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Abstract. In this work, we propose an open-vocabulary object detec-
tion method that, based on image-caption pairs, learns to detect novel
object classes along with a given set of known classes. It is a two-stage
training approach that first uses a location-guided image-caption match-
ing technique to learn class labels for both novel and known classes in
a weakly-supervised manner and second specializes the model for the
object detection task using known class annotations. We show that a
simple language model fits better than a large contextualized language
model for detecting novel objects. Moreover, we introduce a consistency-
regularization technique to better exploit image-caption pair informa-
tion. Our method compares favorably to existing open-vocabulary de-
tection approaches while being data-efficient. Source code is available at
https://github.com/lmb-freiburg/locov.
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1 Introduction

Recent advances in deep learning have rapidly advanced the state-of-the-art ob-
ject detection algorithms. The best mean average precision score on the popular
COCO [23] benchmark has improved from 40 mAP to over 60 mAP in less than
4 years. However, this success required large datasets with annotations at the
bounding box level and was a achieved in a closed-world setting, where the num-
ber of classes is assumed to be fixed. The closed-world setting restricts the object
detector to only discover known annotated objects and annotating all possible
objects in the world is infeasible due to high labeling costs. Therefore, research
of open-world detectors, which can also discover unmarked objects, has recently
come into focus specially using textual information together with images for
open-vocabulary detection [13,40,43].

To learn a visual concept, humans receive the majority of the supervision
in the form of narrations rather than class tags and bounding boxes. Consider
the example of Figure 1 together with the annotations of mouse and tv only.
Even after learning to detect these objects, finding and identifying the keyboard
without any other source of information is ambitious. Instead, if we consider
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(a) SOTA method comparison (b) GT (c) ZSD (d) LocOv

Fig. 1: Open-vocabulary object detection. (a) Compares our method LocOv with
the baseline method (OVR) and our zero-shot baseline STT-ZSD (ZSD). LocOv
improves on both novel and known classes without dropping the performance on
known classes. The zero-shot method, only trained with known classes, obtains
low performance (< 0.5 mAP) on novel classes. (b-d) LocOv is able to detect
the novel object ‘keyboard’ along with known objects, shown in figure.

the image together with the caption - “A mouse, keyboard, and a monitor on
a desk”, it is possible to identify that the other salient object in the image
is very likely a keyboard. This process involves successful localization of the
objects in the scene, identification of different nouns in the narrated sentence,
and matching the two together. Exploiting the extensive semantic knowledge
contained in natural language is a reasonable step towards learning such open-
vocabulary models without expensive annotation costs.

In this work, we aim to learn novel objects using image-caption pairs. Along
with image-caption pairs, the detector is provided with box annotations for a
limited set of classes. We follow the problem setting as introduced by Zareian et
al. [40]. They refer to this problem as Open-vocabulary Object Detection. There
are two major challenges to this problem: First, image-caption pairs themselves
are too weak to learn localized object-regions. Analyzing previous works, we
find that randomly sampled feature maps provide imprecise visual grounding for
foreground objects, therefore they receive insufficient supervisory signals to learn
object properties. Second, the granularity of the information captured by image-
region features should align with the level of information captured by the text
representation for an effective matching. For example, it would be ill-suited to
match a text representation that captures global image information with image
features that capture localized information.

In this work, we propose a method that improves the matching between
image and text representations. Our model is a two-stage approach: in the first
stage, Localized Semantic Matching (LSM), it learns semantics of objects in the
image by matching image-regions to the words in the caption; and in the second
stage, Specialized Task Tuning (STT), it learns specialized visual features for
the target object detection task using known object annotations. We called our
method LocOv for Localized Image-Caption Matching for Open-vocabulary.
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For the given objects in an image, our goal is to project them to a feature
space where they can be matched with their corresponding class in the form of
text embeddings. We find that simple text embeddings are better candidates for
matching object representations than contextualized embeddings produced by
large-scale language models.

Using image-caption pairs as weak supervision for object detection requires
the understanding of both modalities in a fine and a coarse way. This can be
obtained by processing each modality independently in a uni-modal fashion and
then matching, or using cross-modal attention to process them together. To en-
sure consistent training between the uni-modal and cross-modal methods, we
propose a consistency-regularization between the two matching scores. To sum-
marize, our contributions are: (1) We introduced localized-regions during the
image-caption matching stage to improve visual feature learning of objects. (2)
We show that simplified text embeddings match better with identified object
features as compared to contextualized text embeddings. (3) We propose a con-
sistency regularization technique to ensure effective cross-modal training.

These three contributions allow LocOv to be not only competitive against
state-of-the-art models but also data-efficient by using less than 0.6 million
image-caption pairs for training, ∼700 times smaller than CLIP-based methods.
Additionally, we define an open-vocabulary object detection setup based on the
VAW [28] dataset, which offers challenging learning conditions like few-instances
per object and a long-tailed distribution. Based on the above mentioned three
contributions, we show that our method achieves state-of-the-art performance
on both open-vocabulary object detection benchmarks, COCO and VAW.

2 Related Work

Object detection with limited supervision Semi-supervised (SSOD) [17,
24,34] and weakly-supervised (WSOD) [4,8,20] object detection are two widely
explored approaches to reduce the annotation cost. WSOD approaches aim to
learn object localization using image-level labels only. Major challenges in WSOD
approaches include differentiation between object instances [32] and precisely
locating the entire objects. SSOD approaches use a small fully-annotated set
and a large set of unlabeled images. Best SSOD [24, 34] methods are based on
pseudo-labeling, which usually suffers from foreground-background imbalance
and overfitting on the labeled set of images. In this work, we address a problem
which shares similar challenges with the WSOD and SSOD approaches, how-
ever they are limited to a closed-world setting with a fixed and predefined set
of classes. Our method addresses a mixed semi- and weakly-supervised object
detection problem where the objective is open-vocabulary object detection.

Multi-modal visual and language models. Over the past years, multiple
works have centered their attention on the intersection of vision and language
by exploiting their consistent semantic information contained in matching pairs.
The success of using this pairwise information has proved to be useful for pre-
training transformer-like models for various vision-language tasks [6, 21, 25, 35,
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Fig. 2: Overview of LocOv . It is a two-stage model: (1) Localized Semantic
Matching stage trains a Faster R-CNN-based model to match corresponding
image-caption pairs using a grounding loss LG. We exploit the multi-modal in-
formation by using a cross-attention model and an Image-Caption matching loss
LICM , the mask language modeling loss LMLM and a consistency-regularization
loss LCons. (2) Specialized Task Tuning stage tunes the model using the known
class annotations and specializes the model for object detection. See Section 3.

36, 41, 44] which process the information jointly using cross-attention. Other
approaches [11,12,19,26,29,37], centered on the vision and language retrieval task
use separate encoders for each modality, in a uni-modal fashion. These models
give the flexibility to transfer the knowledge learned by the pairwise information
to single modality tasks, which is the case of object detection. In particular Miech
et al. [26] showed that combining a cross-attention model with two uni-modal
encoders is beneficial for large-scale retrieval tasks. In this paper, we combine the
strengths of both types of approaches to train a model using different consistency
losses that exploit the information contained in image-caption pairs.

Language-guided object detection. Zero-shot object detection methods
learn to align proposed object-region features to the class-text embeddings.
Bansal et al. [2] is among the first to propose the zero-shot object detection
problem. They identified that the main challenge in ZSD is to separate the
background class from the novel objects. Zhu et al. [45] trained a generative
model to “hallucinate” (synthesize visual features) unseen classes and used these
generated features during training to be able to distinguish novel objects from
background. Rahman et al. [30] proposed a polarity loss to handle foreground-
background imbalance and to improve visual-semantic alignment. However, such
methods fail to perform well on the novel classes since the detection model has
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never seen these novel objects, and semantics learned by matching known object-
text embeddings does not extrapolate to novel classes.

To learn the semantics of novel classes, recent methods [3,13,16,40,43] have
simplified the problem by providing image-caption pairs as a weak supervision
signal. Such pairs are cheap to acquire and make the problem tractable. Image-
caption pairs allow the model to observe a large set of object categories along
with object labels. These methods either use this model to align image-regions
with captions and generate object-box pseudo labels [16, 43] or as region-image
feature extractor to classify the regions [13]. Many weakly-supervised [1, 3, 7,
33, 42] approaches have been proposed to perform such object grounding. Due
to the large performance gap between zero-shot/weakly-supervised and fully-
supervised approaches for object detection, Zareian et al. [40] introduced an
open-vocabulary problem formulation. It utilizes extra image-caption pairs to
learn to detect both known and novel objects. Their approach matches all parts
of the image with the caption, whereas we emphasize object localized regions
and a consistency loss to enforce more object-centric matching.

3 Method

We propose a two-stage approach for the task of open-vocabulary object detec-
tion as shown in Figure 2. The first stage, Localized Semantic Matching (LSM),
learns to match objects in the image to their corresponding class labels in the
caption in a weakly-supervised manner. The second stage, Specialized Task Tun-
ing (STT) stage, includes specialized training for the downstream task of object
detection. We consider two sets of object classes: known classes OK and novel
classes ON . Bounding box annotations, including class labels, are available for
known classes whereas there are no annotations for the novel classes.

The LSM receives image-caption pairs (I, C) as input, where the caption
provides the weak supervision to different image-regions. Captions contain rich
information which often include words corresponding to object classes from both
known and novel sets. Captions are processed using a pre-trained text-embedding
model (e.g.BERT [10] embedding) to produce word or part-of-word features.
Images are processed using an object detection network (Faster R-CNN [31]) to
obtain object region features. We propose to utilize an object proposal generator
OLN [18] to provide regions as pseudo-labels to train the Faster R-CNN. This
helps obtaining object-rich regions which improve image region-caption match-
ing. This way, during the LSM our model learns to match all present objects
in the image in a class-agnostic way. See Section 3.1 for details. The STT stage
tunes the Faster R-CNN using known object annotations primarily to distin-
guish foreground from background and learns corresponding precise location of
the foreground objects. See Section 3.2 for details.

3.1 Localized Semantic Matching (LSM)

The LSM stage consists of three main components: (1) localized object region-
text matching, (2) disentangled text features and (3) consistency-regularization.
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Localized object region-text matching. Given the sets RI = { r : r is
an image-region feature vector from the image I} and WC = { w : w is a word or
part-of-word feature vector from the caption C}, we calculate the similarity score
between an image and a caption in a fine-grained manner, by comparing image-
regions with words, since our final objective is to recognize objects in regions.
The image is processed using a Faster R-CNN model and a projection layer that
maps image-regions into the text-embedding feature space. The similarity score
is calculated by taking an image composed of |RI | region features and a caption
composed of |WC | part-of-word features by:

sim(I, C) =
1

|RI |

|RI |∑
i=1

|WC |∑
j=1

di,j(ri · wj) (1)

where di,j corresponds to:

d(ri, wj) = di,j =
exp(ri · wj)∑|WC |

j′=1 exp(ri · wj′)
. (2)

Based on the similarity score (Eq. 1) , we apply a contrastive learning objec-
tive to match the corresponding pairs together by considering all other pairs in
the batch as negative pairs. We define this grounding loss as:

LGr
(I) = − log

exp(sim(I, C))∑
C′∈Batch exp(sim(I, C ′))

(3)

We apply this loss in a symmetrical way, where each image in the batch is
compared to all captions in the batch (Eq. 3) and each caption is compared
to all images in the batch LGr (C). The subscript r denotes the type of image-
regions used for the loss calculation. We consider two types of image-regions:
box-regions and grid-regions. Box-region features are obtained naturally using
the region of interest pooling (RPN) from the Faster R-CNN. We make use of the
pre-trained object proposal generator (OLN) to train the Faster-RCNN network.
OLN is a class-agnostic object proposal generator which estimates all objects in
the image with a high average recall rate. We train OLN using the known class
annotations and use the predicted boxes to train our detection model, shown in
Figure 2. Since captions sometimes refer to background context in the image,
parallel to the box-region features, we also use grid-region features similar to
the OVR [40] approach. Grid-region features are obtained by skipping the RPN
in the Faster R-CNN and simply using the output of the backbone network.
We apply the grounding loss to both type of image-region features. Our final
grounding loss is given by:

LG = LGbox
(C) + LGbox

(I) + LGgrid
(C) + LGgrid

(I) (4)

Disentangled text features. Many previous works [6, 15, 25, 35] use con-
textualized language models to extract text representations of the sentence. Al-
though, this might be suitable for a task that requires a global representation of
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a phrase or text, this is not ideal for the case for object detection, where each
predicted bounding box is expected to contain a single object instance. We show
that using a simple text representation, which keeps the disentangled semantics
of words in a caption, gives the flexibility to correctly match object boxes in
an image with words in a caption. Our method uses only the embedding mod-
ule [10, 27] of a pre-trained language model to encode the caption and perform
matching with the proposed image-regions. For embedding model we refer to the
learned dictionary of vector representations of text tokens, which correspond to
words or part-of-words. For cases where the text representing an object category
is divided into multiple tokens, we consider the average representation of the
tokens as the global representation of the object category. We show empirically,
in Section 4.4, that using such a lightweight text embedding module has better
performance than using a whole large-scale language model.

Consistency-regularization Miech et al. [26] showed that processing multi-
modal data using cross-attention networks brings improvements in retrieval ac-
curacy over using separate encoders for each modality and projecting over a
common embedding space. However, this cross-attention becomes very expen-
sive when the task requires large-scale retrieval. To take the benefit of cross-
attention models, we consider a model similar to PixelBERT [15] to process
the image-caption pairs. This cross-attention model takes the image-regions RI

together with the text embeddings WC and matches the corresponding image-
caption pairs in a batch. The image-caption matching loss (LICM ) of the cross-
attention model together with the traditional Masking Language Modeling loss
(LMLM ) enforces the model to better project the image-region features to the
language semantic space.To better utilize the cross-attention model, we propose
a consistency-regularization loss (LCons) between the final predicted distribution
over the image-caption matching scores in the batch, before and after the cross-
attention model. We use the Kullback-Leibler divergence loss to impose this
consistency. In summary, we use three consistency terms over different image-
caption pairs:

LCons =DKL(p(Ibox, C)||q(Ibox, C))

+ DKL(p(Igrid, C)||q(Igrid, C))

+ DKL(p(Igrid, C)||q(Ibox, C)) (5)

where p(I∗, C) and q(I∗, C) correspond to the softmax of the image-caption pairs
in a batch before and after the cross-attention model respectively, and the sub-
index of the image corresponds to the box- or grid-region features. Our final loss
for the LSM stage corresponds to the sum of the above defined losses:

LLSM = LG + LICM + LMLM + LCons (6)

3.2 Specialized Task Tuning (STT)

In this stage, we fine-tune the model using known class annotations to learn to
localize the objects precisely. We initialize the weights from the LSM stage model,
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and partially freeze part of the backbone and the projection layer to preserve the
learned semantics. Freezing the projection layer is important to avoid overfitting
on the known classes and generalize on novel classes. To predict the class of an
object, we compute the similarity score between the proposed object box-region
feature vector (ri) and all the class embedding vectors ck and apply softmax

p(ri, ck) =
exp(ri · ck)

1 +
∑

c′k∈OK
exp(ri · ck′)

. (7)

The scalar 1 included in the denominator corresponds to the background class,
which has a representation vector of all-zeros. We evaluate the performance
across three setups: (Novel) considering only the novel class set ON , (Known)
comparing with the known classes only OK and (Generalized) considering all
novel and known classes together.

4 Experiments

4.1 Training Details

Datasets. The Common Objects in Context (COCO) dataset [22] is a
large-scale object detection benchmark widely used in the community. We use
the 2017 train and val split for training and evaluation respectively. We use the
known and novel object class splits proposed by Bansal et al. [2]. The known set
consists of 48 classes while the novel set has 17 classes selected from the total
of 80 classes of the original COCO dataset. We remove the images which do
not contain the known class instances from the training set. For the localized
semantic matching phase, we use the captions from COCO captions [5] dataset
which has the same train/test splits as the COCO object detection task. COCO
captions dataset contains 118,287 images with 5 captions each. Additionally in
the supplementary material, we test LocOv using Visual Attributes in the
Wild (VAW) dataset [28] a more challenging dataset containing fine-grained
classes with a long-tailed distribution.

Evaluation metric. We evaluate our method using mean Average Precision
(AP) over IoU scores from 0.5 to 0.95 with a step size of 0.05, and using two
fixed thresholds at 0.5 (AP50) and 0.75 (AP75). We compute these metrics sep-
arately for novel and known classes, calculating the softmax within the subsets
exclusively; and in a generalized version both sets are evaluated in a combined
manner, calculating the probability across all classes.

Implementation details. We base our model on Faster R-CNN C4 [31]
configuration, using ResNet50 [14] backbone pre-trained on ImageNet [9], to-
gether with a linear layer (projection layer) to obtain the object feature rep-
resentations. We use Detectron2 framework [39] for our implementation. For
the part-of-word feature representations, we use the embedding module of the
pre-trained BERT [10] “base-uncased” model from the HuggingFace implemen-
tation [38]. To get the object proposals for the LSM stage, we train a generic
object proposal network, OLN [18]. OLN is trained using only the known classes
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Table 1: Comparing mAP and AP50 state-of-the-art methods. LocOv outper-
forms all other methods for Novel objects in the generalized setup while using
only 0.6M of image-caption pairs. Training dataset: ∗ImageNet1k, §COCO cap-
tions, †CLIP400M, ‡Conceptual Captions, ?Open Images, and cCOCO

Method
Img-Cap Constrained Generalized
Data Novel (17) Known (48) Novel (17) Known (48) All (65)
Size AP AP50 AP AP50 AP AP50 AP AP50 AP AP50

Faster R-CNN

-

- - 54.5 - - - - - -
SB [2] - 0.70 - 29.7 - 0.31 - 29.2 - 24.9
LAB [2] - 0.27 - 21.1 - 0.22 - 20.8 - 18.0
DSES [2] - 0.54 - 27.2 - 0.27 - 26.7 - 22.1
DELO [45] - 7.6 - 14.0 - 3.41 - 13.8 - 13.0
PL [30] - 10.0 - 36.8 - 4.12 - 35.9 - 27.9

STT-ZSD (Ours) 0.21 0.31 33.2 53.4 0.03 0.05 33.0 53.1 24.4 39.2

OVR∗§c [40]
0.6M

14.6 27.5 26.9 46.8 - 22.8 - 46.0 22.8 39.9

LocOv ∗§c (Ours) 17.2 30.1 33.5 53.4 16.6 28.6 31.9 51.3 28.1 45.7

XP-Mask‡§?c [16] 5.7M - 29.9 - 46.8 - 27.0 - 46.3 - 41.2

CLIP (cropped reg)† [13] 400M - - - - - 26.3 - 28.3 - 27.8

RegionCLIP†§c [43] 400.6M - 30.8 - 55.2 - 26.8 - 54.8 - 47.5

ViLD†c [13] 400M - - - - - 27.6 - 59.5 - 51.3

on COCO training set. We use all the proposals generated for the training images
which have an objectness score higher than 0.7. For our cross-attention model,
we use a transformer-based architecture with 6 hidden layers and 8 attention
heads trained from scratch. We train our LSM stage with a base learning rate of
0.001, where the learning rate is divided by 10 at 45k and 60k iterations. We use
a batch size of 32 and train on 8 GeForce-RTX-2080-Ti GPUs for 90k iterations.
For the STT stage, we initialize the weights of the Faster R-CNN and projec-
tion layer from the LSM stage, freezing the first two blocks of ResNet50 and
the projection layer. For object classes that contain more than one part-of-word
representation given BERT embedding module, we consider the average of their
vector representation. We use a base learning rate of 0.005 with a 10 times drop
at 60k iterations and do early stopping to avoid over-fitting.

4.2 Baselines

OVR. The main baseline approach is proposed by Zareian et al. [40]. We utilize
some components proposed in the work including the two-stage design, ground-
ing loss and usage of a cross-attention model. In this work, we propose new
components, which simplify and improve the model performance over OVR.
STT-ZSD. Our second baseline uses only the Specialized Task Tuning stage.
This resembles a zero-shot object detection setting. The model is initialized with
ImageNet [9] weights with a trainable projection layer.
Zero-shot methods. We compare to some zero-shot object detection approaches
which do not include the weak supervision provided by the captions. We compare
to three background-aware zero-shot detection methods, introduced by Bansal
et al. [2], which project features of an object bounding box proposal method to
word embeddings. The SB method includes a fixed vector for the background
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Table 2: Different image regions for the LSM stage. RI
grid- grid-regions, RI

box-

proposed box-regions and RI
ann- ground truth box-regions of (k) known or (n)

novel objects use during the LSM stage
Regions Novel (17) Known (48) Generalized

RI
grid RI

box RI
ann AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

100 k+n 18.2 31.6 18.2 32.5 52.7 34.0 27.9 46.0 28.8
k+n 16.3 28.4 15.9 32.9 53.1 34.9 27.6 45.3 28.8

100 100 17.2 30.1 17.5 33.5 53.4 35.5 28.1 45.7 29.6
200 15.5 27.1 15.4 32.2 52.1 33.9 27.1 44.5 28.2

200 13.7 25.7 12.9 34.2 53.8 36.5 27.5 43.8 29.1

class in order to select which bounding boxes to exclude during the object clas-
sification, LAB uses multiple latent vectors to represent the different variations
of the background class, and DSES includes more classes than the known set as
word embedding to train in a more dense semantic space. DELO [45] method
uses a generative model and unknown classes to synthesize visual features and
uses them while training to increase background confidence. PL [30] work deals
with the imbalance between positive vs. negative instance ratio by proposing a
method that maximizes the margin between foreground and background boxes.
Faster R-CNN. We also compare with training the classical Faster R-CNN
model only using the known classes.

Open-vocabulary with large data. We compare our method with recent
open-vocabulary models. RegionClip [43] uses the CLIP [29] pre-trained model to
produce image-region pseudo labels and train an object detector. CLIP (cropped
reg) [13] uses the CLIP pre-trained model on 400M image-caption pairs on object
proposals obtained by an object detector trained on known classes. XP-Mask [16]
learns a class-agnostic region proposal and segmentation model from the known
classes and then uses this model as a teacher to generate pseudo masks for self-
training a student model. Finally, we also compare with VILD [13] which uses
CLIP soft predictions to distil semantic information and train an object detector.

4.3 Results

COCO dataset. Table 1 shows the comparison of our method with several
zero-shot and open-vocabulary object detection approaches. LocOv outperforms
previous zero-shot detection methods, which show weak performance on detect-
ing novel objects. In comparison to OVR, we improve by 2.53 AP, 3.4 AP50 for
the novel classes and 3.91 AP, 3.92 AP50 for the known categories. We observe
open-vocabulary methods including OVR and our methods have a trade-off be-
tween known and novel class performance. Our method finds a better trade-off
as compared to the previous work. It reduces the performance gap on known
classes as compared to the Faster R-CNN and improves over the novel classes as
compared to all previous works. Our method is competitive with recent state-
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(a) Ground Truth (b) STT-ZSD (c) OVR [40] (d) LocOv

Fig. 3: Qualitative results for open-vocabulary object detection on MSCOCO
dataset. Novel classes are shown in magenta while known are in green. Methods
compared are described in Section 4.2. (Best viewed in color)

of-the-art methods which use more than ∼700 times more image-captions pairs
to train, which makes our method data efficient.

Figure 3 shows some qualitative results of our method compared with the
STT-ZSD baseline and OVR. Known categories are drawn in green while novel
are highlighted in magenta. The columns correspond to the ground truth, STT-
ZSD, OVR and our method from left to right. LocOv is able to find novel objects
with a high confidence, such as the dogs in the first example, the couch in
the second and the umbrella in the third one. We observe that our method
sometimes misclassifies objects with plausible ones, such as the case of the chair
in the second example which shares a similar appearance to a couch. These
examples show a clear improvement of our approach, over the other methods. In
the supplementary material we include some examples of our method showing
the limitations and main cause of errors of LocOv .

4.4 Ablation Experiments

Localized objects matter. Table 2 presents the impact of using box- vs grid-
region features in the LSM stage. We compare our method using grid-region
features RI

grid, proposed box-region features RI
box, and using box-region features

from the known (k) or novel (n) class annotations RI
ann. We find that the com-

bination of grid- and box-regions proves to be best, showing a complementary
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Table 3: Ablation study showing the contribution of our proposed consistency-
regularization term (LCons) and usage of BERT text embeddings on COCO
validation set. We compared using frozen pretrained weights (fz) of the language
model and embedding, fine-tuning (ft) or training from scratch

LCons
BERT BERT Novel (17) Known (48) Generalized
Model Emb. AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

X fz 17.2 30.1 17.5 33.5 53.4 35.5 28.1 45.7 29.6
X fz fz 16.7 29.7 16.7 33.4 53.5 35.5 28.2 45.9 29.5
X ft 16.9 29.5 16.9 33.4 53.0 35.4 28.1 45.7 29.4
X scratch 16.0 28.3 16.2 30.4 49.6 31.8 25.8 42.9 26.6

fz 15.4 27.9 15.2 32.2 52.1 34.1 26.3 43.6 27.3

behavior. We also considered two oracle experiments (row 1 and 2) using ground-
truth box-region features from both known and novel class annotations instead of
proposed box-region features. The best performance is achieved when combined
with additional grid regions (row 1). The additional grid-regions help in cap-
turing the background objects beyond the annotated classes while box-regions
focus on foreground objects, which improves the image-caption matching.

Consistency loss and text embedding selection. Table 3, shows the
contribution of our consistency-regularization term. We get an improvement of
1.76 AP by introducing our consistency loss. We compare the performance of
using a pre-trained text embedding module vs learning it from scratch, fine-
tuning it or considering the complete contextualized language model during the
LSM stage in Table 3. Using the pre-trained text embedding, results in a better
model.

We find out that using only the embeddings module is sufficient and better
than using the complete contextualized BERT language model for the task of
object detection. We argue that this is because objects are mostly represented by
single word vectors, using simple disentangled text embeddings is better suited
for generating object class features. In the supplementary material we include
an ablation study showing that both stages of training are necessary and com-
plementary for the success of LocOv .

Table 4 shows the the improvement in performance for each of our contri-
butions. Our baseline method is our implementation of OVR [40]. Both the
consistency-regularization together with the inclusion of the box-regions gives
the most increment in performance for both novel and known classes. Using
only the BERT Embeddings improves the novel class performance although it
affects the known classes. Overall we can see that the three contributions are
complementary and improve the method for open-vocabulary detection.

5 Conclusion

In this work, we proposed an image-caption matching method for open-vocabulary
object detection. We introduced a localized matching technique to learn im-
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Table 4: Ablation study showing the contributions LocOv . LCons = consistency-
regularization, RI

box = inclusion of box-regions together with grid-regions, BERT
Emb. only.

LCons RI
box

BERT Novel (17) Known (48) Generalized
Emb. AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

X X X 17.2 30.1 17.5 33.5 53.4 35.5 28.1 45.7 29.6
X X × 16.7 29.7 16.7 33.4 53.5 35.5 28.2 45.9 29.5
X × X 15.5 27.1 15.4 32.2 52.1 33.9 27.1 44.5 28.2
× X X 15.4 27.9 15.2 32.2 52.1 34.1 26.3 43.6 27.3
× × × 14.3 25.6 14.4 28.1 47.8 29.3 23.7 40.9 24.5

proved labels of novel classes as compared to only using grid features. We also
showed that the language embedding model is preferable over a complete lan-
guage model, and proposed a regularization approach to improve cross-modal
learning. In conjunction, these components yield favorable results compared to
previous open-vocabulary methods on COCO and VAW benchmarks, particu-
larly considering the much lower amount of necessary data to learn from.
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