

Motivation

- Traditional object detectors work in a closed-world setting \rightarrow restrict detections to only discover known annotated objects. Scaling annotations to all possible objects in the world is infeasible.
- Vision-language modeling has made it possible for models to expand their vocabulary to novel objects without costly annotation.

Open-vocabulary Object Detection

Open-vocabulary Detection Task

Objective: Train an object detector capable of detecting any object represented by a text query.

Training data types:

Object detection labels	Image
Bounding box and object class	Image
labels of known classes O_K	captio

Test object class sets:

- $K \rightarrow known classes$ seen during training
- $O_N \rightarrow$ **novel classes** no explicit annotations

Approach Overview

We propose LocOv, Localized Image-Caption Matching for Open-vocabulary, a two-stage approach with a Faster R-CNN [1] architecture.

- . Localized Semantic Matching (LSM): learn the semantics of objects in the image by matching image-regions to the words in the caption using a grounding loss \mathcal{L}_G . We exploit the multi-modal information by using a cross-attention model and an Image-Caption matching loss \mathcal{L}_{ICM} , the mask language modeling loss \mathcal{L}_{MLM} and a consistency-regularization loss \mathcal{L}_{Cons} .
- 2. Specialized Task Tuning (STT): tunes the model using the known class annotations and specializes the model for object detection.

We define the sets:

 $R^{I} = \{r : r \text{ is an image-region feature vector from the image } I\}$

Localized Vision-Language Matching for Open-vocabulary Object Detection

María A. Bravo

{bravoma, mittal, brox}@cs.uni-freiburg.de

Localized object region-text matching

ightarrow Match objects in the image to their corresponding class labels in the caption. We define a contrastive **Grounding loss** based on the similarity between an image I and a caption C.

$$sim(I,C) = \frac{1}{|R^{I}|} \sum_{i=1}^{|R^{I}|} \sum_{j=1}^{|W^{C}|} d_{i,j}(r_{i} \cdot w_{j}),$$

Apply the grounding loss to two types of image-regions (r) features.

$$\mathcal{L}_G = \mathcal{L}_{G_{box}}(C) + \mathcal{L}_{G_{box}}(I) + \mathcal{L}_{G_{grid}}(C) + \mathcal{L}_{G_{grid}}(I)$$

2. Disentangled text features

ightarrow Use embeddings of the pre-trained BERT model as text representations for image-text matching instead of contextualized text representations.

Consistency-regularization

ightarrow Regularize the direct grounding loss with a cross-attention model. The cross-attention model takes the image-regions R^I and text embeddings W^C and calculates three losses.

- Image-caption matching loss \mathcal{L}_{ICM} ,
- Masked Language Modeling loss \mathcal{L}_{MLM} , and
- paring the matching distribution of the image-caption pairs before and after the cross-attention model.

Datasets:

Training data: MS-COCO dataset [2] as the object detection dataset, and COCO captions [3] as the image-caption dataset. Test data: MS-COCO dataset, results reported on 17 O_N , 48 O_K , and generalized (O_K (JO_N). **Evaluation metrics:** mean Average Precision (AP), and Average Precision using two fixed thresholds at 0.5 (AP₅₀) and 0.75 (AP₇₅).

\mathcal{L}_{Cons}	R^{I}_{box}	BERT	Novel (17)			K	nown (4	.8)	Generalized		
		Emb.	AP	AP_{50}	AP_{75}	AP	AP_{50}	AP_{75}	AP	AP_{50}	AP_{75}
×	×	×	14.3	25.6	14.4	28.1	47.8	29.3	23.7	40.9	24.5
×	\checkmark	\checkmark	15.4	27.9	15.2	32.2	52.1	34.1	26.3	43.6	27.3
\checkmark	×	\checkmark	15.5	27.1	15.4	32.2	52.1	33.9	27.1	44.5	28.2
\checkmark	\checkmark	×	16.7	29.7	16.7	33.4	53.5	35.5	28.2	45.9	29.5
\checkmark	\checkmark	\checkmark	17.2	30.1	17.5	33.5	53.4	35.5	28.1	45.7	29.6

Sudhanshu Mittal Thomas Brox

Method

 $\mathcal{L}_{G_r}(I) = -\log \frac{\exp(sim(I,C))}{\sum_{C' \in \mathsf{Batch}} \exp(sim(I,C'))},$

$$d(r_i, w_j) = d_{i,j} = \frac{\exp(r_i \cdot w_j)}{\sum_{j'=1}^{|W^C|} \exp(r_i \cdot w_{j'})}$$

• Consistency-regularization loss \mathcal{L}_{Cons} . We use the Kullback-Leibler divergence loss to impose this consistency by com-

Ablation Experiments

LocOv outperforms all other methods for Novel objects in the generalized setup while using only 0.6M of image-caption pairs. Training dataset: *ImageNet1k, [§]COCO captions, [†]CLIP400M, [‡]Conceptual Captions, *Open Images, and ^cCOCO.

- The proposed localized matching technique helps in learning labels of novel classes as compared to only using grid features. - Language embedding features are preferable over contextualized features for novel object detection. - Consistency-regularization between grounding and cross-modal matching is crucial for the open-vocabulary detection task.

- arXiv:1504.00325, 2015,

- ittps://openreview.net/forum?id=IL3InMbR4WU
- arXiv:2112.09106, 2021.

This work was supported by Deutscher Akademischer Austauschdienst - German Academic Exchange Service (DAAD) Research Grants - Doctoral Programmes in Germany, 2019/20; grant number: 57440921. The Deep Learning Cluster used in this work is partially funded by the German Research Foundation (DFG) - 417962828.

	Results													
	Img-Cap	Img-Cap Constrained						Generalized						
	Data	Nove	l (17)	Known (48)		Novel (17)		Known (48)		All (65)				
	Size	AP	AP ₅₀	AP	AP_{50}	AP	AP_{50}	AP	AP_{50}	AP	AP ₅₀			
			_	_	54.5	_	_	_	_	_	_			
	-	0.21	0.31	33.2	53.4	0.03	0.05	33.0	53.1	24.4	39.2			
	0.6M	14.6	27.5	26.9	46.8	-	22.8	_	46.0	22.8	39.9			
		17.2	30.1	33.5	53.4	16.6	28.6	31.9	51.3	28.1	45.7			
	5.7M	_	29.9	_	46.8	_	27.0	_	46.3	_	41.2			
[6]	400M	-	-	-	-	-	26.3	_	28.3	_	27.8			
	400.6M	_	30.8	_	55.2	_	26.8	_	54.8	_	47.5			
	400M	_	_	-	-	_	27.6	_	59.5	_	51.3			

Conclusions

References

[1] S. Ren, K. He, R. Girshick, and J. Sun, "Faster r-cnn: Towards real-time object detection with region proposal networks," in NeurIPS, 2015.

[2] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, "Microsoft coco: Common objects in context," in ECCV, 2014.

[3] X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta, P. Dollár, and C. L. Zitnick, "Microsoft coco captions: Data collection and evaluation server," arXiv preprint

[4] A. Zareian, K. D. Rosa, D. H. Hu, and S.-F. Chang, "Open-vocabulary object detection using captions," in CVPR, 2021.

5 D. Huynh, J. Kuen, Z. Lin, J. Gu, and E. Elhamifar, "Open-vocabulary instance segmentation via robust cross-modal pseudo-labeling," arXiv preprint arXiv:2111.12698, 2021. [6] X. Gu, T.-Y. Lin, W. Kuo, and Y. Cui, "Open-vocabulary object detection via vision and language knowledge distillation," in ICLR, 2022. [Online]. Available:

[7] Y. Zhong, J. Yang, P. Zhang, C. Li, N. Codella, L. H. Li, L. Zhou, X. Dai, L. Yuan, Y. Li et al., "Regionclip: Region-based language-image pretraining," arXiv preprint

Acknowledgements