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Motivation

Open-vocabulary (OV) Recognition refers to the task of recognizing and
understanding any visual concept In an image.

Current OV methods:

v' Recognize objects beyond a closed-set of categories.
v’ Use available image-text pairs for supervision.
v' Extend to new concepts using natural language.

X Primarily focus on noun concepts.

—— Attributes are important for an object’s identity.
They help distinguish different instances of the same class and enable better
interpretation of scenes and decision-making.

Red traffic signal in te
middle of a wide street.

hlte and a spotted horse
on a field of grass.

OVAD: Open-vocabulary Attribute Detection Task

12 | Object class: bear Object class: car Object class: person
¥ | Attributes Attributes Attributes
color quantity: two color quantity: one face exp: surprise
color: black and brown |color: red group: single
group: single group: single hair color: black
material: wood material: wood hair length: short
maturity: adult optical prop: opaque hair tone: dark
position: upright patterns: lettered hair type: straight
size: big state: piece / cut maturity: adult
WARNING state: dry texture: smooth position: upright
hm;ﬁﬁgﬁg“u> texture: smooth tone: dark clothes color: white
tone: dark
Objective: To evaluate the ability of visual-language models to recognize object attributes.

The OVAD task consists of two stages:
1. Open-vocabulary object detection: To detect an open-set of object classes.

2. Open-vocabulary attribute recognition: To identify an open-set of attributes for each detected object.

Attribute Benchmarks' Annotations
Test Dataset Requirements: Object and attribute annotations that are correct, dense, unambiguous, and visually consistent.

Four major types of errors in previous datasets.
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marked using the image due
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Objects with missing
attribute annotations.

Objects with possible but
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annotations.
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Training: A two-stage detector that matches image regions
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OVAD Dataset

Positive

clothes color:
clothes pattern:
| face expression:

group: single

green, white
lettered
neutral

maturity: young

Negative

POO® 1 canliness:

B face expression:

B Clothes color:
I Clothes pattern:

: cooked / raw
angry / happy / sleepy /..

cooked:

a2 croup: group
W= lcngth: long / short

W material:

BEPMEES Unknown
ey cender:

Attributes are positive,

Training

Image +
Caption

Image +

object boxes _
(base)

F: Detector

8 state:

hair color:

hair tone:
hair type:

negative or unknown.

standing

clean / unclean
blue / brown / orange /..
dotted / floral / plaid /..

Vil asphalt / ceramic / glass /..
?#{}§~_ optical property: opaque / transparent /..

SRR maturity:

QU AERaS order:
JORPES position:

adult

messy / ordered
lying / sitting
empty / closed / dry / full /..

female / male
black / blue / brown / ..
hair length: bald / long / short
dark / light
curly / straight

Evaluation Modes:

1. Full evaluation: (Steps 1+2)
Detect objects and their attributes

2. Box-oracle: (Step 2)
Detect attributes given the object box

frisbee

Step2 4

Attributes
color quantity: single

Attributes

color quantity: single
color: red

group: single

length: long

material: polymers
optical property: opaque
pattern: plain

position: vertical
texture: smooth

color: brown
group: single
maturity: adult
pattern: plain
position: upright
state: dry
texture: soft

OVAD Baseline

Caption: A woman sitting on a curb
next to a bunch of bananas.

Nouns: woman, curb, bananas
+£,pn Noun Complements: sitting, bunch
|
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Regressor : ﬁmg
|
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|
F' Detector ! Object classes: person, motocycle
. < bbbl |
Object .
. base . Attributes
categories standing
. hovel base lying
person white
— ' : bicycle black
Object: elephant [[Object: person Object: person car grey
Attributes Attributes Attributes motorcycle wet
State: unclean Cloth color: white Color cloth: white G: Text train dry
Colorl: brown Cloth pattern: plain||Gender: male adult
Color2: gray Gender: male Maturity: adult Encoder novel young
Group: single Group: single Position: standing airplane furry
Maturity: adult Hair Color: brown bus dark
Position: standing ||Hair length: short cat multi-color
State: dry Hair type: straight elephant single
Texture: tough Maturity: adult scissors group
Tone: dark Position: vertical short

with text embeddings.

1. Use image-caption pairs and object detection annota-

tions from base object classes.

2. Extract parts-of-captions:

nouns and noun comple-

ments, as signals for learning visual-text alignment.

Inference:

1. Generates visual embeddings for objects.

2. Detects objects and attri

the class text embeddings.

outes via cosine similarity with

Parts-of-caption Ablation

box-+-cls . noun  noun OVAD | APsy - OVD-80
oB ~ captions nouns phrases comp. mAP Novel (32)
v 11.7 0.3
v v 15.0 19.2
v v v 16.2 23.2
v v v v 15.9 23.7
v v v v 18.8 24.7

e [he parts-of-caption help the model segregate the information in

the caption, improving the object and attribute performance.

e Noun complements makes the attribute supervision more explicit

and improves the performance.

Results
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OVD Models on OVAD, Full Evaluation Setting

Method OVAD Generalized OVD-80
All |Head Medium Tail|Novel (32) Base (4s) All (s0)

Chance 8.6 360 7.3 0.6 - - -
OV-Faster-RCNN|11.7|34.4 13.1 1.9 0.3 53.3 32.1
VL-PLM [1] 13.2132.6 16.3 26| 19.7 58.8 43.2
Detic [2] 13.3(44.4 134 23| 20.0 492 375
Rasheed et al. [3]{14.6/33.5 18.7 28| 325 56.6 46.9
LocOv [4] 149428 17.2 22| 225 52.5 40.5
OVR [5] 15.1(46.3 16.7 2.1| 17.9 51.8 38.2
OVAD Baseline |18.8(47.7 22.0 4.6| 24.7 49.1 39.3

*

e OVAD Baseline outperforms the latest OVD models on the OVAD

task.

e OVD methods achieve results above the chance level on attribute
detection even when trained only for object detection.

e Methods that incorporate image region with text-parts alignment
(LocOv, OVR, OVAD Baseline) achieve better performance.

Large Vision-Language Models on OVAD, Box-oracle Setting

(#) Dataset #lmages #Captions #0Objects #Reglons

(1a) COCO Captions | 0.12M 0.57M -

(1b) COCO Objects 0.12M - 0.86M -
(2) RefCOCO+ 0.019M i i 0.14M
(3) VG 0.10M i 25M  5.4M
(4) SBU Captions 1M 1M - -
(5) Openlmages 1.7M 0.67M 4.4M 3.3M
(6) Objects365 1.8M - 29M -

(7a) CC-3M 2.05M  2.95M i i

(7b) CC-12M 11.1IM  11.1M i i

(8a) LAION 115M  115M i i

(8b) LAION 400M  400M i i

(8c) LAION 2B 2B - -
(9) CLIP 400M 400M 400M - -

. . OVAD-Box
Method Training Data All Head Medium Tail
Chance . 8.6 360 7.3 0.6
CLIP RN50 [6] 400M (9) 15.8 425 175 4.2
CLIP VIT-B16 [6] 400M (9) 16.6 439 18.6 4.4
Open CLIP RN50 [7] 12M (7b) 11.8 | 41.0 117 1.4
Open CLIP ViT-B16 [7] 400M (8b) 16.0 454 174 3.8
Open CLIP ViT-B32 [7] 2B (8c) 17.0 443 18.4 5.5
ALBEF [8] 4M (1a,3,4,7a) 15.6 43.1 17.3 3.7
ALBEF [8] 14M (1a,3,4,7) 15.3 437 17.1 3.0
ALBEF [8] 14M (1a,3,4,7) + ft(2) 21.0 442 239 04
BLIP [9 14M (1a,3,4,7) 17.0 46.6 18.3 5.0
BLIP [9 129M (1a,3,4,7,8a) 18.2 44 4 20.7 5.7
BLIP [9 129M (1a,3,4,7,8a) + ft(la) | 24.3 51.0 28.5 9.7
BLIP- 2Large [10] 129M (1a,3,4,7,8a) 20.1 49.3 23.2 5.9
BLIP-2 [10] 129M (1a,3,4,7,8a) 21.6 447 240 10.3
BLIP-2 [10] 129M (1a,3,4,7,8a) + ft(la) | 25.5 49.8 30.5 10.9
X-VLM [11 AM (1*,3*,4,7a) 25.9 50.3 32.0 9.8
X-VLM [11] 16M (1*,3*,4,5%,6*,7) + ft(2)| 26.2 48.7 31.2 12.1
X-VLM [11 16M (1*,4*,4,5%,6*,7) 28.1 497 34.2 12.9
OVAD Baselme Box 0.11M (la,lb*base) 21.4 48.0 26.9 bH.2

use of localization information from the annotations.

+ ft: final fine-tuning using the captions of this dataset.
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e V| Ms tend to focus on object classes and struggle
with fine-grained aspects like attributes.

e [he quality of the training data has a greater im-
pact than its quantity or model size.

e Fine-grained alignment between image regions and
text (X-VLM) significantly improves the under-
standing of visual attributes.

Conclusions / Contributions

We propose the open-vocabulary attribute detection (OVAD) task to study vision-language models’ ability to recognize attributes.

We introduce the OVAD benchmark, a clean and densely annotated object-level attribute dataset for evaluating the OVAD task.

We provided a baseline method that exploits fine-grained information contained in captions.

We found that the performance of foundation models on attributes stays clearly behind their performance on objects.
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