
Supplementary to
Localized Vision-Language Matching for

Open-vocabulary Object Detection
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Appendix

A VAW dataset

Visual Attributes in the Wild (VAW) dataset [2] We use the training,
validation and test set of images as defined with the proposed dataset [2]. The
dataset contains 58,565 images for training, 3,317 images for validation, and
10,392 images for testing. We define the splits for known and novel classes taking
approximately 20% of the total classes (2260) to be novel, resulting in 1792
known and 468 novel classes. We make sure that all known and novel classes from
COCO split are kept in the same subset for VAW splits. After removing images
with no known annotations from the training and splitting into known and novel
classes, there are 54,632 images for training spanning over 1790 known classes,
818 known / 200 novel classes for the validation set, and 1020 known / 297 novel
classes for the test set. This dataset is much more challenging as compared to
COCO since it contains fine-grained classes with a long-tailed distribution. It not
only contains more classes as compared to the COCO benchmark, but also poses
additional challenges like plural versions defined as different classes, e.g.kites vs
kite. In the LSM phase, we use the captions from Visual Genome Region
Descriptions [1] which contain 108,077 images with a total of 4,297,502 region
descriptions. We combine these region descriptions for every image to have a
single caption per image.

VAW dataset results. LocOv successfully generalizes to the VAW bench-
mark. Table 1 shows the comparison of our approach to both STT-ZSD and

Method
Novel (297) Known (1020) Generalized (2060)

AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

STT-ZSD (Ours) 0.14 0.28 0.15 1.33 2.56 1.16 0.95 1.84 0.82
OVR [3] 0.59 1.27 0.45 0.92 2.08 0.72 0.70 1.57 0.54

LocOv (Ours) 0.67 1.42 0.59 1.21 2.31 1.11 0.91 1.77 0.81

Table 1: Comparing open-vocabulary object detection results on the VAW test
set.



2 M. Bravo et al.

OVR baselines on the test set. Our method improves consistently over the other
two methods for the novel classes, showing that it can scale to more challenging
settings with long-tailed distribution and large number of classes.

B Ablation Experiments

Table 2: Comparison of the different stages of the model on the novel object
detection. The table also shows different configurations of model update in the
STT stage by freezing parts of the backbone network

LSM STT
Freezing blocks Novel (17) Known (48) Generalized
1-4 1-3 1-2 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

X X X 17.17 30.86 16.78 30.79 50.68 32.21 26.14 43.80 27.05
X X X 16.77 30.91 16.24 30.10 49.71 31.14 25.44 43.14 25.98
X X X 15.96 29.09 15.59 29.14 48.50 30.63 24.82 41.99 25.73
X X 0.73 1.89 0.37 0.82 2.06 0.48 0.89 2.27 0.52

X X 0.21 0.31 0.21 33.23 53.43 35.03 24.38 39.19 25.72

Two-stage model performs best. In Table 2, we show the extended performance
of our method using single stage, either LSM or STT, and fine-tuning different
sets of the backbone weights during the STT stage. The last two rows of Table 2
consider our method using only the STT stage (same as our baseline STT-ZSD
from Section 4.2 in the main paper) and using only the LSM stage. Individual
stage models are not able to detect novel objects well, which shows that both
stages are fundamental for the detection of novel objects. We further compare
the performance of different model configurations by freezing different number
of blocks of the backbone network during the STT stage. Our results show that
only freezing the first two blocks and the projection layer leads to the best
configuration for the STT. In conclusion we can observe two main results: first,
using both stages is crucial to detect novel objects. Second, freezing the backbone
weights of the 1st and 2nd ResNet blocks during the STT stage results in the
best configuration for both, novel and known, performances.

Localized objects matter. Table 3 presents the impact of using box- vs grid-region
features in the LSM stage. We compare our method using grid-region features
RI

grid, proposed box-region features RI
box, and using box-region features from

the known (k) or novel (n) class annotations RI
ann. When training the LSM

stage, we only consider a fixed amount of image regions to calculate the losses
and drop the rest of the regions. To illustrate that the improvement comes from
the combination of grid- and box-regions and not simply from more boxes, we
trained with an increased number of image regions (100 and 200) for every case
explicitly stated in Table 3. Even though increasing the number of regions results
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Table 3: Different image regions for the LSM stage. RI
grid- grid-regions, RI

box-

proposed box-regions and RI
ann- ground truth box-regions of (k) known or (n)

novel objects use during the LSM stage
Regions Novel (17) Known (48) Generalized

RI
grid RI

box RI
ann AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

100 k+n 18.2 31.6 18.2 32.5 52.7 34.0 27.9 46.0 28.8
k+n 16.3 28.4 15.9 32.9 53.1 34.9 27.6 45.3 28.8

100 k 14.2 26.8 13.4 30.0 50.2 31.3 24.8 42.4 25.5

100 100 17.2 30.1 17.5 33.5 53.4 35.5 28.1 45.7 29.6
200 15.5 27.1 15.4 32.2 52.1 33.9 27.1 44.5 28.2
100 14.9 25.8 15.0 31.7 51.8 33.3 26.6 43.9 27.7

200 13.7 25.7 12.9 34.2 53.8 36.5 27.5 43.8 29.1
100 13.4 22.8 13.4 33.9 53.7 35.8 27.0 43.3 28.5

Table 4: Ablation study showing the performance of using of BERT text embed-
dings vs BERT Model during the LSM stage on COCO validation set.

BERT BERT Novel (17) Known (48) Generalized
Model Emb. AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

X 17.0 29.6 17.1 33.5 53.4 35.5 28.1 45.7 29.6
±0.3 ±0.7 ±0.7 ±0.1 ±0.1 ±0.0 ±0.0 ±0.1 ±0.1

X X 16.6 29.3 16.4 32.6 52.3 34.5 27.4 45.0 28.6
±0.1 ±0.5 ±0.2 ±1.4 ±1.8 ±1.5 ±1.0 ±1.2 ±1.2

in a better performance the combination of both types of regions proves to be
best, showing a complementary behavior. We also considered two oracle exper-
iments (row 1 and 2) using ground-truth box-region features from both known
and novel class annotations instead of proposed box-region features. These two
experiments improve performance on novel classes showing that object-centered
box regions are crucial and the best performance is achieved when combined
with additional grid regions (row 1). The additional grid-regions help in captur-
ing the background objects beyond the annotated classes while box-regions focus
on precise foreground objects, which improves the image-caption matching.

Text embedding selection. To verify the improvement of using simplified text
embeddings over BERT Model, we perform three runs using both configurations
during the LSM stage. Table 4 shows the mean results over the runs with their
standard deviation. Even though the differences between the two model config-
urations are small, on average using the simple embedding layer of BERT gives
a higher performance.

C Limitations

Visual features of novel object classes are learned during the Localized Semantic
Matching stage using image-caption pairs. We notice that such a weak form of
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(a) GT (b) LocOv (c) GT (d) LocOv

Fig. 1: Failure cases. The method fails to learn fine-grained classification for
novel objects. The model confuses between similar classes. For e.g. the model
sometimes predicts ‘fork’ as ‘knife’(left image) and ‘cat’ as ‘dog’(right image).

supervision is not sufficient to learn fine-grained classification. Similar classes
such as ‘dog’ and ‘cat’ or ‘knife’ and ‘fork’ are often confused, as shown in
Figure 1, since they can be used exchangeably in the caption description and
they sometimes even co-occur in the image (e.g.knife-fork), making the matching
process ambiguous. We also observe a clear drop in performance of known object
classes when a similar novel object class is detected. A table showing this analysis
quantitatively is included in the supplementary.

D Per Class Performance

Figure 2 presents the difference of AP per class when considering the generalized
setup, all classes together, minus the AP for the individual setup, only the novel
or only the known classes. Most of the scores present a drop when considering the
generalized case. Analyzing cases where this drop is larger than 3.5 AP (the red
bars in Figure 2) we can deduce that these classes are mostly confused. Figures 3
and 4 show some qualitative examples of our method. We show the ground truth
image with annotations and results using our method for comparison. In Figure
3 we can observe that classes such as bowl and cup are frequently confused, and
similar error occurs for classes: fork, knife and spoon. These errors occur due
to the fact that these classes look similar or appear together very often. These
type of errors are also noticeable between other such classes like cow/sheep/dog
and snowboard/skis/skateboard. The class toaster is a special case since it is the
class with the least instances present in the dataset (only 9 vs a median of 275),
which makes it harder for our method to distinguish this class among the known
set and the task becomes harder when considering all 65 classes.

E Qualitative examples

Figures 3 and 4 show some random qualitative examples of LocOv . Our method
is capable of discovering novel classes such as cat, dog, sink, bus with high con-
fidence, specially when there is no ambiguity or similarity with other categories.
Similar visual classes such as fork, knife and spoon; cow and sheep; cat and dog;
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Fig. 2: We plot the difference in AP score when considering the generalized setup
(all classes together) as compare to considering the individual sets of known and
novel separately. Most of the classes present a drop when considering all classes
together. Red bars correspond to classes with a drop larger than 3.5 AP.

couch and bed; or snowboard, skis, and skateboard or are sometimes confused
by our model.
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(a) Ground Truth (b) Our Results (c) Ground Truth (d) Our Results

Fig. 3: Qualitative results obtained using LocOv on the COCO dataset. Novel
classes are shown in magenta while known are in green. (Best viewed in color)
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(a) Ground Truth (b) Our Results (c) Ground Truth (d) Our Results

Fig. 4: Qualitative results obtained using LocOv on the COCO dataset. Novel
classes are shown in magenta while known are in green. (Best viewed in color)
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