common regularization techniques to our CCIL model:

self-distillation [7], data-augmentation (including cropping,

cutout [6] and an extended set of AutoAugment [4] poli-

cies), label smoothing [24], and mixup [32]. All these reg-

ularizers have been shown to improve generalization on the

held-out validation data. We report details about the appli-

cation of said regularization methods in Appendix A.

Self-distillation [7, 20] is a form of knowledge distil-

lation in which the teacher and student networks have the

same architecture. It can be applied iteratively, in genera-

tions: at each generation a copy of the current student be-

comes the new teacher. Data Augmentation is one of the

most widespread regularization techniques for neural net-

works, especially in computer vision. A well designed data

augmentation routine is key to obtaining good results on

the held-out dataset. We sample randomly from a pool of

augmentation policies which contain pairs of different ge-

ometric and color transformations, similarly to [4]. Label

smoothing [24] acts on the cross-entropy loss for classifi-

cation by interpolating the one-hot labels with a uniform

distribution over the possible classes. This technique has

been shown to improve generalization and reducing over-

confidence of classification models [24]. Mixup [32] is an

operation that generates training samples for classification

by linearly combining pairs of existing samples – image and

label. Mixup has successfully been used as a form of data

augmentation in image classification, improving generaliza-

tion and calibration [32, 26].

Analysis We analyse above discussed metrics for each

of these regularization techniques. Table 2 shows the Aver-

age Accuracy after finishing the last incremental step, sec-

ondary information quality of the first task model, forgetting

rate, feature retention (Section 3.2) and expected calibration

error [9]. We can divide the regularization methods into two

groups: the ones which improve class-IL performance (self-

distillation, augmentation) and the ones which harm it (la-

bel smoothing, mixup). The first group also shows consis-

tent improvements in secondary information and reduction

in forgetting, with augmentation performing the best across

all metrics – by a significant margin. In the second group,

label smoothing harms secondary information the most. It

has been observed that label smoothing encourages repre-
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Operations
Avg Acc ↑ Avg Acc ↑

w/o KD w/ KD

Comb 47.97 52.71

Sep 52.86 60.85

Comb+LowLR 52.79 54.54

Sep+LowLR 58.60 64.79

(c)

Figure 3: (a) & (b) compares the average L2 norm of the classification weight vectors for old and new classes for class-IL experiments

without (w/o) and with (w/) KD respectively. We evaluate standard combined softmax (Comb) against proposed separate softmax (Sep)

and we assess the effect of reduced learning rate (LowLR). (c) contains the corresponding class-IL results without distillation (w/o KD)

and with distillation (w/ KD) in terms of average incremental accuracy. Figure shows how bias is reduced using separate softmax and

reduced learning rate. All experiments use the linear classification layer. Results shown on CIFAR-100 for 5-task experiments.

sentations to be closer to their respective class centroid and

equidistant to the other class centroids [21], and this comes

at the expense of inter-class sample relationships, i.e., sec-

ondary information. Mixup also harms the quality of sec-

ondary information: we believe this is because it artificially

forces arbitrary distances between classes, which modifies

the natural output distribution – similarly to label smooth-

ing. Interestingly, all regularizers improve network calibra-

tion, but ECE is not a good indicator of class-IL perfor-

mance, unlike secondary information, shown in Table 2.

In summary, label smoothing and mixup – despite their

proven regularization effects – harm secondary class in-

formation and have clear negative consequences for class-

incremental learning. On the other hand, regularization

methods that enhance secondary class information (self dis-

tillation and data augmentation) boost the average incre-

mental accuracy. Analogously to the analysis of Section 5.2

we show that the quality of secondary information nega-

tively correlates to the forgetting rate (Table 2), further in-

dicating the importance of secondary class information.

6. Results

6.1. Training Details

Datasets We conduct experiments on CIFAR100 [14],

ImageNet-100 Subset [5] and full ImageNet datasets. The

ImageNet-100 dataset has 100 randomly sampled classes

(using Numpy seed:1993) from ImageNet. The base

CCIL model uses default data augmentation including ran-

dom cropping and horizontal flipping for CIFAR-100, and

resized-random cropping and horizontal flipping for Ima-

geNet datasets. All the randomization seeds are selected

following the experiments in previous works [12, 17].

Benchmark protocol We follow the protocol used in pre-

vious works [12, 17]. The protocol involves learning of 1

initial base task followed by N incremental tasks. We eval-

uate with two incremental settings: where the model learns

N = 5 and N = 10 incremental tasks. For CIFAR-100 and

ImageNet-100, 50 classes are selected as the base classes

for the initial task and the remaining classes are equally

divided over the incremental steps and for ImageNet, 500

base classes are used. Exemplar memory size is set to

K = 2k for 100 class datasets and K = 20k for ImageNet.

Implementation details We use a 32-layer ResNet

[10] for CIFAR-100 dataset, and a 18-layer ResNet for

ImageNet-100 and ImageNet datasets. The last layer is co-

sine normalized following the recommendations of [12].

6.2. Ablation Studies

Elements of the compositional learning system We

evaluate the contributions of each element in the proposed

learning system by training multiple class-IL models fea-

turing them. The incremental learning in these experiments

is conducted in two settings – in a simple fine-tuning setup

(without distillation), in order to single out the effects of the

proposed changes and with distillation loss. In Figure 3a

& 3b we compare the average L2 norm of the class weight

vectors for old and new classes after 5 incremental steps,

while in Figure 3c we provide the average accuracies of

the respective models. We notice a major difference in the

weight norms of old and new classes for the default com-

bined softmax (Comb) setting (Figure 1a). Using separate-

softmax (Sep) substantially reduces this difference and im-

proves class-IL performance, but does not resolve the prob-

lem completely. Lower learning rate (Comb+LowLR) also

reduces the bias and improves the performance, although

to a lesser extent. When both approaches are combined

(Sep+Low-LR), this bias is further reduced and the best

class-IL results are produced. We observe a marginal differ-

ence in the last norms in Figure 3b because the distillation

loss can only be applied using the old class logits and does

not use the compositional learning system (Sec. 4). Com-

pared to [1], our proposed inter-task learning module in-

creases the performance by 1% on CIFAR-100 dataset over



Method
Layer Softmax Low

AW
Classifier

KD Avg Acc
Cos Dot Sep Comb LR NME CNN

Comb X X X 47.97

iCaRL X X X X 56.50

iCaRL++ X X X X X 59.78

CCIL X XXX XXX X X X 66.44

Table 3: Drawing parallels between iCaRL and our proposed model. Average accuracy is reported for 5-task class-IL experiments on

CIFAR-100 dataset. Last row highlights our proposed changes. All methods use random exemplar selection as used in this work, Dot:

linear layer, KD: knowledge distillation, NME: nearest-mean-of-exemplars (used in [23])

Method CIFAR-100 ImageNet-100 ImageNet

No. of incremental tasks→ 5 10 5 10 5 10

iCaRL∗ [23] 57.17 52.57 65.04 59.53 51.50 46.89

BIC [29] 59.36 54.20 70.07 64.96 62.65 58.72

WA [33] 63.25 58.57 — — — —

LUCIR [12] 63.12 60.14 70.47 68.09 64.34 61.28

Mnemonics [17] 63.34 62.28 72.58 71.37 64.54 63.01

TPCIL [25] 65.34 63.58 76.27 74.81 64.89 62.88

CCIL (ours) 66.44 64.86 77.99 75.99 67.53 65.61

CCIL-SD (ours) 67.17 65.86 79.44 76.77 68.04 66.25

Joint-training 74.12 73.80 84.72 84.67 69.72 69.75

Table 4: Comparing average accuracy using different methods on CIFAR-100, ImageNet-100 and ImageNet dataset. *reported in [12]

only using intra-task learning module as proposed in [1]-v1.

Drawing parallels with iCaRL We compare different

components of our CCIL model with the first baseline

approach (iCaRL) proposed by [23]. Table 3 summa-

rizes these changes. We first isolate the contributions of

some follow-up methods by creating another baseline as

iCaRL++. It consists of a (1) cosine-normalized layer (cos)

[8, 18, 12], where the features and class-weight vectors in

the final layer are normalized to lie in a high-dimensional

sphere. It helps in removing the remaining weight bias dur-

ing inference, and (2) adaptive weighting (AW), where the

weight of the distillation loss increases with incremental

steps. AW was previously introduced in [12], which helps

in adaptive balancing of classification and distillation loss

(more details are included in the Appendix). The last row

shows that replacing the combined-softmax (comb) with the

proposed separate-softmax (sep) and reducing the learning

rate (LowLR) yields a major improvement.

6.3. Comparison to SOTA

Results for CIFAR-100, ImageNet-100 and ImageNet

datasets are shown in Table 4. We report the upper bound

‘Joint-training’, where at every incremental step all the data

for the classes seen until then is accessible. The simple

CCIL model compares favorably to previous results on all

datasets, especially on larger datasets like ImageNet-1k.

The regularized CCIL-SD closes the gap to joint training

further and achieves state-of-the-art performance across all

datasets. Since the CCIL model is based only on simple

components, the application of advanced methods for mit-

igating forgetting [12, 25] and more informative exemplar

selection [17] can further improve the performance.

7. Conclusions

We presented a straightforward class-incremental learn-

ing system that focuses on the essential components and al-

ready exceeds the state of the art without integrating sophis-

ticated modules. This makes it a good base model for future

research on advancing class-incremental learning.

Moreover, we showed that countering catastrophic for-

getting during the incremental step is not enough: the qual-

ity of the feature representation prior to the incremental step

considerably determines the amount of forgetting. In this

regard we showed that boosting secondary information is

key to improve the transferability of features from old to

new tasks without forgetting. We believe this discovery is

generic to all continual learning settings and is a promising

direction for future work.
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