

Motivation

Ranjan et al. found FlowNetC to be vulnerable to a physical, patch-based adversarial attack

Is encoder-decoder architecture FlowNetS the actual cause as suggested by Robust FlowNetC Ranjan et al.?

Knowing the actual cause, we can fix the vulnerability

Network	Unattacked	Attacked EPE	
	EPE	102 x 102	153x153
FlowNetC	11.50	52.66	51.99
$\operatorname{FlowNetS}$	14.33	17.35	17.92
Robust FlowNetC	9.95	12.33	12.20

Analysis

Attacked features are separated from the unattacked ones by the correlation layer After Before

Replace features of	Without replacement	With replacement
$conv3\langle a,b \rangle$ $corr$	$\begin{array}{c}25.95\\25.95\end{array}$	$11.31 \\ 12.67$

Since correlations are the actual cause, we can attack without optimization

Towards Understanding Adversarial Robustness of Optical Flow Networks Tonmoy Saikia Simon Schrodi **Thomas Brox** University of Freiburg, Germany schrodi, saikiat, brox@cs.uni-freiburg.de

Rectifying the vulnerability

Self-similar patterns causing ambiguities are related to the classical aperture problem Fix: Increase the aperture by increasing the receptive field before the correlation layer

Results

Increasing the receptive field alleviates the vulnerability and keeps the features well-aligned after the correlation layer Before After

Attacked frame

Jnattacked flow

Attacked flow

50 · 40 ·		 Unattacked Optimized patch 102 Optimized patch 153 Handcrafted patch 102 	Kernel size	Convs per resolution level	Receptive field
ш 30 · Н		Handcrafted patch 102 Handcrafted patch 153	$\frac{3}{5}$	1 1	$\begin{array}{c} 19\\ 31 \end{array}$
20 · 10 ·			$\begin{array}{c} 3\\ 3\\ 5\end{array}$	$\begin{array}{c} 2\\ 3\\ 2\end{array}$	47 75 87
0 -	20 40 Recept	60 80 100 ive field size	$\frac{3}{3}$	2 4	103

Making a robust network vulnerable

RAFT becomes vulnerable when its receptive field before the correlation layer is decreased

Aperture problem

Motion of homogeneous contour is locally ambiguous

Caused by a finite receptive field (aperture)

-	Unattacked EPE	$ 102x102 \ (2.1\%) \\ Worst $	153x153 (4.8%) Worst
	5.86	8.69	8.96
	6.88	10.09	11.31
	5.84	10.50	11.60
	6.33	19.12	20.99
I			

Flow networks are vulnerable to (targeted) perturbation attacks This can be rectified through adversarial data augmentation

Self-similar patterns in conjunction with the correlation layer explain the vulnerability This can be fixed by increasing the aperture Acknowledgements An attacker can create virtually any desired flow Funded by the Deutsche Forschungs-**DFG** Deutsche Forschung gemeinschaft (DFG) – BR 3815/10-1 with (targeted) perturbation attacks INST 39/1108-1, and the German Bundesministerium für Wirtschaft und Klimaschutz Federal Ministry for Economic Affairs However, the attacker requires to access both and Climate Action" within the project the image stream and flow network aufgrund eines Beschlusses des Deutschen Bundestages KI Delta Learning – 19A19013N.

Perturbation 2

Perturbation attacks

Conclusion

