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1. Implementation Details

We provide implementation details for different attacks

and their evaluation in the following. In all our experi-

ments, we used pre-trained models without fine-tuning on

the KITTI dataset. We built upon the works of Ranjan et

al. [10] for adversarial patch attacks, Wong et al. [15]

for (global) adversarial perturbation attacks, and Teed et

al. [13] for training of flow networks, All code is avail-

able at https://github.com/lmb-freiburg/

understanding_flow_robustness.

Adversarial patch attacks. For adversarial patch attacks,

we followed the attacking and white-box evaluation proce-

dure of Ranjan et al. [10]. We optimized a circular patch by

optimizing w.r.t. Equation 1 using the flow networks’ pre-

dictions as pseudo ground truth from the raw KITTI 2012

dataset [3] for adversarial optimization and the annotated

images as the validation set. We used scale augmentation

within ±5%, rotation augmentation within ±10◦ and ran-

domly pasted the patch at different image locations, but at

the same location in both image frames.

For evaluation of patch-based experiments, we used the

KITTI 2015 training set [8] and resized images to 384 ×
1280. During the evaluation, we pasted the patch also at

the same location in both image frames, if stated not oth-

erwise. We always computed the unattacked and attacked

End-Point-Error (EPE) and set the ground truth region oc-

cluded by the patch to zero motion. For the computation of

the spatial location heat map, we moved patches in strides of

25 pixels in x- and y-direction to reduce the computational

demands. For the t-SNE [14] plots, we extracted the feature

maps from the flow networks, computed the mean over the

spatial dimensions to reduce the dimensionality, and com-

puted the t-SNE embeddings on them. For experiments with

Robust FlowNetC and its variants, we optimized > 20 or

10 adversarial patches, respectively, across various learning

rates for each patch size. We chose the three worst patches

in terms of attacked EPE on the validation set, computed

the spatial location heat map to get the worst-case attacked

EPE and report the highest worst-case attacked EPE of the

three. Other patches were not as effective as the three worst

Un- Attacked

Network attacked 102x102 153x153

EPE (2.1%) (5.8%)

FlowNetC as [10] 14.52 94.51 197.00
FlowNetC as [5] 11.50 52.66 51.99
FlowNet2 as [10] 11.82 27.59 43.14
FlowNet2 as [5] 10.07 12.40 13.36

Table 1. Adversarial patch attacks with different input data

normalizations. We show average unattacked and average worst-

case attacked EPE on the KITTI 2015 training dataset.

patches. Finally, we also tested moving the patch between

image frames. For this, we randomly sampled translation

within ±50, full rotation (i.e. ±180◦) and scale augmenta-

tion within ±5%.

Adversarial perturbation attacks. For adversarial per-

turbation attacks, we used the same procedure as Wong et

al. [15], but pre-trained models were not fine-tuned on the

KITTI dataset and minimized the l2 loss, as it led to more

severe flow performance deterioration compared to the l1
or cossim losses. We used the Iterative Fast Gradient

Sign Method (I-FGSM) [6] for crafting adversarial pertur-

bations. For brevity, we considered only our proposed Ro-

bust FlowNetC, PWC-Net, and RAFT. We used the KITTI

2015 training set [8] for evaluation and resized images to

256 × 640 due to computational limitations. We used the

L∞ norms ϵ = {0.02, 0.01, 0.005, 0.002} and momentum

β = 0.47, but with the same learning rate α = 0.002 each.

For targeted adversarial attacks, we used the same hyper-

parameters but minimized the l2 loss. We used more steps

(i.e., 100) for the target flow depicting the number 42. For

universal adversarial attacks, we used the same procedure

as Ranjan et al. [10] but optimized for a universal perturba-

tion instead of a patch. We used I-FGSM with 5 steps, and

all other hyperparameters remained unchanged.

2. Note on Input Data Normalization

In the typical deep learning setting, we normalize the in-

put data in the preprocessing step, as this usually leads to

faster convergence [7]. Since we use input data normaliza-
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(a) Normalization scheme: Ranjan et al. [10]. Unattacked EPE: 22.71, Attacked EPE: 60.24.

(b) Normalization scheme: Ilg et al. [5]. Unattacked EPE: 16.18, Attacked EPE: 30.03.

Figure 1. The use of different input data normalizations leads to different results for FlowNetC. We optimized and evaluated a

102× 102 patch for each input data normalization. Visualizations from left to right: the attacked first frame, the unattacked flow estimate,

the attacked flow estimate, the difference between the attacked and unattacked optical flow estimates. Best viewed in color and with zoom.

tion during training, we must also use the same data nor-

malization during inference, since the model learned based

on these normalized inputs. Using the wrong input data nor-

malization usually has a detrimental effect on performance.

We found that Ranjan et al. [10] normalized inputs of

FlowNetC and FlowNet2 to the interval [−1, 1], which is

different from the input data normalization FlowNetC and

FlowNet2 used during their training. More specifically,

Ilg et al. [5] first normalize inputs to [0, 1] and then sub-

tract the mean of each RGB channel computed during the

first 1000 iterations in training. As a result, FlowNetC’s

and FlowNet2’s unattacked and attacked EPEs on the KITTI

2015 training dataset [8] drop significantly (Table 1 and Fig-

ure 1). However, despite this correction of the input data

normalization, FlowNetC is still vulnerable, so the result of

Ranjan et al. [10] is still valid.

3. Additional Examples for Handcrafted Patch

Attacks

In Figure 2 we show additional results for our circular

high-frequency black and white vertically striped patch for

FlowNetC. We only show results for FlowNetC, since it is

the most vulnerable flow network and thus shows the most

severe effect in the optical flow estimates. Similar to opti-

mized patches, our handcrafted patch severely deteriorates

the optical flow estimates.

4. Ingredients for Handcrafted Patch Attacks

We conducted several ablations to identify the main in-

gredients for a successful handcrafted patch attacks besides

its self-similar pattern. We chose FlowNetC as the flow net-

work for the ablations because it is the most vulnerable w.r.t.

patch-based attacks. To study the influence of the contrast

between the stripes, we fixed the black or white color of our

handcrafted patch and changed the respective other color,

thereby changing the contrast between the stripes. Figure 3

shows that higher contrasts between the stripes cause more

severe deteriorations of optical flow performance. Interest-

ingly, we observe an exponential increase in worst-case at-

tacked EPE with the increase in the contrast between the

stripes. The handcrafted self-similar pattern also works

when we use different color pairs (Figure 4). However,

the effect of the handcrafted patch may be less severe for

different color pairs. Note that regions with zero flow are

more vulnerable w.r.t. patch-based attacks. Furthermore,

our handcrafted patch requires high-frequency self-similar

patterns to remain effective (Figure 5). The larger the strip

thickness (i.e., the lower the frequency), the smaller the ef-

fect of the handcrafted patch attack. Finally, the handcrafted

patch attack is more effective when self-similar patterns are

oriented in axial directions (Figure 6).

5. Increasing the Receptive Field Size by In-

creasing the Dilation Rate

In the main paper, we showed that increasing the recep-

tive field by increasing the network depth helps improve

robustness. Alternatively, we also tried to increase the re-

ceptive field by increasing the dilation rate of the convolu-

tional layers of FlowNetC’s encoder. We used dilation rates

{1, 2, 4, 8}, where a dilation rate of 1 corresponds to the

original FlowNetC. Figure 7 shows that increasing the di-

lation rates also makes FlowNetC more robust w.r.t. patch-

based attacks. The gap between unattacked and worst-case

attacked EPE can be mainly attributed to occlusions caus-

ing optical flow performance to deteriorate. However, the

flow performance for unattacked image pairs deteriorates

significantly at larger dilation rates. More explicitly, the

FlowNetC variant with a dilation rate of 8 has unattacked

EPE 18.81 and worst-case attacked EPEs 23.4 and 22.66
for optimized adversarial patches with patch sizes 102×102
and 153× 153, respectively. Note, however, that a uniform

noise patch also has EPEs of 23.32 or 22.3 for patch sizes

102× 102 and 153× 153, respectively. Therefore, increas-

ing the receptive field by adding more depth is preferable to

make flow networks robust w.r.t. patch-based attacks.



Attacked frame 1 Unattacked flow Attacked flow Difference

(a) 102 × 102 handcrafted patch.

Attacked frame 1 Unattacked flow Attacked flow Difference

(b) 153 × 153 handcrafted patch.

Figure 2. Additional examples for the handcrafted patch attack. We show the handcrafted patch at the worst possible spatial location

for FlowNetC [2]. Our handcrafted patch leads to severe deteriorations of the optical flow estimates. Best viewed in color and with zoom.
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Figure 3. Contrast between stripes of the handcrafted patch.

We fixed the black or white color of the black and white verti-

cal striped patch fixed and moved the respective other color to-

wards white and black, respectively. We attacked FlowNetC with

these variants of our handcrafted patch. Interestingly, worst-case

attacked EPE increases exponentially with contrast.

6. Additional Examples for Robust FlowNetC

Figure 8 shows that Robust FlowNetC is also robust

against optimized patches. However, as with other flow

networks, we would like to stress that some particular hard

image frames can cause severe deterioration of flow perfor-

mance.

7. Realistic Motion of Patches

We also tried to use realistic motion of patches by con-

sidering them as part of the static scene, as described by

Ranjan et al. [10]. We found that it has a negligible effect

w.r.t. the worst-case attacked EPE for Robust FlowNetC,

i.e., 12.16 and 12.11 to 13.60 and 14.57 for 102 × 102 or

153 × 153 patches, respectively. We found the reason for

higher worst-case attacked EPE is due to the placement of

patches at boundary regions of the first image frame so that

they disappeared in the second image frame.

8. Untargeted Adversarial Attacks

Wong et al. [15] showed that they could attack disparity

estimation networks by adding an adversarial perturbation

individually to each pixel. Figures 9 and 10 show that, as

expected, the same is true for optical flow networks.

9. Additional Examples for Targeted Adversar-

ial Attacks

Figure 11 shows additional examples for targeted adver-

sarial attacks on optical flow networks. The flow estimates

are closer to the adversarial target flow than the true flow.

To quantify our results, also for different L∞ norms (i.e.,

ϵ = {0.002, 0.005, 0.01, 0.02}), we ran targeted adversarial

attacks for different image pairs from the KITTI 2015 train-

ing dataset. Due to computational reasons, we randomly

picked a subset of 10 image pairs. Figure 12 shows that the

resulting flow is closer to the adversarial target flow than

the true flow. Note that the resulting flow is closer to the

adversarial target flow when the L∞ norm is larger.

10. Examples for Adversarial Universal At-

tacks

Figure 13 shows universal perturbations for the L∞

norm ϵ = 0.02. Note that we can observe well-visible

self-similar patterns for Robust FlowNetC and PWC-Net.

Figure 14 shows examples for universal attacks with L∞

norm ϵ = 0.02. The flow networks are largely unaffected by

the universal perturbations. However, there are some worst-

case examples: if there are darker, homogeneous areas, e.g.,

shadows, in the image frames (and/or there is large ego-

motion), the flow deteriorates more. However, this is to be

expected because the lower contrast (and large ego-motion)

make the estimation problem more difficult, leading to more

ambiguities. An attacker could exploit this by overwriting

the true flow with the help of adversarial ambiguities.



Attacked frame 1 Unattacked flow Attacked flow Difference

(a) 102 × 102 patches.

Attacked frame 1 Unattacked flow Attacked flow Difference

(b) 153 × 153 patches.

Figure 4. Different color pairs of the handcrafted patch. We used the same self-similar pattern with different color pairs. From top to

bottom for each subfigure: black-white, green-white, red-black, red-blue, green-violet, and violet-orange. We show each handcrafted patch

at the worst possible spatial location for FlowNetC [2]. The handcrafted patch attack also works with different color pairs. However, the

effect of the handcrafted patch may be less severe for some color pairs. Best viewed in color and with zoom.
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Figure 5. Strip thickness of the handcrafted patch. We altered

the thickness of the stripes and attacked FlowNetC with these vari-

ants. The handcrafted patch requires high-frequency self-similar

pattern to remain effective.

11. Adversarial Data Augmentation

Wong et al. [15] showed that they could increase robust-

ness with little negative effect on performance through ad-

versarial data augmentation. To do this, they crafted adver-

sarial examples using FGSM before the adversarial training

and added them to the training set.

Different from Wong et al., we did not pre-compute

adversarial examples but computed them during the train-

ing (as typically done in adversarial training for recog-

nition networks). We crafted adversarial examples with

the I-FGSM attack (with various L∞ norms ϵ =
{0.002, 0.005, 0.01, 0.02}). We set hyperparameters for the

untargeted adversarial attack, as described in Supplement

Section 1. We used all 194 image pairs of the KITTI 2012

test dataset for adversarial training and resized images to

256×640. We chose learning rates 0.000125 for RAFT, and

0.00001 for Robust FlowNetC and PWC-Net, and weight
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Figure 6. Rotational orientation of the handcrafted patch. We

rotated our handcrafted patch and attacked FlowNetC. The rota-

tional angle of 0◦ corresponds to vertical stripes and the rotational

angle 90
◦ corresponds to horizontal stripes. We observe a U-

shaped form of worst-case attacked EPE: the stripes oriented in

the axial directions cause more deterioration of flow performance.

decays 0.0001 for all flow networks. We fine-tuned the

flow networks for 30000 steps with batch size 2 (i.e., the

unattacked and attacked image frames). We did not apply

any other data augmentation to the images. For evaluation,

we crafted new, unseen (untargeted) adversarial examples

on the KITTI 2015 training dataset, as described in Sup-

plement Section 1. In addition, we attacked with the MI-

FGSM attack [1] to evaluate the robustness of flow networks

against a stronger, unseen adversarial attack.

Figure 15 shows that fine-tuning with adversarial data

augmentation improves the robustness of all flow networks.

Surprisingly, the adversarial trained flow networks are also

robust against the stronger MI-FGSM attacks. Similar to

Wong et al., we find that contrary to findings in classifi-

cation [6], training with adversarial data augmentation has

little negative effect on the performance of optical flow
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Figure 7. Performance of FlowNetC variants with various di-

lation rates. We show both unattacked and worst-case attacked

EPE. Stars show results for the original FlowNetC. For optimized

patches, we show results using the patch with the highest worst-

case attacked EPE after optimization over ten runs. Increasing the

dilation rate also improves the robustness against patch-based at-

tacks, but overall flow performance deteriorates.

networks (except for Robust FlowNetC). For example, for

RAFT, EPE only deteriorates from 5.47 to 5.96, 7.13, 8.96
and 10.15 for L∞ norms 0.002, 0.005, 0.01 and 0.02 on

unattacked image frames, respectively. In general, the

smaller the norm the less drop in EPE on unattacked image

frames. On the contrary, however, the larger the L∞ norm,

the higher the robustness against adversarial attacks. How-

ever, unlike Wong et al., we found that training on smaller

L∞ norms (e.g., ϵ = 0.002) cannot (significantly) improve

robustness on large L∞ norms (e.g., ϵ = 0.02). We leave

further analysis for future work.

12. Common Image Corruptions

In this paper, we focused on adversarial attacks. How-

ever, (white-box) adversarial attacks are difficult to apply

in the real world, and common image corruptions [4], e.g.,

snow, are more likely to occur. Thus, for completeness, we

also studied the robustness of flow networks against com-

mon image corruptions across various severities [9]. Simi-

lar to our patch-based experiments, we also resized images

to 384 × 1280. Figure 16 shows that all flow networks

are robust against most common image corruptions. How-

ever, there are corruptions (e.g., Frost, Snow, Impulse noise,

Gaussian noise, Shot noise) that can cause severe deteriora-

tion of flow estimates. We suspect that this deterioration is

due to some part to the superposition of another flow, e.g.,

snowfall. We leave further analysis for future work.
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Attacked frame 1 Unattacked flow Attacked flow Difference

(a) 102 × 102 optimized patch.

Attacked frame 1 Unattacked flow Attacked flow Difference

(b) 153 × 153 optimized patch.

Figure 8. Additional examples for Robust FlowNetC. We show the best found optimized patch at the worst possible spatial location

for Robust FlowNetC. The bottom three rows of each subfigure show the worst examples based on the greatest absolute degradation of

worst-case attacked EPE in descending order. Best viewed in color and with zoom.
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Figure 9. Untargeted adversarial attacks. We attacked flow networks with I-FGSM on the KITTI 2015 training dataset over various L∞

norms ϵ = {0.002, 0.005, 0.01, 0.02}. I-FGSM significantly deteriorates optical flow performance for all flow networks.

Attacked frame 1 Perturbation 1 Unattacked

Attacked frame 2 Perturbation 2 Attacked

(a) Robust FlowNetC.

Attacked frame 1 Perturbation 1 Unattacked

Attacked frame 2 Perturbation 2 Attacked

(b) PWC-Net [12].

Attacked frame 1 Perturbation 1 Unattacked

Attacked frame 2 Perturbation 2 Attacked

(c) RAFT [13].

Figure 10. Examples for untargeted adversarial attacks for different flow networks. In each subfigure, we show in the first row the

attacked first frame with perturbation, the perturbation of the first frame, and the unattacked flow estimate, and in the second row, the

attacked second frame with perturbation, the perturbation of the second frame, and the attacked flow estimate. The crafted (imperceptible)

adversarial perturbations completely distort the optical flow estimates. Best viewed in color and with zoom.



Attacked frame 1 Perturbation 1 Unattacked

Attacked frame 2 Perturbation 2 Attacked

Attacked frame 1 Perturbation 1 Unattacked

Attacked frame 2 Perturbation 2 Attacked

Attacked frame 1 Perturbation 1 Unattacked

Attacked frame 2 Perturbation 2 Attacked

Attacked frame 1 Perturbation 1 Unattacked

Attacked frame 2 Perturbation 2 Attacked

(a) Robust FlowNetC.

Attacked frame 1 Perturbation 1 Unattacked

Attacked frame 2 Perturbation 2 Attacked

Attacked frame 1 Perturbation 1 Unattacked

Attacked frame 2 Perturbation 2 Attacked

Attacked frame 1 Perturbation 1 Unattacked

Attacked frame 2 Perturbation 2 Attacked

Attacked frame 1 Perturbation 1 Unattacked

Attacked frame 2 Perturbation 2 Attacked

(b) PWC-Net [12].
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Attacked frame 2 Perturbation 2 Attacked
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Attacked frame 2 Perturbation 2 Attacked

Attacked frame 1 Perturbation 1 Unattacked

Attacked frame 2 Perturbation 2 Attacked

Attacked frame 1 Perturbation 1 Unattacked

Attacked frame 2 Perturbation 2 Attacked

(c) RAFT [13].

Figure 11. Additional examples for targeted adversarial attacks. Targeted adversarial attacks with I-FGSM with L∞ norm ϵ = 0.02.

Each row in each subfigure, the ground truth of the left or right block, is the adversarial target flow of the right or left block. For each block

in each subfigure, we show both attacked image frames with perturbations in the first column, the perturbations for both image frames in

the second column, and the unattacked and attacked flow estimate in the third column. Note that the flow estimates are closer to the target

flows than the actual flows.
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Figure 12. Targeted adversarial attacks for different flow networks and L∞ norms. We show the effectiveness of targeted adversarial

attacks across different flow networks and L∞ norms (i.e., ϵ = {0.002, 0.005, 0.01, 0.02}). We computed EPE for each of the unattacked

and attacked image frames for both the true ground truth (true GT) and adversarial target ground truth (target GT). Across all L∞ norms

the flow estimates get closer to the adversarial target flow. The larger the L∞ norm (e.g., ϵ = 0.02), the larger the shift.

Perturbation 1 Perturbation 2

(a) Robust FlowNetC.

Perturbation 1 Perturbation 2

(b) PWC-Net [12].

Perturbation 1 Perturbation 2

(c) RAFT [13].

Figure 13. Adversarial universal perturbations. We show the best found adversarial universal perturbations with L∞ norm ϵ = 0.02 for

each flow network for the first and second image frame left or right, respectively. Note that for both Robust FlowNetC and PWC-Net the

adversarial universal perturbations contain well-visible self-similar patterns. Best viewed in color and with zoom.



Attacked frame 1 Attacked frame 2 Unattacked flow Attacked flow

(a) Robust FlowNetC.

Attacked frame 1 Attacked frame 2 Unattacked flow Attacked flow

(b) PWC-Net [12].

Attacked frame 1 Attacked frame 2 Unattacked flow Attacked flow

(c) RAFT [13].

Figure 14. Adversarial universal perturbation attack examples. Adversarial universal perturbation attacks with I-FGSM and L∞ norm

ϵ = 0.02. The bottom three rows of each subfigure show the worst examples based on the absolute degradation of the flow estimate in

descending order. Note that the deterioration of flow estimates is to be expected for these image pairs since there are more ambiguities due

to the lower contrast. Best viewed in color and with zoom.
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(a) Robust FlowNetC vs. I-FGSM.
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(b) PWC-Net [12] vs. I-FGSM.
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(c) RAFT [13] vs. I-FGSM.

0.000 0.005 0.010 0.015 0.020

Norm ε

20

25

30

35

40

E
P
E

Fine-tuned with ǫ =0.002

Fine-tuned with ǫ =0.005

Fine-tuned with ǫ =0.01

Fine-tuned with ǫ =0.02

(d) Robust FlowNetC vs. MI-FGSM.
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(e) PWC-Net [12] vs. MI-FGSM.
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(f) RAFT [13] vs. MI-FGSM.

Figure 15. Adversarial data augmentation. Fine-tuning makes the flow networks more robust w.r.t. (untargeted) adversarial attacks. We

show fine-tuned versions of Robust FlowNetC, PWC-Net and RAFT using various L∞ norms (i.e., ϵ = {0.002, 0.005, 0.01, 0.02}). For

PWC-Net and RAFT, fine-tuning significantly improves robustness w.r.t. adversarial attacks, while having only a minor negative effect

on flow performance for unattacked images. For Robust FlowNetC, flow performance deteriorates significantly for unattacked images.

Surprisingly, all flow networks are also robust against the stronger MI-FGSM attacks, although they were not fine-tuned for them.
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(a) Robust FlowNetC.
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(b) PWC-Net [12].
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Figure 16. Common image corruptions. X-axis: corruption types ordered from low to high frequency (based on Saikia et al. [11]).

Y-axis: EPE for a given corruption type across various severities. All corruption types, except for Frost, Snow, Impulse noise, Gaussian

noise, and Shot noise, have little negative effect on flow performance.


