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A Application of MOoSe to Transformers

Table 1: Lawin transformer + MOoSe. Results of the application of MOoSe
to the Lawin transformer on the CAOS benchmark. Compatibly with the results
obtained using CNN-based models, the the approach yields improvements on all
metrics, for all scoring functions and on both datasets.

StreetHazards | BDD-Anomaly

Score fn. Method | AUPR? 91;5‘§I§¢ AUPR? 9§¥E§¢

MSP Global 14.78  21.52 7.46  20.00
MOoSe| 16.05 20.96] 8.12 19.85

H Global 18.22  20.81|] 10.94 17.84
MOoSe| 19.90 20.17| 11.89 17.53

ML Global 21.07  18.78 8.17  24.26
MOoSe | 21.87 17.99| 11.40 15.56

In this section we report the results of our method applied to an attention-
based model for semantic segmentation, the Lawin transformer [13]. The Lawin
transformer features a spatial pyramid pooling based on multiple attention
window sizes instead of dilated convolutions. We apply MOoSe to Lawin as we
did for DeepLabV3, by replicating the model’s decoder head for the 4 contextual
probes, which are each built on top of a single module of the spatial pyramid
and all have access to the features from the image-level pooling.

The results for out-of-distribution detection with Lawin on the CAOS bench-
mark are shown in Table 1. Analogously to the results presented in the main
paper, it can be seen that the gains provided by MOoSe affect all metrics on
both datasets and for all scoring functions.

Compared to DeepLabV3, Lawin performs substantially better on StreetHaz-
ards but worse on BDD-Anomaly. We argue that this could be an effect of the
smaller size of anomalous objects in the second dataset, which does not pair well
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with the input patching performed by transformers. Regardless, the results show
that the advantages of contextual probing are valid for modern attention-based
neural networks and are not confined to convolutional neural networks.

B Comparison with Ensembles — ResNet101 Backbone

Shown in Table 2 are the results for MOoSe, ensembles and the single-head
baseline on the CAOS benchmark. Unlike the corresponding table in the main
paper, all numbers reported in Table 2 are for DeepLabV3 [5] models, which
differ in the backbone used: ResNet50 or ResNet101 [7]. On StreetHazards the
results are rather consistent over different backbones, on all metrics and especially
using entropy and maximum logit scoring functions. On BDD-Anomaly the more
powerful backbone has a slight but consistent advantage, possibly due to the
higher difficulty of this dataset.

Table 2: CAOS benchmark, ResNet101 backbone. Comparison between
global head (Global), multi-head ensembles (MH-Ens), standard deep ensembles
(DeepEns) and MOoSe on dense out-of-distribution detection. Results are shown
for DeepLabV3 with a ResNet50 or ResNet101 backbone. All three scoring
functions (maximum softmax probablity (MSP), entropy (H), maximum logit
(ML)) are considered. Best results are shown in bold, all results are percentages

StreetHazards BDD-Anomaly
ResNet50 ResNet101 ResNet50 ResNet101
Score FPR@ FPR@ FPR@ FPR@
fn,  Method AUPR g5rpR| AUPR g5rpR |[AUPR 95TPR‘AUP R 95TPR
MSP Global 9.11 22.37 9.25 21.70 7.01 2247 6.87 22.19
MH-Ens 9.69 21.40| 10.39 19.72| 7.55 25.50| 8.49 25.66
DeepEns 10.22  21.09| 10.65 19.77| 7.64 21.53| 8.37 20.38
MOoSe(ours)| 12.53 21.05| 12.86 22.81| 8.66 22.49| 8.96 22.36
H Global 11.89 22.07 11.92 21.42| 10.23 20.64| 10.35 20.55
MH-Ens 12.59 21.10 13.26 19.09| 10.62 23.51| 12.36 23.54
DeepEns 13.43 20.62 13.91 19.32| 11.39 19.31| 12.67 18.05
MOoSe(ours)| 15.43 19.89| 15.28 21.69| 12.59 19.27|13.25 19.17
ML  Global 13.57  23.27| 13.52  23.64| 10.69 15.60| 11.89 15.58
MH-Ens 13.99 21.86| 13.80 17.70| 10.69 20.19| 12.23 20.91
DeepEns 14.57 21.79 14.69 20.71| 11.40 14.66| 12.87 13.34
MOoSe(ours)| 15.22 17.55| 15.26 18.62| 12.52 13.86| 13.48 13.50

C Outlier Exposure

In Table3 (left) we report the results on RoadAnomaly for MOoSe trained using
the Outlier Exposure / Entropy training scheme from [4]. Outlier Exposure boosts
the results of MOoSe for all three scoring functions, in terms of both AUPR
and FPRgs. When using Outlier Exposure, the entropy scoring function turns
out to outperform max-logit, likely because the negative training loss explicitly
encourages entropy to be high for negative pixels.
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Table 3: Left: results on the RoadAnomaly benchmark, showing the performance
of MOoSe trained using Outlier Exposure / Entropy Training. Right: results on
the SegmentMelfYouCan benchmark (anomaly track) validation and test.

Road Anomaly

Score Method |AUPR FPRos Segn.aentMeIfYouCan
fn. Pixel Compogent
MSP Global 23.76  51.32 Method AUPR? FPRosl Fyt|sloUt Fit
MOoSe 31.53  43.41 _ Global MSP | 54.8  38.2 52.7| 27.0 14.1
H  Global 32.00  49.14 g MOoSe MSP| 60.4  35.0 58.0| 41.9 22.4
MOoSe 41.48  36.78 Z Global H 62.3 374 57.1] 32.5 13.2
ML Global 37.86  39.03 < MOoSe H 65.7 325 65.7| 49.8 18.9
MOoSe | 43.59  32.12 ' Global ML 67.0  36.4 62.5| 35.2 10.4
MSP mooseron| 44.95  30.18 MOoSe ML | 65.6  33.2 67.0| 45.6 18.5
H ~ MOoSetOE| 55.86  23.59 < MOoSe-H 51.7  44.0 55.0| 29.7 10.7
ML  MOosetOE| 53.19  24.38 & Resynth.[40] | 52.3  25.9 60.5| 39.5 12.9
DML [2]| 37 37 ObsNet 754 26.7 - | 44.2 451

Std.ML [9]| 25.82 49.74

D SegmentMelfYouCan Benchmark

Table3 (right) contains the results for the SegmentMelfYouCan [3] (anomaly
track) validation and test benchmarks, the latter having undisclosed ground
truth. The benchmark is composed of 100 test images of road scenes containing
anomalous objects of various nature, similar to RoadAnomaly in nature. For
this benchmark we use the same model used for RoadAnomaly - trained on
the BDD100K dataset as explained in the main paper. The explanation of the
individual metrics (pixel and component-wise) can be found in the original
paper [3].

The results confirm that MOoSe provides the expected gains compared to
the base model, while also showing that the entropy scoring function performs as
well as max-logit. The Image Resynthesis [11] method outperforms MOoSe on
the test benchmark, but as reported in the main paper it has worse results on
LostAndFound. The best comparable results on the benchmark are obtained by
ObsNet [1], which leverages local adversarial attacks and an external observer
network to obtain uncertainty scores. Evaluations of pure Out-of-Distribution
detection on other benchmarks are missing.

E Qualitative Examples

In Figure 1 we provide qualitative comparisons between our method and deep
ensembles, showing the differences between the various segmentation predictions
of the two approaches. Figure 1 resumes the example from StreetHazards shown
in Figure 1 of the main paper, in which a large outlier is confidently classified by
the global head as belonging to the "car" category. The predictions of the deep
ensemble are very similar with little disagreement, essentially failing to detect
the outlier.
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(b) G.T. segm. (C) Entropy hg (d) Ent. Deep Ens. (e) Entropy MOoSe

(h) segm. Ens. 3 (1) segm. Ens. 4 (j) segm. Ens. 5

(g) Segm. Ens. 2

(f) segm. Ens. 1

(k) segm. sy (1) segm. s15 (m) segm. spq (n) segm. s36 (0) segm. sq

Fig. 1: Qualitative comparison — M OoSe and deep ensembles. Test sample
from the StreetHazards dataset: a street scene containing an anomalous object
(indicated in cyan in the ground truth segmentation (b)). The global head is
confident about its prediction, as shown by its entropy heatmap (c). The second
row (f-j) shows the segmentation predictions of different members of a deep
ensemble model. These mostly agree on the category of the anomalous object and
do not improve the entropy heatmap substantially over the single model (d). The
contextual predictions of MOoSe are shown in the third row, and manifest clearly
higher diversity than ensembles. This results in a different entropy scoremap (e),
in which most of the pixels of the anomalous object are highlighted.

In Figure 2 we show the qualitative results for three samples from the BDD-
Anomaly dataset, comparing MOoSe and the global head baseline. On the first
two samples MOoSe performs better than the baseline for large anomalous objects
that are in front of the camera, and which are mostly missed by the global head’s
entropy scoremap.

Moreover, in all examples it can be seen again that MOoSe tends to be
uncertain on particular inlier regions which are otherwise confidently classified
by the global head. In the third example in particular, the hatch of the pick-up
truck in front of the camera is cause for uncertainty for MOoSe. Although the
car category is present in the training set, the rarity of the model and possibly
the reflection on the metal are likely sources of doubt for the neural network.

F MOoSe Performance — Standard Deviation

Table 4 shows the average OoD detection performance on the CAOS benchmark [§]
for MOoSe (same as Table 1 in the main paper), with the addition of the standard
deviation over the 3 runs.
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(a) Image (b) OoD ground (¢) Entropy hg (d) Entropy MOoSe
truth segm.

Fig.2: Qualitative examples — BDD-Anomaly. Comparison of the OoD
scores of MOoSewith those of the global head on three examples from the BDD-
Anomaly dataset. In the first example the global head assigns low entropy to
the outlier — a bicycle in the center of the roadway. MOoSedoes better in this
case, although it is also uncertain about the person riding the bike. In the second
example a motorbike (category excluded from the training set and therefore
anomalous) is placed right in front of the observer. Neither method produces an
entropy scoremap that can clearly identify the object, but the baseline misses a
larger number of anomalous pixels. In the example in the third row it can be seen
how MOoSewrongly produces high entropy in correspondence of the rear hatch
of the pick up truck in front of the camera. Despite this, the model produces
higher uncertainty for the true outliers.
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Table 4: Standard deviation. Results for MOoSeon the CAOS benchmark, using
the DeepLabV3 and PSPNet architectures — both with ResNet50 backbones. The
average results are the same as in Table 1, but include standard deviations over
3 experiments with different random seeds

StreetHazards BDD-Anomaly
DeepLabV3 PSPNet DeepLabV3 PSPNet
Score FPR@ FPR@ FPR@ FPR@
fn. AUPRT  g5rpry  AUPRT  gsrpry | AUPRT  g5rpry  AUPRT  g5mpRy

8.6610.25 22.494+0.93| 8.11+£0.40 24.09+1.35
12.5940.42 19.27+1.01|12.354+0.54 20.98+1.63
12.5240.36 13.864+0.82|12.88+0.58 13.94+1.30

MSP
H
ML

12.534+0.21 21.054+0.25(11.28+0.14 21.94+0.31
15.431+0.35 19.8940.25|14.52+0.24 21.204+0.32
15.2240.26 17.5540.22|15.29+0.14 20.46+0.52

G Training Details

G.1 Training of the Base Segmentation Model

The base models for the CAOS benchmark are all trained using a mini-batch of 8
samples, randomly cropped to 512 pixels and flipped horizontally with probability
P = 0.5. For the DeepLabV3 models we found the best results to be obtained
using Stochastic Gradient Descent [10] optimization with a learning rate of 0.05
decreased to 0 over 200 epochs following a cosine schedule and a weight decay
factor of 1le=%. For Lawin we used the AdamW optimizer (weight decay 0.01)
with base learning rates 1le =% and 1e= for StreetHazards and BDD-Anomaly
respectively, and the learning rate of the decoder being 10 times bigger than the
learning rate of the backbone.

For the experiments on LostAndFound [12] we used a DeepLabV3+ [6] model
pretrained on Cityscapes. The initialization parameters for the model can be
found at:
https://github.com/NVIDIA/semantic-segmentation.

The models evaluated on Road Anomaly [11] were trained on the BDD100k [14]
dataset using the same training scheme as BDD-Anomaly.

G.2 Training MOoSe

As explained in the main paper, the contextual probes of MOoSe are trained with-
out affecting the main model. We achieve this by only updating the parameters
of the probes: this includes the parameters learned by backpropagation/gradient
descent, like convolutional filters, and those which are updated following batch
statistics.

There are 2 hyperparameters introduced by our method: the learning rate
for training the probes and their depth factor. In this section, we evaluate
the performance of MOoSe for different hyperparameter configurations. The
remaining training details, such as batch size and optimizer choice, are unchanged
with respect to the training of the main model.

Figure 3 displays the performance improvements yielded by our method
over its global head alone for StreetHazards and BDD-Anomaly respectively.
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We consider two depth options, d = {1,3}, and three learning rate options:
Ir = {5e™%,5e73, 5e2}.

As expected, the optimal configurations differ for the two datasets. Once again
as a likely result of the lower difficulty of the dataset, the best configuration for
StreetHazards is the one with the shallowest heads and the lowest learning rate.
However, all configurations produce improvements over the global head, especially
when using the entropy scoring function. On BDD-Anomaly the optimal results
are obtained with deeper heads and the smallest learning rate, although the
performance gains are more consistent across all configurations.

Additionally, the model trained on Cityscapes uses learning rate (probes only)
0.05 and depth 3.

StreetHazards - H StreetHazards - ML BDD-Anomaly - H

BDD-Anomaly - ML

5e-04 5e-03 5e-02
learning rate

5e-04 5e-03 5e-02
learning rate

5e-04 5e-03 5e-02
learning rate

(a) (b)

5e-04 5e-03 5e-02
learning rate

Fig.3: Hyperparameters — (a) StreetHazards. AUPR improvement of
MOoSe compared to the global head, at varying head depths and learning
rates. Results for StreetHazards. In blue are the results for the entropy scoring
function, in green for maximum logit. (b) BDD-Anomaly. AUPR improvement
of MOoSe compared to the global head, at varying head depths and learning
rates. Results for BDD-Anomaly. In blue are the results for the entropy scoring
function, in green for maximum logit.

H Ablation Studies

H.1 Probe Contribution

In Table 5 we report the effect of using only selected subsets of heads for OoD
segmentation with MOoSe. While the ranking of the configurations indicates that
the number of heads correlates positively with OoD detection performance, we
can also observe that different contextual heads contribute in different amounts
to the result improvement. In particular it can be seen that hy is present in all
the 4 best performing configurations, and performs better than hya, hoy and hgg
individually in terms of AUPR. Furthermore, the configurations containing h; and
none or few more heads have higher FPRI5%TPR than the others (underlined
in the table), indicating that this head is responsible for increasing the overall
recall, and with it the false positives.



8 Silvio Galesso, Maria Alejandra Bravo, Mehdi Naouar, and Thomas Brox

Table 5: Head Contributions. OoD detection performance of MOoSewhen
using selected contextual heads. Results are shown for StreetHazards on a single
DeepLabV3-ResNet50 network using entropy scores, the rows within each category
are sorted by AUPR. The results indicate that in terms of OoD detection h; is
the most important individual head It is notable how the contribution of h; is
more important than that of the other contextual heads in terms of AUPR

h1 haz has has|hg|[AUPRT FPRQ|
95%TPR
v v v YV |v] 1504 18.00
v v v| 1505 19.33
VY V| 1502 1824
v v |v| 1455 2238
v v YV |V]| 1428 17.63
v V| 1417 2488
v v |v| 1384 1935
v V| 1362 19.08
v |v| 1352 21.66
v V| 1326 19.55
|v'] 12.23 2241
VA 14.87  18.08
v 13.78  27.03
v 1253 2291
v 1133 21.92
v 1116 21.73

Table 6: OoD detection performance (AUPR) per number of heads (different
dilation rates evenly spaced between 1 and 36, same random seed). AUPR
increases with the variety of dilation rates but starts saturating with 4 heads

(with the current hyperparameters)
StreetHazards BDD-Anomaly

N. probes:‘ 2 4 6 ‘ 2 4 6

MSP 10.47 12.85 13.31| 7.22 8.99 9.01
H 12.73 15.99 15.85(10.63 13.08 12.96
ML 13.49 15.63 15.90(11.25 12.94 12.74
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H.2 Number of Probes

In this section we present the results of an ablation study on the effect of the
number of spatial pyramid modules — and consequently number of probes — on
MOoSe. We train versions of DeepLabV3 featuring 2, 4, or 6 dilated convolutions,
on top of which we train contextual probes, following the exact same setup as the
experiments in the main paper. The dilation rates are chose to span uniformly
the range between 1 and 36, which is the standard range of the spatial pyramid
of DeepLabV3.

Results of the ablation are shown in Table 6, where we report the AUPR
for each configuration and scoring function - for both datasets of the CAOS
benchmark. We observe that the models featuring 2 probes are the ones performing
the worst on both datasets and with all scoring functions. When increasing the
number of heads the results are mixed and generally closer.

We can conclude that, taking into account consistency with the existing
models and computational efficiency, the best practice is to stick with the default
number of heads.
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