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Overview

Diffusion for 3D Shape and Appearance Generation:

• Goal: learn distribution → generate 3d shape and appearance of new objects

• Previous works use different 3D representations: latent codes (Functa), triplanes (SSD-NeRF), voxel grids (DiffRF)

This work → apply diffusion to a neural point cloud 3D representation:

• Points have: 3D position + higher-dimensional feature

• Can be rendered to images with Point-NeRF

• Figure shows diffusion on neural point cloud + Point-NeRF rendering of the final generated neural point cloud

Point positions represent shape, features represent appearance → This enables disentangled generation:

Neural Point Cloud Representation and Point-NeRF Rendering
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Represent 3D shape and appearance of object by
a neural point cloud:

P = (P,F)

→ M neural points with � positions P ∈ RM×3 and � fea-
tures F ∈ RM×D

Can be rendered to images with a Point-NeRF:
Like NeRF, but compute colors c and densities σ from neigh-
bouring neural points using MLPs Fφ and Hγ and Gψ

Point-NeRF Autodecoder Optimization (on N objects from same category)

Given:

• Dataset of N objects
from same category

• Object: consists of a
neural point cloud Pj =
(Pj ,Fj) and K images
with camera parameters

Optimization objective:

• Optimize point features F and
MLP parameters φ, ψ, γ

• Objective: Minimize image re-
construction error for all images
of all objects

Initialization and Regularization:

• Crucial to avoid many-to-one mappings
between features and renderings

• We use: Zero initialization, TV regular-
ization, KL regularization

Diffusion Model Training

• Input: dataset of optimized neural point
clouds

• Diffusion model is trained jointly on point
positions and appearance features
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Disentangled Generation (here described for appearance-only generation)

Appearance-only generation with given point positions P0 works by “masking” point positions
and generating only features:

1: εP ∼ N (0, I) PT =
√
ᾱTP0 +

√
1− ᾱT εP FT ∼ N (0, I)

2: for t = T, . . . , 1 do
3: (εPθ , ε

F
θ ) = Tθ((Pt,Ft), t) . Estimate noise

4: Pt−1 =
√
ᾱt−1P0 +
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P . Compute point positions via forward process

5: Ft−1= 1√
αt

(
Ft− βt√

1−ᾱt
εFθ

)
+

1−ᾱt−1

1−ᾱt
βtε ε∼N (0, I) . Update point features via reverse process

6: end for

→ Intuitively like masked image inpainting, similar to RePaint

Disentangled Generation Results (on ShapeNet SRN Cars, SRN Chairs, PhotoShape Chairs)

Appearance-only generation: Shape-only generation:

Evaluation of Unconditional Generation Quality

Comparison to disentanglement-capable
approaches:

Model ShapeNet SRN PhotoShape
Cars Chairs Chairs

FID↓ KID/10−3↓ FID↓ KID/10−3↓ FID↓ KID/10−3↓

GRAF 40.95 19.15 37.19 17.85 34.49 17.13
D3D 62.34 41.60 45.73 24.33 59.80 36.07

NPCD (Ours) 28.38 17.62 9.87 3.62 14.45 5.40

→ our approach outperforms previous approaches

Comparison to 3D diffusion approaches:

Model PhotoShape Chairs
FID↓ KID/10−3↓

DiffRF 15.95 7.93

NPCD (Ours) 14.45 5.40

Model SRN Cars
FID↓ KID/10−3↓

Functa 80.3 -
SSDNeRF 11.08 3.47

NPCD (Ours) 28.38 17.62

→ Our approach performs better than Functa and DiffRF and
worse than SSDNeRF, but enables disentangled generation

Analyses on Initialization and Regularization

Initialization:

a) Random init. b) Zero init.

Regularization:

a) No reg. b) KL+TV reg.

Many-to-one mappings:
→ how far are features that represent the same appearance
away from each other?
→ We measure this by computing per-point mean cosine sim-
ilarities between optimized neural point features of 10 training
examples for 100 different seeds:

Init. Reg. Cosine sim.

Rand. 7 0.0306
Zero 7 0.7695
Zero TV 0.9355
Zero KL 0.9480
Zero TV,KL 0.9470

→ zero initialization and regularizations reduce many-to-one
mappings (as shown by Figures on the left and Table above) and
improve generation quality (as shown by Table below)

Setting Init. Reg. ShapeNet SRN Cars ShapeNet SRN Chairs
PSNR↑ FIDrec↓ KIDrec↓ FID↓ KID↓ PSNR↑ FIDrec↓ KIDrec↓ FID↓ KID↓

a) Initialization
Random initialization Rand. 7 29.24 37.24 25.37 125.51 97.82 - - - - -
Zero initialization Zero 7 31.32 18.96 11.17 53.55 35.37 34.91 10.37 4.85 39.19 23.64

b) Regularization
No regularization Zero 7 31.32 18.96 11.17 53.55 35.37 34.91 10.37 4.85 39.19 23.64
TV regularization Zero TV 29.72 22.42 13.71 45.90 28.70 32.38 14.10 6.70 32.87 17.49
KL regularization Zero KL 30.02 24.93 15.60 55.01 35.86 34.20 8.37 3.17 18.13 8.17
TV+KL regularization Zero TV,KL 29.70 26.12 16.44 43.92 26.53 33.62 8.58 3.34 17.17 7.44

c) Model size
40M parameters Zero TV,KL 29.70 26.12 16.44 43.92 26.53 33.62 8.58 3.34 17.17 7.44
300M parameters Zero TV,KL 29.70 26.12 16.44 28.38 17.62 33.62 8.58 3.34 9.87 3.62

Summary

→ We apply diffusion for 3D shape and appearance generation to a neural point cloud representation

→ This enables disentangled generation, as point positions represent coarse shape and features represent appearance

→ We provide analyses and insights into many-to-one mappings in auto-decoded latent spaces and how to tame them
for the application of diffusion models

→ Project page and code: https://neural-point-cloud-diffusion.github.io/
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