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Abstract

Video generation models have become increasingly pop-

ular in the last few years, however the standard 2D archi-

tectures used today lack natural spatio-temporal modelling

capabilities. In this paper, we present a network architecture

for video generation that models spatio-temporal consistency

without resorting to costly 3D architectures. The architec-

ture facilitates information exchange between neighboring

time points, which improves the temporal consistency of both

the high level structure as well as the low-level details of

the generated frames. The approach achieves state-of-the-

art quantitative performance, as measured by the inception

score on the UCF-101 dataset as well as better qualitative

results. We also introduce a new quantitative measure (S3)

that uses downstream tasks for evaluation. Moreover, we

present a new multi-label dataset MaisToy, which enables us

to evaluate the generalization of the model.

1. Introduction
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Figure 1: (a) Selected frames from videos generated by

TSB trained on Jester at 192×192. (b) The shift operation

replaces a subset of features in time step T with features from

frames T − 1 and T + 1 to facilitate information exchange

between neighboring frames.

Generative Adversarial Networks (GANs) [20] are a pow-

erful way to generate high-resolution images [42, 3]. Video

generation adds further complexity, as the resulting content

should be both spatially and temporally coherent. This is

particularly true for the aspect of motion, which does not

exist in still images.

*Equal Contribution

3D Convolutional Neural Network (CNN) architectures

appear well-suited to trivially lift the progress made in sin-

gle images to videos [13, 7, 33, 17], yet their usefulness

for video generation is still a matter of debate [38, 30]. A

argument against 3D CNNs is that the temporal dimension

behaves differently from the spatial dimensions. The authors

of MoCoGAN [38] showed that equal treatment of space

and time results in fixed-length videos, whereas the length

of real-world videos varies. Moreover 3D CNNs have more

parameters, which according to studies in literature [21, 15]

make them more susceptible to overfitting [18].

We share the view of TGAN [30] and MoCoGAN [38],

where instead of mapping a single point in the latent space to

a video, a video is assumed to be a smooth sequence of points

in a latent space in which each point corresponds to a single

video frame. As a result, our video generator consists of two

submodules: a sequence generator that generates a sequence

of points in the latent space, and an image generator that

maps these points into image space.

For the image generator, we propose a Temporal Shift

Self-Attention Generator, which introduces a temporal shift-

ing mechanism [21] into residual blocks of the generator.

Temporal shifting mechanism enables the model to exchange

information between neighbor frames. The temporal shifting

module is complementary to 2D convolutions in the image

generator and allows us to efficiently model the temporal

dynamics of a video by facilitating the information exchange

between neighbor frames.

The growing interest in video generation methods gives

rise to challenges in comparing the quality of generated sam-

ples. There are two types of approaches to evaluation: qual-

itative and quantitative. On one side, qualitative measures

(e.g. human rating) are not good at detecting memorization

or low diversity. On the other side, quantitative measures are

not robust nor consistent [4, 5, 28]. Although IS [45] has

gained popularity in evaluating the quality of generated im-

ages, it has several drawbacks; particularly failing to detect

mode collapse and memorization. FID [29] assumes that

features are from Gaussian distribution, which is not always

a valid assumption.

Therefore, we propose a new evaluation measure named
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Symmetric-Similarity-Score (S3) to measure the quality of

generated videos. S3 measures the domain gap of an action

classifier when trained on synthesized videos and tested on

real ones, and vice-versa. Consequently, it penalizes missing

intra-class diversity, and is also sensitive to both structural

deficits and low-level artifacts in the generated data. Hence,

it is robust to over-confident classifier predictions, and it is

less dependent on model parameters or pre-processing.

Currently video generation models have relied on action

recognition datasets for benchmarking. However, as these

datasets typically only assign one label per video, they do

not allow for an easy analysis of the generalization capabili-

ties of a model. By formulating the conditional generative

modelling problem as a multi-label one, we can easily ana-

lyze generalization by forcing the model to try to generate

samples from label combinations that are not in the dataset.

Experiments on the UCF101, Jester, and Weizmann

datasets show substantial improvements in the quality of

the generated videos for the proposed design compared to

previous work. At the same time, experiments on the newly

introduced MaisToy dataset show that TS-GAN is able to

generalize to unseen data.

Our paper makes three contributions: (1) it introduces

a new 2D video generator design with an ability to model

spatio-temporal content by facilitating the information ex-

change between neighboring frames. (2) It introduces a

new evaluation metric based on the domain gap between

synthesized and real videos in terms of video classification

performance. (3) It introduces a new dataset which allows

a fast and more in-depth analysis of the generalization and

semantic modelling capabilities of video generation models.

2. Related Work

Image generation has recently seen leaps in performance

[49, 43, 41, 42, 16, 3, 39], thanks to recently introduced

frameworks such as SN-GAN (Miyato etal [41]), introduced

the concept of spectral normalization of the discriminator’s

weights. Zhang et al [16], designed a self-attention module

that allowed the network to create non-local spatial relation-

ships. Then, BigGAN [3] build upon this work by estab-

lishing some architectural and training guidelines by which

GANs can be stable, converge faster and produce better qual-

ity samples. In this study we propose TS-GAN , which

builds upon BigGAN and extends it to video. TS-GAN gen-

erates videos in a per-frame basis, it can thus exploit further

developments on image generation.

Video generation is a highly challenging task as a result

of needing to ensure a smooth transition across video frames.

Most works in video generation have been on the closely

related frame prediction task [11, 48, 50, 23, 44, 8, 31, 34].

The main difference between video generation and frame

prediction, is that in frame prediction the network is trying to

generate a set of T frames given a set of N previously seen

frames. Conversely, video generation only uses the latent

code, and in some occasions a label, to generate a set of

frames.

Several frameworks for video generation using GANs

have been proposed in the past. Vondrick et al [6] proposed

a two-stream network which explicitly separated the genera-

tion of the foreground and the background. They assumed

that background in the entire video is static, which is not

true in real-world video datasets. Saito etal [30] introduced

a temporal generator to transform a single latent variable

into a sequence of latent variables, to be able to just utilize a

2D network as a generator. As a matter of fact, they showed

that a 2D generator can outperform a 3D one. MoCoGAN

[38] separated motion and appearance features by dividing

the latent code in two smaller sub-codes, one per-each set of

features.

Acharya etal [10] used a coarse to fine approach to im-

prove quality and convergence speed. TGANv2 [36], effi-

ciently trains models that generate high dimensional samples

by subsampling features and videos from the batch. DVD-

GAN [2], leveraged a high capacity model to synthesize

high quality samples from complex datasets. These models

showed that GANs can be effective at generating videos.

Nevertheless, the previously proposed models either suffer

from lack of quality, mode collapse, memorization or re-

quire an excessive amount of computational power and data

to train properly. Our framework outperforms the state-of-

the art on UCF-101, based on IS measure, while keeping

memorization to a minimum.

Moreover, previous methods lack a complete quantitative

assessment of the performance of the respective methods.

They rely on metrics such as IS [37] and FID [19] which

don’t tell the full story about sample quality. These metrics

are dependent on availability of models and are also sensitive

to changes in the pipeline. Here we introduce a metric, called

Symmetric Similarity Score (S3), which aims to represent

both quality and diversity in a single scalar value. In addi-

tion, S3 is robust to changes in pre-processing and model

parameters.

3. Temporal Shift GAN

3.1. Preliminaries

GANs [20] are a class of generative models consisting of

a generator and a discriminator networks. The discriminator

is a binary classifier that outputs the probability a sample

is either real or synthesized. The generator is a function

that generates synthetic samples x that look similar to real

samples.

GAN training is a minimax game, in which the discrimina-

tor D tries to minimize the probability of making a mistake,

while the generator G seeks to maximize this probability:
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min
G

max
D

V (D,G) = Ex∼pdata(x)[log D(x)] +

Ez∼pz(z)[log (1−D(G(z)))]
(1)

where pdata is the distribution of the empirical data and pz
represents the chosen prior distribution of the latent codes z.

Although GANs tend to have problems generating diverse

samples (mode collapse), the recent BigGAN method [3]

demonstrated state-of-the-art performance in image synthe-

sis by leveraging the best practice of previous methods, such

as spectral normalization and projection.

The proposed video generation architecture TS-GAN con-

sists of a sequence generator, an image generator and a video

discriminator; an overview of which is shown in Figure 2. It

is a projection based conditional GAN approach as proposed

by Miyato & Koyama [32] using the hinge formulation of

the GAN objective (Lim & Ye [27]; Tran et al.[14]):

LD = E(x,y)∼pdata
[min(0,−1 +D(x, y)])−

Ez∼pz,y∼pdata
[min(0,−1−D(G(z), y)]

(2)

LG = −Ez∼pz,y∼pdata
[D(G(z), y)] (3)

where y is the video label. We introduce several improve-

ments to different aspects of the video generating framework

including sequence generator and the image generator.

3.2. Generator

The generator is divided into two parts. First we generate

a sequence of latent codes, then in the second step the image

generator maps these latent codes to a sequence of T frames.

3.2.1 Sequence Generator

We construct the latent space ZABC ∈ R
d as three inde-

pendent multi-variate Gaussian distributions ZA ∈ R
dA ,

ZB ∈ R
dB and ZC ∈ R

dC with their diagonal covariance

matrices ΣA, ΣB and ΣC respectively. We construct our

latent code, ZABC
1, by concatenation of ZA, ZB , ZC as

ZABC =
[

ZA, ZB , ZC

]T
. The final distribution ZABC is

a multi-variate Gaussian distribution with diagonal covari-

ance matrix. By using an independent parametrization of the

subspaces, the network is able to learn more nuanced distri-

butions, thus a better modelling of the features. Subspaces

have no prior meaning - the network learns to interpret each

part of the code as it sees fit.

The latent code ZABC does not have a temporal dimen-

sion. Since our generator is image based, we first have to

create a progression of correlated latent codes that extends

through the intended duration of the video. This is done by

the sequence generator (See Fig. 2). We first transform the la-

tent code with a fully connected layer as Zfc = FC(ZABC).

1This paper uses ZABC to refer to the latent space, a vector of latent

codes or a single latent code.

Generator

Z
ABC

Sequence Generator

F
C GRU

Label Embed

Z
F

Discriminator

Sample
N frames

P
ro

je
c
ti

o
n

&
L

o
s

s

P
ro

je
c
ti

o
n

&
L

o
s

s

D
Image

D
video

Label Embed

Video Generation

Video Discrimination

Frame 0

Frame 1

Frame T

G
Image

G
Image

G
Image

Real Video

Figure 2: TS-GAN framework. Sampled Gaussian noise

is with several different variances is concatenated (⊕) into

ZABC . A sequence generator using gated recurrent units

is then used to generate a vector ZF . The image generator

then transforms this into video frames. Video discrimination

is done by a 2D discriminator (DImage) judging a subset of

the video frames and a 3D discriminator (DVideo) judging all

frames and assessing the motion consistency of the video.

Then we feed Zfc into a Gated Recurrent Unit (GRU)

to generate a sequence of T correlated codes as Zgru =
[z1gru, . . . , z

T
gru]

T , where each zigru corresponds to the i-th

frame in the video sequence. In total this results in an input

of size [T, d], where T is the number of frames to generate.

We concatenate these latent codes with per-class embed-

dings e(y) of size 120, where y is a randomly sampled class

label. This results in a sequence of T codes as

ZF =

[[

z1gru
e(y)

]

, . . . ,

[

zTgru
e(y)

]]

∈ R
(d+120) (4)

We feed ZF into the image generator to generate a se-

quence of T frames (Figure 2).

3.2.2 TSB Image Generator

To synthesize “realistic“ images, some approaches [2, 12]

utilized BigGAN [3] image generator as their backbone ar-

chitecture. However, in this architecture each image is gen-

erated independent of others. Therefore, the networks are

not able to enforce temporal consistency between frames.

To alleviate this problem, we introduce the temporal shift

mechanism [21] to BigGAN image generator architecture to

facilitate information exchange between neighboring frames.

We call the proposed generator Temporally Shifted BigGAN

(TSB) image generator, illustrated in Figure 3a, because of

it’s feature shifting mechanism (Figure 1b). This design
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not only facilitates the information exchange in temporal di-

mension but also equipped with a self-attention layer which

enables the generator to model the relationships between spa-

tial regions [16]. Unlike full 3D convolutions it only shares

a small subset of features between neighboring frames. This

allows faster inference and uses less parameters than 3D

models.

TSB-ResNet Image Generator
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(b) Temporal Residual Block.

Figure 3: (a) The Temporally Shifted (TSB) image generator

architecture. Note that the temporal residual blocks are only

used at the beginning of the generator to minimize loss of

spatial information. (b) Temporal residual up-sampling block

used in TSB. The operation Up(x2) means up sampling via

interpolation by a factor of 2.

In our proposed image generator TSB, the temporal shift

module can simply be added to the beginning of the residual

blocks, as shown in Figure 3b. This is in contrast to the non-

temporal (NT) variant of our architecture, which uses normal

residual blocks. We only vary the first two residual blocks

of our network, and call these temporal residual blocks to

distinguish them from the latter residual blocks which are

always of the normal variant. This is shown in Figure 3a.

All residual blocks use conditional batch normalization and

receive as input the vector ZF .

3.3. Discriminator

We use two independent discriminators, an image dis-

criminator, DImage, and a video discriminator named DVideo.

Image Discriminator DImage gives a frame-wise assess-

ment of content and structure. DImage is a ResNet based

architecture [24], similar to BigGAN [3], it is applied to a

subset of N frames of the video. DImage is doing the heavy

lifting with respect to image quality. N remains a hyper-

paramter that allows a trade-off between memory efficiency

and frame quality.

Video Discriminator DVideo examines the temporal con-

sistency of videos and provides the generator with a learn-

ing signal to generate a consistent motion throughout all T

frames. TS-GAN ’s DVideo is inspired by MoCoGAN’s [38]

video discriminator. We chose this architecture to keep the

network efficient. The factorized design allows for smaller

DVideo networks as it can focus on the temporal aspect.

4. Symmetric Similarity Score (S3)

The Inception Score [45] (IS) and Frechet Inception Dis-

tance [29] (FID) are the most common metrics used to eval-

uate GANs. On one hand, IS (exp(DKL(P (y | x) | P (y))))
is based on two criteria: the distribution of predicted labels

P (y | x) should have a low entropy and the marginal dis-

tribution P (y) should have a high entropy. On the other

hand, FID measures performance of a generator by using

features produced by an intermediate layer to parameterize

a multivariate normal distribution of real and fake features

respectively. FID rates the fake samples by calculating the

distance between distributions, the closer the better.

Although high IS correlates with subjective quality and a

low FID with both quality and intra-class diversity of sam-

ples, they both have drawbacks. IS cannot capture intra-class

diversity. Yushchenko etal [46] showed that small changes

to the data pre-processing leads to a change between 7%

and 17% in IS score and adversarial samples may lead the

classifier to be overconfident about samples leading to a

higher score [40]. FID assumes features follow a normal

distribution, which is not true for real world datasets. Thus,

two completely different distributions might lead to a good

score, while not being actually similar. At the same time,

FID is also vulnerable to pre-processing and model changes.

Neither IS nor FID are able to account for memorization of

the dataset.

Symmetric-Similarity-Score (S3) uses generalization

of classifiers between real and synthetic samples to mea-

sure quality of generated videos. The performance of model

is measured by "quality of samples" and "diversity of gener-

ated samples".

The performance of a classifier trained on synthetic data

and evaluated on real data (SeR) should increase, if synthetic

samples are diverse and realistic. A classifier trained on

real data being evaluated on synthetic (ReS) data should

only perform well, if synthetic samples are realistic.

We normalize these values by comparing to the real per-

formance (ReR). Since SeR has more information about the

overall performance, S3 has an exponential relationship to

it, thus rewarding models with good diversity and sample

quality and harshly penalizing them otherwise (Equation

5). S3 has the advantages of capturing intra-class diversity,

being more robust to over-confident predictions and small

changes in the model’s parameters, while still being easier

to interpret than IS or FID.

S3 =

√

(

SeR

ReR

)2

·

(

ReS

ReR

)

(5)
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Figure 4: Samples taken from MaisToy dataset. The dataset includes shapes of varying difficulty, the dataset is balanced in

terms of colors and motions.

This approach is similar to Classification Accuracy Score

(CAS) [35], which used a classifier’s SeR to evaluate gener-

ative models and lacks ReS evaluation. However, just using

SeR to evaluate a model does not tell the full story. Since

SeR is dependent on both quality of samples and intra-class

diversity, we need ReS to know if the SeR performance is

being driven by sample quality or diversity.

Generative models must create fake samples that comes

from the same distribution as the dataset. To generate sam-

ples which are not included in the dataset it needs to be able

to generalize to unseen data. However, existing datasets

used for video generation are not truly equipped for testing

a model’s generalization due to the fact that we can only

directly control the action semantic on the dataset. By only

having control over the action, we can’t force the network

to generate certain features within the class, therefore it is

hard to corroborate the model’s ability to generalize. Thus,

there’s a need for a dataset that allows a higher degree of

control over the semantics of the samples.

5. MaisToy Dataset

We introduce MaisToy, a dataset composed of 238 videos

of clay figures of 5 different shapes, 4 colors performing 4

distinct motions. The videos recorded have 55 frames on

average, with a size of 320×240 px. The dataset is balanced

and compact. This allows for faster evaluation of design

choices without requiring large computational resources,

this addresses a big challenge in video GAN research. The

balanced nature of the dataset facilitates testing of gener-

alization by holding out some combinations of semantics

during training and trying to generate them during testing.

At the same time, the three distinct semantics (shape, color

and motion) support a more in-depth analysis of the semantic

modelling capabilities of model designs.

6. Experiments

We evaluated our model both qualitatively and quantita-

tively on the quality of frames, the realism of whole videos,

diversity and memorization using several different datasets.

FID and further qualitative evaluation will be found in the

supplementary material.

6.1. Datasets

We use four datasets UCF101[25], Weizmann[26],

Jester[22] and MaisToy for our experiments.

UCF-101. 13, 220 videos of 101 different sports action

classes. We trained models to generate samples both at

96 × 96 and at 128 × 128, we resize to 127 × 127 and

170 × 170 respectively and crop to its corresponding final

size. We set N to 8. [25]

Weizmann. 93 videos of 9 people performing 10 differ-

ent actions. To train we cropped the videos to 96× 96. For

all experiments, we randomly extract 16 subsequent frames

and set N to 4. [26]

Jester. 118, 562 videos and 27 different hand gesture

classes. Due to the small frame size, we first re-size 96×136
before cropping to 96× 96 to preserve the aspect ration. As

in Weizmann, we extract 16 subsequent frames and set N to

4. [22]

MaisToyMulti. Multi label variant of MaisToy, we trained

a model to generate at 128× 128, we resize as for UCF-101.

We set N to 4. For generalization testing, the dataset was

split into train and test sets.

MaisToySingle. Single label variant of MaisToy, we use

only the motion labels to generate videos. We trained a

model to generate at 96× 96, we resize as for UCF-101. We

set N to 4.

6.2. Model Configurations

Three different variation of our method were tested in

order to find the strongest configuration.

NT: A non-temporal model using a BigGAN generator

and all latent variables’ distribution were N (µ = 0, σ = 1).

NT-VAR: Same generator as above, but we change the

latent variables’ distribution deviations to σA = 0.5, σB = 1
and σC = 2.

TSB: Same as in NT-VAR, however we change the gen-

erator to the temporally shifted BigGAN generator.

For all trained models we set d to 120 by setting dA,

dB and dC to 20, 20 and 80 respectively. We employ a

learning rate of 5 × 10−5 for the generator and 2 × 10−4

for the discriminator. The video length T is fixed to 16. All
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Dataset Method IS (↑)

UCF-101

VGAN [6] 8.18 ± 0.09

TGAN [30] 11.85 ± 0.07

MDP [46] 11.86 ± 0.11

MoCoGAN [38] 12.42 ± 0.03

Prog. VGAN [10] 14.56 ± 0.05

TGANv2 [36] 24.34 ± 0.35

DVD-GAN [2] 32.97 ± 1.7

NT 31.91 ± 0.14

TSB 42.79 ± 0.63

Jester TSB 11.90 ± 0.12

(a) Comparison of Inception Score between models on

UCF-101.

Dataset Method
Train on: Synth. Real

S3
eval. on: Real Synth. Real

Weizmann

MoCoGAN 61.11 32.83 95.83 0.37

NT 80.31 62.53 95.83 0.67

NT-VAR 88.30 64.29 95.83 0.75

TSB 88.10 71.43 95.83 0.79

MaisToyMulti TSB 82.74 45.11 67.70 0.99

MaisToySingle TSB 45.83 52.98 66.07 0.62

UCF101
NT 45.5 46.8 85.9 0.39

TSB 48.55 54.91 85.9 0.45

Jester TSB 15.85 13.86 91.4 0.07

(b) Evaluation S3 measure based on action classification generalization between

generated and real samples.

Table 1: Comparison with previous methods on four different datasets.

Low Quality Collapsed Normal
Train on: Synth. Real

S3 IS (↑)
eval. on: Real Synth. Real

✗ 41.4 50.06 85.9 0.36 34.01 ± 0.22

✗ 28.3 59.3 85.9 0.27 41.04 ± 0.82

✗ 48.55 54.91 85.9 0.45 42.79 ± 0.63

Table 2: Comparison between TSB’s UCF-101 S3 and IS

results at different levels of model quality.

experiments performed on Weizmann and Jester are done

with a batch size of 40. We trained both NT and TSB to

generate 96× 96 and 128× 128 sized samples respectively.

NT was trained on a batch size of 56, while TSB was trained

on a batch size of 64.

All models were trained on full precision, 96×96 models

were trained on two Nvidia RTX2080Ti’s, 128×128 models

were trained on one 32GB Nvidia V100. Jester and UCF-

101 models took 4 weeks to reach the performance reported

here, while models trained on Weizmann and MaisToy took

7 and 10 days respectively. Training times for Jester and

UCF-101’s could be cut short by using larger computational

resources.

6.3. Quantitative Evaluation

A thorough evaluation of quality of samples simply by

qualitative experiments is not possible due to the sheer num-

ber of samples that need to be evaluated in order to do a

proper assessment.

IS: We evaluate the IS as comparative benchmark on the

UCF-101 dataset. The IS is calculated using the last layer

of a C3D2 [13] model which was pre-trained on Sports-1M

[1] and fine-tuned on the UCF-101 dataset as per [30]. The

model receives frames of size 128× 128, we resized when

necessary. We use 10,000 samples to calculate the score.

The standard deviation is calculated by repeating this proce-

dure 10 times. Values for VGAN, MoCoGAN, Progressive

2Using the code provided by github.com/pfnet-research/tgan.

VGAN, TGANv2, and DVD-GAN are shown as reported in

[2], TGAN and MDP’s values are reported as they appear in

the original works [30, 46]. On Jester, we use a TSN [47]

action recognition network pre-trained on ImageNet [9] and

fine-tuned on Jester, otherwise te same procedure as for UCF-

101 is used. TSB produces samples that beat the state of

the art (see Table 1a). Although, IS scores might suggest an

overwhelming improvement over all existing methods, when

qualitatively comparing samples from NT and TSB (Figure

6) we don’t see a vast improvement as the score suggests.

This could be because our samples might be exploiting C3D

[13] in a way that it is over confident about its prediction,

thus a higher score.

S3: To calculate S3 on Weizmann and UCF-101 we used

the TSN [47] action recognition network pretrained on Im-

ageNet [9]. Since Jester is a motion dataset we decided to

use ECO [33] because it incorporates a 3D network, to im-

prove classification. On the Weizmann dataset we compare

to MoCoGAN. All experiments on a dataset were done under

the same conditions. Training details of the classifier will

be included in the supplemental material. From Table 1b,

we can see TSB produces a significant performance increase

over all methods. It appears TSB, is able to increase the qual-

ity of the samples with a minimal loss of diversity. TSB was

able synthesize test set samples of the MaisToyMulti dataset

as implied the by SeR score being higher than the ReS, this

suggests generalization. MaisToy samples will be included

in the supplementary material. On UCF-101, Table 1b shows

small discrepancies between SeR and ReS indicating a good

diversity of samples. S3 scores produced by TSB show an

improvement over NT. The performance difference between

methods seems more reasonable, when visually comparing

samples (Figure 6), than the ones shown in Table 1a. Addi-

tionally, Table 2 shows that S3 is able to to capture mode

collapse in the generated samples, while still being equally

as good as IS at measuring sample quality. This indicates
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Figure 5: Generated samples on Weizmann dataset with our TSB model.

11

Figure 6: Generated samples (from left to right) of NT trained on UCF-101 and TSB trained on UCF-101, Weizmann

and Jester. Videos can be found here: https://drive.google.com/file/d/14k17fQTTztV2MPKAglOS6kP_

yDKJ24n6/view?usp=sharing

that S3 is more reliable than IS.

6.4. Qualitative Results

Figure 7: Samples from the MaisToySingle dataset, here we

present samples from classes (top to bottom) right, left, up

and down. The shapes represented here are Letter L, Letter

B, triangle and square.

Figures 6, 7, and 5 show qualitative samples generated

by training TSB to generate samples of size 96 × 96 on

UCF101, MaisToy, and Weizmann datasets respectfully. In

Figure 4, we used the motion label only variant of MaisToy

called MaisToySingle. In this figure we can appreciate that the

generation quality is good for all shapes except the triangle.

In Figure 4 we showed that TSB had problems generating

the triangle shape as well. This might be because of having

two different types of triangles in the dataset, filled triangles

and empty triangles.

6.5. Memorization test

There is no quantitative measure of memorization in gen-

erative models, thus we check this via intra-class interpola-

tion, class interpolation and k-NN retrieval. In intra-class

interpolation we linearly interpolate between to two different

latent codes ZABC while keeping the label fixed, as shown

in Figure 8. In the Figure 9, we explore class interpolation

by linearly interpolating between label embeddings, while

keeping ZABC fixed. Figures 8 and 9 show smooth transi-

tion between modes and classes. If a model would suffer
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(a) NT.

(b) TSB.

Figure 8: Example of intra-class interpolation on UCF-101.

The vertical axis represents time, the horizontal axis repre-

sents different modes of the class. We sample two latent

codes which are represented by the leftmost and right most

samples and linearly interpolate between them to generate

intermediate latent code samples.

from memorization, we would expect the interpolation to

abruptly jump from mode to mode in intra-class interpola-

tion and from label to label in class interpolation. Samples

from the retrieval experiment (Figure 10), show that gener-

ated samples are noticeable dissimilar to real samples, this

suggests that the model does not suffer from memorization.

The k-NN experiment was done using the last layer of the

ECO [33] architecture.

7. Conclusion
We presented a TSB architecture for video generation

that enforces temporal consistency into a 2D video generator

network. We show that TSB design improves the quality

of generated videos in comparison to the BigGAN baseline.

To validate effectiveness of our method, we conduct experi-

ments on four different datasets including our new dataset

MaisToy. Our new dataset enables us to analyze the general-

ization power of model and also understand which semantics

are easier for model to learn. As a supplement to the well

established IS score, we proposed the generalization based

S3 score, which is intended to be sensitive to intra-class

variation. Based on this metric our method also achieves

the best performance. These quantitative results are further

supported by our qualitative.
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(a) NT.

(b) TSB.

Figure 9: Interpolation Performance showing smooth tran-

sitions between classes on UCF-101. Each column is a

sequence.(a) The top figure is interpolating between classes

writing on board (left) and pole vault (right), while the bot-

tom one is interpolating volleyball spiking (left) and frisbee

catch (right). (b) The top figure is interpolating between

classes basketball (left) and frisbee catch (right), while the

bottom one is interpolating between golf swing (left) and

diving (right).

(a) Front Crawl.

(b) Skiing.

Figure 10: Examples of retrieval of top-3 nearest neighbors

(black) of TSB generated samples (red). We can see that al-

though the generated samples look similar to their respective

3-NNs, they are still quite visually distinct. This implies the

model isn’t just memorizing the real data.
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