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Abstract. Counterfactual explanations have become an increasingly
popular method for elucidating the behavior of opaque black-box mod-
els. Recently, several works leveraged pixel-space diffusion models for
counterfactual generation. However, these approaches rely on training
the generative models using the same or similar data as the model un-
der investigation. This requirement restricts their applicability in situa-
tions where access to the data is limited. Further, they either required
an auxiliary robust model, computationally intensive schemes, or lim-
ited the amount of change. To address above limitations, we introduce
Latent Diffusion Counterfactual Explanations (LDCE), augmented with
a novel consensus guidance mechanism. LDCE utilizes recent class- or
text-conditional foundation diffusion models to allow for universal appli-
cability. By running counterfactual generation in latent instead of pixel-
space, we ensure that LDCE focuses on the important, semantic parts
of the image. Lastly, our consensus guidance mechanism filters out the
gradients of the model under investigation that are likely to result in se-
mantically non-meaningful changes. We show the universal applicability
of LDCE across a wide spectrum of models trained on diverse datasets.
Finally, we demonstrate how LDCE can provide insights into model er-
rors, enhancing our understanding of the behavior of black-box models.
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1 Introduction

Deep learning systems achieve remarkable results across diverse domains, yet
their opacity presents a pressing challenge: as their usage soars in various applica-
tions, it becomes increasingly important to understand their underlying behavior
and decision-making processes [2]. There are various paradigms that facilitate a
better understanding of model behavior, including pixel attributions [69,5,68,47],
feature visualizations [24,69,51], concept-based methods [7,39,41], inherently in-
terpretable models [12,16,9], and counterfactual explanations [80,27].

In this work, we focus on counterfactual explanations that modify a (f)actual
input with the minimal semantically meaningful change such that a model under
investigation (a.k.a. target model) changes its output. Their goal is to provide

⋆ Equal contribution.
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(a) alp → coral reef
Probing ResNet-50

on ImageNet

(b) no-smile
→ smile
Probing

DenseNet-121 on
CelebA HQ

(c) birman
→ American pit bull
Probing OpenCLIP
on Oxford Pets

(d) moon orchid
→ rose

Probing DINO on
Oxford Flowers

Fig. 1. Our method, LDCE-txt, can be applied to any classifier, is universally applicable,
and works across various learning paradigms. Each subfigure shows the original image
(left) and a counterfactual explanation generated by LDCE-txt.

insights into the decision-making process of a black-box model rather than just
generating the most visually appealing image edits. Given a (f)actual input xF

and target model f , Wachter et al . [80] proposed to find the counterfactual
explanation xCF closest to the (f)actual input defined by distance metric d that
achieves a desired output yCF defined by loss function L, as follows:

xCF ∈ argmin
x′

λcL(f(x′), yCF) + λdd(x
′, xF) . (1)

However, generating (visual) counterfactual explanations from Eq. (1) poses
a challenge since, e.g ., relying solely on the gradient of a (non-robust) model
leads to very minor instead of semantically meaningful modifications, akin to
adversarial examples [3]. Thus, failing to provide human comprehensible insights
into the decision-making processes. To overcome this, previous work resorted to
adversarially robust models [64,11], restricted the set of image manipulations
[27,82], used generative models [62,43,38,36], or a mixture of aforementioned
approaches [3] to regularize towards the (semantic) data manifold. However,
such requirements (or restrictions) limit the applicability of previous methods.
For instance, data access can be restricted due to data privacy reasons making
it difficult to train a suited adversarially robust or generative model.

To address aforementioned limitations, we present Latent Diffusion Counter-
factual Explanations (LDCE). To the best of our knowledge, LDCE is the first
counterfactual approach that is universally applicable to any classifier trained on
some data domain; see Fig. 1. That is, LDCE has no component that requires
specific training and can directly be applied to generate counterfactual expla-
nations. Technically, we leverage recent class- or text-conditional foundational
diffusion models to achieve universal applicability. To aid counterfactual genera-
tion, we run counterfactual generation in the latent space of an autoencoder [59]
to focus on the semantic instead of pixel-level details. Lastly, we propose a simple
consensus guidance mechanism that filters out the gradients of the model under
investigation that are likely to result in semantically non-meaningful changes by
using the gradients of the diffusion model’s implicit classifier as reference. Code
is provided at https://github.com/lmb-freiburg/ldce.

In summary, our key contributions are the following:

https://github.com/lmb-freiburg/ldce
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– By leveraging recent class- or text-conditional foundation diffusion models
[59], we present the first approach that is universally applicable across models
and datasets (restricted only by the domain coverage of the foundation model),
as shown in Fig. 1.

– We present a simple yet effective consensus guidance mechanism that substan-
tially diminishes confounding elements, such as an auxiliary robust classifier,
while resulting in semantically meaningful modifications.

– Our method generates counterfactuals with semantically meaningful changes
that can help to identify and fix model errors. Compared to previous methods,
our method is superior w.r.t. realism and yields competitive empirical results
even though previous methods use dataset-tailored components.

2 Background

2.1 Diffusion Models

Diffusion models are powerful generative models that can generate high-quality
images [70,73,30,71,59]. The main idea is to gradually add small amounts of
Gaussian noise to the data in the so-called forward diffusion process and grad-
ually reverse it in a learned reverse diffusion process. Specifically, given scalar
noise scales {αt}Tt=1 and an initial, clean image x0, the forward diffusion pro-
cess generates intermediate noisy representations {xt}Tt=1, with T denoting the
number of time steps. We can compute xt by

xt =
√
αtx0 +

√
1− αtϵt, where ϵt ∼ N (0, I) . (2)

The score estimator ϵθ, i.e., parameterized denoising network (typically a mod-
ified U-Net [60]), is trained to undo the forward diffusion process for a pair
(xt, t):

∇x log pθ(x) ∝ ϵ
(t)
θ (xt) ≈ ϵ̂t = (xt −

√
αtx0)/

√
1− αt . (3)

By rewriting Eq. (3), we can predict the clean data point

x̂0 ≈ (xt −
√
1− αtϵ

(t)
θ (xt))/

√
αt . (4)

To gradually denoise, we sample the next less noisy representation xt−1 with a
sampling method S(xt, ϵ̂t, t) → xt−1, such as the DDIM sampler [71]:

xt−1 =
√
αt−1

(xt −
√
1− αtϵ̂t√
αt

)
+
√

1− αt−1 − σ2
t ϵ̂t + σtϵt . (5)

Latent diffusion models. In contrast to GANs [26], VAEs [40,57], or normaliz-
ing flows [56], (pixel-space) diffusion models’ intermediate representations are
high-dimensional, rendering the generative process computationally intensive.
To mitigate this, Rombach et al . [59] proposed to operate diffusion models in
a perceptually equivalent, lower-dimensional latent space Z of a regularized au-
toencoder A(x) = D(E(x)) ≈ x with encoder E and decoder D [25]. Besides
speed-ups, it decouples semantic from perceptual compression s.t . the “focus [of
the diffusion model is] on the important, semantic bits of the data” [59, p. 4].
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Controlled image generation. The goal is to incorporate a condition c, e.g ., a
class label or text, into the reverse diffusion process to control image synthesis.
One approach is to condition the diffusion model on the gradients of a classifier
∇xt log pϕ(c|x), a.k.a. classifier guidance [70,74,22]:

ϵ
(t)
θ,η(xt|c) = ϵ

(t)
θ (xt)−η

√
1− αt∇xt log pϕ(c|xt) , (6)

where the guidance scale η governs the influence of the conditioning signal.
However, intermediate representations xt have high noise levels that are likely
to be out-of-distribution for a classifier. To overcome this, previous work used
noise-aware classifiers [22], optimized intermediate representation of the diffusion
process [37,81], or used one-step approximations [4,3,6]. In contrast to them, Ho

& Salimans [31] trained a conditional diffusion model ϵ
(t)
θ (x|c) with conditioning

dropout and leveraged Bayes’ rule, i.e.,

ϵ
(t)
θ (c|xt) ≈ ϵ

(t)
θ (xt, c)− ϵ

(t)
θ (xt) , (7)

to substitute the conditioning component −
√
1− αt∇xt

log p(c|xt) in Eq. (6):

ϵ
(t)
θ,η(xt|c) = ϵ

(t)
θ (x) + η(ϵ

(t)
θ (xt|c)− ϵ

(t)
θ (xt)) . (8)

2.2 Visual Counterfactual Explanations

A counterfactual xCF is a sample with the smallest and semantically meaningful
change to an original factual input xF in order to achieve a desired output,
cf ., Eq. (1). In contrast to adversarial attacks, counterfactual explanations aim
for semantic (i.e., human comprehensible) changes that help to understand the
decision-making processes of black-box models. Initial works used gradient-based
approaches [80,64,11] or restricted the set of image manipulations [27,1,82,78,79].
Other works leveraged invertible networks [34], deep image priors [76], or used
generative models to regularize towards the image manifold [62,43,65,58,38,35].

Recent work also adopted (pixel-space) diffusion models due to their pow-
erful generative capabilities [63,36,37,3]. Since intermediate representations of
the diffusion process exhibit high levels of noise and may be out-of-distribution
for standard classifiers, previous work adapted the classifier guidance approach
(Eq. (6)) in various ways: by a shared encoder of the diffusion model and target
model [63], albeit at the cost of model-agnosticity; a computationally intensive
O(T 2) scheme to obtain x̂0 by running the unconditional reverse diffusion pro-
cess at every step [36]; restricted number of modifications that limit the set of
modifications [37]; or a gradient projection with an auxiliary adversarially robust
model [3], albeit at the cost of a auxiliary model that needs to be trained on the
same (or similar) data distribution as the target model.

Further remark on DVCE [3]. Besides the need for an auxiliary model from
DVCE [3], we further found that counterfactuals are substantially confounded
by the auxiliary model: Fig. 2 shows that counterfactuals of DVCE (2nd column)
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(a) tench → eel (b) bulbul → goldfinch

Fig. 2. The adversarially robust model of DVCE [3] substantially influences the result-
ing counterfactuals. From left to right: original image, counterfactual images generated
using DVCE, and DVCE using the robust classifier only, i.e., without the target model.
Further visual examples are provided in Fig. 8 in Appendix A.

look very similar to the ones when only using the auxiliary model (3rd column).
Note that this can also be seen in Fig. 3 of Augustin et al . [3]. Thus, we cannot
infer what “counterfactual features” the target model might have, as they are
obfuscated by the ones from the auxiliary model.

3 Latent Diffusion Counterfactual Explanations (LDCE)

In this section we present Latent Diffusion Counterfactual Explanations (LDCE).
LDCE does not require an auxiliary model and is universally applicable, i.e., it
can be used to analyze any target model trained on any data distribution. To
this end, we harness the capabilities of recent class- or text-conditional founda-
tion latent diffusion models (Sec. 3.1), augmented with a novel consensus guid-
ance mechanism (Sec. 3.2). By operating the diffusion process in latent space,
we ensure to focus on the important, semantic bits of the data, while as by-
product speeding-up counterfactual generation [59]. Further, the foundational
nature of text-conditional diffusion models grants LDCE the versatility to be
applied across diverse models and datasets within reasonable bounds; as illus-
trated in Fig. 1. Besides that, our novel consensus guidance mechanism ensures
semantically meaningful, counterfactual changes by utilizing the implicit clas-
sifier [31] of class- or text-conditional foundation diffusion models as a filter.
Finally, note that LDCE is compatible to and will benefit from future advance-
ments of foundational diffusion models.

3.1 Counterfactual Generation in Latent Space

We propose to operate diffusion models in a perceptually equivalent, lower-
dimensional latent space, unlike prior work that operated them on the pixel-
level. Thereby, we have two benefits: (1) a “focus on the important, semantic
[instead of unimportant, high-frequency details] of the data” [59, p. 4] and (2) as
by-product speed-ups of counterfactual generation. Formally, we rewrite Eq. (1)
as follows:

xCF = D(z′) ∈ argmin
z′∈Z={E(x)|x∈X}

λcL(f(D(z′)), yCF) + λdd(D(z′), xF) , (9)
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counterfactual with
consensus guidance

counterfactual with
consensus guidance

(f)actual image

noised image

image manifold

target class distribution 
(under target classifier)

source class distribution
(under target classifier)

(a) Conceptual illustration.
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(b) Technical implementa-
tion.

Fig. 3. 3(a): Our proposed consensus guidance mechanism employs a filtering approach
of gradients, leveraging the implicit classifier of diffusion models as reference for se-
mantic meaningfulness. The dashed line indicates forward diffusion, while the solid
lines represent reverse diffusion. 3(b): Given the implicit classifier gradients and target
classifier gradient, we compute a consensus mask that filters out gradients of the target
classifier that are not aligned.

where E and D are the encoder or decoder of an autoencoder [25], respectively.
Technically, we simply utilize recently popular latent diffusion models and adopt
the following two-step procedure to generate counterfactuals:
1. Abduction: We add noise to the (f)actual image xF through the forward

diffusion process (Eq. (2)).
2. Counterfactual generation: We guide the diffusion process s.t . the coun-

terfactual xCF elicits a desired output yCF from the target model f but re-
mains close the (f)actual image xF by computing the gradient w.r.t. the cur-
rent intermediate representation of the diffusion process of Eq. (9) and adopt
the classifier guidance approach (Eq. (6)).

3.2 Consensus Guidance Mechanism

While the two-step procedure from the end of the previous section already admits
the generation of counterfactuals, we empirically found that it yielded blurry and
unrealistic counterfactuals; refer to the LDCE variants without consensus (w/o
consensus) in Fig. 4 or Tab. 1 (high FID scores). To combat this, we designed
a novel consensus guidance mechanism. In a nutshell, it uses the gradient of
the implicit classifier as a filter for the target model’s gradients. On a high-level
our consensus guidance mechanism ensures that the counterfactual generation
process moves not just towards the target class distribution of yCF but also stays
on the image manifold, as illustrated in Fig. 3(a).

Our consensus guidance mechanism is inspired by the observation that both
the gradient of the target model ∇ztL(f(x̂0), c) (Eq. (6)), and the unconditional
and conditional score functions of the class- or text-conditional foundation dif-
fusion model ϵ

(t)
θ (zt|c)− ϵ

(t)
θ (zt) (Eq. (7)) estimate ∇x log p(c|x). The main idea
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of our consensus guidance mechanism is to leverage the gradients of the implicit
classifier as a reference for semantic meaningfulness to filter out misaligned gra-
dients of the target model. More specifically, we compute the angles αi between
the target model’s gradients ∇ztL(f(x̂0), c) and the difference of the conditional
and unconditional scores ϵc − ϵuc (cf ., Eq. (7)) for each non-overlapping patch,
indexed by i:

αi = ∠[(−
√
1− αt∇ztL(f(x̂0), c))i, (ϵc − ϵuc)i] . (10)

We filter the gradients of the target model that have a larger angle αi than the
angular threshold γ:

−
√
1− αt∇ztL(f(x̂0), c))i
:

=

{
−
√
1− αt∇ztL(f(x̂0), c))i, αi ≤ γ

o, αi > γ
, (11)

where o is the overwrite value (in our case zeros) and −
√
1− αt∇ztL(f(x̂0), c))i
:

is the guidance signal from our consensus guidance mechanism that is added to

the unconditional score estimator ϵ
(t)
θ (zt) (cf ., Eq. (6)). Note that by setting

the overwrite value o to zeros, only the target model and the unconditional
score estimator, which is needed for regularization towards the data manifold,
influence the counterfactual generation.

When using a class-conditional diffusion model, we refer to it as LDCE-cls,
and LDCE-txt, when using a text-conditional diffusion model. In our experi-
ments (Sec. 4), we validate that our consensus guidance mechanism improves
the quality of counterfactuals while having only a small effect on the counter-
factuals, i.e., the target model is the driving factor for the changes.

4 Experiments

Datasets & models. We evaluated LDCE on ResNet-50 [28] trained on ImageNet
[21] (on a subset of 10k images to ease computational costs and carbon footprint),
DenseNet-121 [33] trained on CelebA HQ [44], (frozen) DINO-VIT-S/8 encoder
with linear classifier trained on Oxford Flowers 102 [50], and OpenCLIP-VIT-
B/32 [18] in the zero-shot setting on Oxford Pets [53]. All datasets have a image
resolution of 256x256. We provide dataset and model licenses in Appendix B
and further model details in Appendix C.

Implementation details. We based LDCE-cls on a class-conditional latent diffu-
sion model trained on ImageNet [59] and LDCE-txt on a fine-tuned variant of
Stable Diffusion V1.4 for 256x256 images [54]. Model licenses and links to the
weights are provided in Appendix B. For text conditioning, we adopted CLIP-
style text prompts [55] (refer to Appendix D for details). For our consensus guid-
ance scheme, we used spatial regions of a size 1x1 and chose zeros as overwrite
values o. We used L1 as distance function d to promote sparse changes. We set
the diffusion respacing to a factor of 2 to expedite counterfactual generation at
the cost of image quality. We set the weighting factor η to 2. We optimized other
hyperparameters (diffusion steps T and the other weighing factors λc, γ, λd) on
a few examples per dataset and provide them in Appendix D.
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Selection of counterfactual target class. We used two protocols: (a) Semantic
Hierarchy: we randomly sampled one of the top-4 closest classes based on the
shortest path in the WordNet hierarchy [49]. (b) Representational Similar-
ity: we computed the pairwise cosine similarities for all (f)actual images using
SimSiam [17] and randomly sampled a class from the top-5 instances from a
different class. Unlike the former, our proposed representational similarity based
selection does not require any domain expertise. We adopted the former for Im-
ageNet and the latter for Oxford Pets and Flowers 102. For CelebA HQ, we
selected the opposite binary target class.

Quantitative evaluation. The evaluation of counterfactuals is inherently chal-
lenging: what makes a good counterfactual is arguably very subjective and de-
pends on the context. Despite this, we used various quantitative metrics covering
commonly acknowledged desiderata. Appendix E provides a concise overview.

(a) Validity: To quantify whether the counterfactual approach is capable
of flipping the target model’s classification, we used the Flip Ratio (FR). Fur-
ther, we used the S3 criterion [37] that computes cosine similarity between the
(f)actual xF and counterfactual xCF. While it has been introduced as a closeness
criterion by Jeanneret et al . [37] (the higher the better), we found strong nega-
tive correlation with FR, i.e., rank correlation of -0.83 using the numbers from
Tab. 2. Beyond that, note that lower S3 indicates that the counterfactual method
made more semantic changes (something we want), as this is what SimSiam’s
features (used in S3) are trained for. Thus, we say that lower S3 is better.

(b) Closeness & sparsity: A counterfactual should remain close to the
(f)actual input and should have sparse changes. For closeness, we used the L2
norm and propose VQ-L2 (L2 distance in the space of an autoencoder). Un-
like L2, VQ-L2 is less affected by unimportant, high-frequency image details.
For sparsity, we adopted various metrics from the literature: COUT [38], Face
Similarity (FS) [37], Mean Number of Attributed Changed (MNAC) [58], and
Correlation Difference (CD) [36]. Note that similar as for S3, we found that
FS negatively correlates with COUT (Spearman rank correlation of -0.5 for the
numbers from Tab. 6). Thus, we say that lower FS is better.

(c) Realism: We adopted FID and sFID [37] to assess realism of counterfac-
tuals. Note that sFID addresses a bias towards not changing the counterfactual
due to the closeness desiderata. Further, we propose to use precision and recall
[42]. Precision indicates whether a counterfactual falls within the support of the
(f)actual images, while recall indicates if the global distribution of counterfactu-
als supports random (f)actual images. Thus, precision and recall provide local
or global indicators of the fidelity of counterfactuals, respectively.

4.1 Qualitative Evaluation

Figs. 1, 4 and 5 as well as Figs. 11 to 14 in Appendix I show extensive qualita-
tive results for both LDCE-cls and LDCE-txt across a diverse range of models
(from convolutional networks to transformers) trained on various real-world data
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Original SVCE DVCE ACE ℓ1 ACE ℓ2
LDCE-cls
w/o cons. LDCE-cls

LDCE-txt
w/o cons. LDCE-txt

(a) soccer ball → golf ball

(b) lakeside → seashore

(c) Pomeranian → keeshond

(d) barn → planetarium

Fig. 4. Qualitative comparisons analyzing ResNet-50 as target model on ImageNet.
Left to right: original image, counterfactual images for SVCE, DVCE, ACE ℓ1, ACE
ℓ2, LDCE-cls w/o consensus, LDCE-cls, LDCE-txt w/o consensus, and LDCE-txt.

(from ImageNet to CelebA-HQ, Oxford Pets, or Flowers-102) with diverse learn-
ing paradigms (from supervision, to vision-only or vision-language representa-
tion learning). First, we observe that LDCE-txt introduces local changes (e.g .,
Fig. 1(b)) while is also capable of more global changes (e.g ., Fig. 1(a)). More-
over, we find that LDCE-txt is also able to make intricate changes to, e.g ., the
geometry of flower petals (Fig. 1(d) or the rightmost column of Fig. 5), while not
even being explicitly trained on such a flower image distribution. For LDCE-cls,
we similarly observe that it is capable of local as well as global changes (Fig. 4).
As expected, the generated counterfactuals of LDCE-cls on ImageNet are of
higher quality than the ones of LDCE-txt. Despite this we stress that LDCE-
cls (and other previous work) must train the generative model on the same (or
similar) image distribution, while LDCE-txt is universally applicable. Figs. 1
and 5 demonstrate this. Moreover, Figs. 5(a) to 5(d) & Fig. 12 in Appendix I
demonstrate the ability of LDCE-txt to capture and manipulate distinctive facial
features: LDCE-txt inserts or removes local features such as wrinkles, dimples,
and eye bags when moving along the smile and age attributes.

Fig. 4 compares generated counterfactuals by our LDCE variants to recent
methods from the literature: SVCE [11], DVCE [3], and ACE [37]. We observe
that SVCE often generates high-frequency (e.g ., Fig. 4(a)) or copy-paste-like
artifacts (Fig. 4(c)). DVCE tends to change images altogether (e.g ., Fig. 4(d)),
making it difficult to identify which features caused a change in ResNet50’s clas-
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(a) young → old

(b) old → young

(c) smile → no smile

(d) no smile → smile

(e) J. chin → Psn. cat

(f) Am. bull. → bgl.

(g) coltft. → sunflow.

(h) pink prim→ lotus

Fig. 5. LDCE-txt can generate counterfactuals for a wide range of models and datasets:
DenseNet-121, OpenCLIP, and (frozen) DINO with linear classifier on CelebA HQ,
Oxford Pets, or Flowers 102, respectively. Left: original image. Right: counterfactual.

sification. Moreover, note that DVCE is substantially confounded by its aux-
iliary model; as shown in Fig. 2 or Fig. 8 in Appendix A. Lastly, ACE keeps
the (f)actual image almost untouched, making it hard to identify important fea-
tures that influence ResNet50’s classification. In contrast to SVCE, DVCE, and
ACE, both LDCE variants generate high-fidelity counterfactuals that stay close
to the (f)actual image, while still highlighting important features for classifica-
tion of the model (as we will see in Sec. 5 this is an useful property). Further,
note that LDCE-txt is universally applicable beyond a specific data distribution,
while LDCE-cls and aforementioned methods from the literature require the
generative model to be trained on the same (or similar) data distribution.

Evolution, diversity, and failure modes. We find that counterfactual generation
gradually evolves from coarse (low-frequency) features (e.g ., blobs or shapes)
at the earlier time steps towards more intricate (high-frequency) details (e.g .,
textures) at later time steps; see Appendix G. Moreover, LDCE can generative
a diverse set of counterfactuals by introducing stochasticity in the abduction
step (different seeds) as demonstrated in Appendix H. Lastly, we also observed
failure modes (e.g ., distorted secondary objects). We suspect that some of these
limitations are inherited from the used diffusion model and, in part, to domain
shift. We further discuss these challenges in Sec. 6 and Appendix K.

4.2 Quantitative Evaluation

ImageNet results (Tabs. 1 and 2). For fair comparisons, we followed the the
evaluation protocol of Augustin et al . [3] for ℓ1.5-SVCE [11] and DVCE [3],
and the evaluation protocol of Jeanneret et al . [37] for ACE [37]. Note that
ℓ1.5-SVCE does not use the target model but an adversarially robust model
(multiple-norm robust ResNet-50 [19]) for counterfactual generation. Also note
that DVCE’s counterfactuals are substantially influenced by its auxiliary model
(Figs. 2 and 8). Thus, their results must be taken with caution.
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Table 1. Quantiative comparison of our class- (LDCE-cls) and text-conditional (LDCE-
txt) LDCE variants to SVCE and DVCE on ImageNet using ResNet-50.

Method w/o aux. model universally applicable∗ VQ-L2 L2 FID sFID precision recall FR avg. rank

ℓ1.5-SVCE
† [11] - - 27 25 22.44 28.44 83.66 95.75 83.8 2.71

DVCE [3] - - 38 38 15.1 21.14 74.05 85.12 99.6 3.29

LDCE-cls w/o cons. ✓ - 36 41 21.70 27.10 78.93 93.85 98.4 4.0
LDCE-cls ✓ - 36 42 14.03 19.25 81.67 94.59 83.1 3.07

LDCE-txt w/o cons. ✓ ✓ 42 31 38.0 44.23 77.89 82.40 98.5 4.71
LDCE-txt ✓ ✓ 31 41 21.0 26.50 79.18 90.34 84.4 3.21
†: generates counterfactuals with an adversarially robust ResNet-50 only. ∗: diffusion model need not be trained on ImageNet.

Table 2. Comparison of LDCE-cls and
LDCE-txt (diffusion model not trained
on ImageNet) to ACE on ImageNet with
ResNet-50.

Method FID (↓) sFID (↓) S3 (↓) COUT (↑) FR (↑) avg rank (↓)

Zebra – Sorrel

ACE ℓ1 84.5 122.7 0.92 -0.45 47.0 3.6
ACE ℓ2 67.7 98.4 0.90 -0.25 81.0 2.1
LDCE-cls 93.6 113.8 0.78 -0.06 88.0 1.8

LDCE-txt 98.1 121.7 0.71 -0.2097 81.0 2.5

Cheetah – Cougar

ACE ℓ1 70.2 100.5 0.91 0.02 77.0 3.0
ACE ℓ2 74.1 102.5 0.88 0.12 95.0 3.0
LDCE-cls 71.0 91.8 0.62 0.51 100.0 1.4

LDCE-txt 89.4 110.8 0.59 0.34 98.0 2.6

Egyptian Cat – Persian Cat

ACE ℓ1 93.6 156.7 0.85 0.25 85.0 3.0
ACE ℓ2 107.3 160.4 0.78 0.34 97.0 3.0
LDCE-cls 102.3 140.0 0.63 0.52 99.0 1.7

LDCE-txt 121.0 161.5 0.61 0.56 99.0 2.3

Tab. 1 shows that LDCE-cls achieves
superior realism (FID, sFID, precision,
recall) of counterfactuals, while DVCE
only outperforms LDCE-cls and LDCE-
txt w.r.t. the flip ratio (FR). Unsur-
prisingly, we find that SVCE gener-
ates counterfactuals that are closer to
the (f)actual image (lower Lp norms)
since it specifically constraints opti-
mization within a ℓ1.5-ball. It is also
unsurprising that both LDCE variants
have higher L2, as L2 is confounded
by unimportant, high-frequency image
details. VQ-L2 is more agnostic to such
and aligns better with the qualitative
inspection from Sec. 4.1. Lastly, the
beneficial effect of our proposed consensus guidance scheme is also highlighted,
as it substantially improves realism of counterfactuals.

Tab. 2 shows that both LDCE variants are consistently superior to ACE, with
the only exception of FID. However, as ACE enforces sparse changes, counterfac-
tual remain close to their respective (f)actual images, leading to low FID scores
(as also seen in Sec. 4.1). On the contrary, sFID is higher for ACE than our
LDCE variants, which accounts for such shortcut minimization of FID.

We provide quantitative results on CelebA-HQ in Appendix F. Importantly,
despite LDCE-txt is not specifically trained on facial data, it achieves competi-
tive performance (i.e., even better average rank) to previous baselines.

5 Applications

5.1 Identifying and Fixing Model Errors

Compared to usual image generation and editing that focus on high-quality,
counterfactual generation prioritizes understanding model behavior while main-
taining visual quality. We apply our method to investigate ResNet-50’s mis-
classifications on ImageNet by generating counterfactuals towards the correctly
misclassified class and visually inspecting the altered features that correct the
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(a) kite → bald eagle (b) maraca → wooden spoon (c) running shoe → sandal

Fig. 6. Counterfactuals aid to understand classification errors (here the ones from
ResNet-50 trained on ImageNet). Left: misclassified original image. Right: correctly
classified counterfactual. Red ellipses were added manually.

misclassification. Fig. 6 shows that ResNet-50 may misclassify young bald ea-
gles primarily due to the absence of their distinctive white heads and tails. We
speculate that this misclassification is due to the predominance of images of
older bald eagles, which only develop the characteristic white heads as they age.
Similarly, we found that painted wooden spoons may be misclassified as maraca,
while closed-toe sandals may be confused with running shoes.

To substantiate our findings, we create a small set of 50 samples from the
Internet with such erroneous characteristic. As expected, we found high error
rates on this set (bald eagle: 88%, wooden spoon: 74%, sandal: 48%); confirm-
ing our findings. As a fix, we finetuned the last linear layer of ResNet-50 and
splitting the 50 images into a equally-sized train and test set (details provided in
Appendix J). While ImageNet accuracy barely changed, i.e., ca. 0.2% improve-
ment, above model error rates on the test sets substantially reduced by 40%,
32%, or 16%, respectively.

5.2 Finding Spurious Correlations

(a) young → old

(b) old → young

Fig. 7. Counterfactu-
als reveal the influ-
ence of glasses on age
for DenseNet-121 on
CelebA HQ.

Another possible application of LDCE-txt is to identify
spurious correlations that a classifier may have picked
up during training. Specifically, we can compare the
(f)actual vs. counterfactual image focusing on the super-
vised DenseNet-121 trained on CelebA HQ. Our method
identified a known spurious feature is that older persons
tend to wear glasses and vise-versa as seen in Fig. 7. To
validate that DenseNet-121 relies on this spurious feature,
we used InstructPix2Pix [13] to add and remove glasses for
young or old persons, respectively. We used 100 samples
(50 young and 50 old) and measured the average treat-
ment effect through the sigmoid outputs change. We find
that adding glasses to young persons shifts sigmoid values
of DenseNet-121 by 7.6% towards an older look, while re-
moving it from older individuals shifts values by 8.7% towards a younger look.
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6 Limitations

Our method inherits the iterative generative process of diffusion models which
bottlenecks the generation speed and, thus, hinders real-time, interactive appli-
cations.1 However, advancements in distilling diffusion models [61,72,48,66] or
speed-up techniques [20,10] offer promise in mitigating this limitation. For in-
stance, Sauer et al . [66] only required a single diffusion step, while maintaining
high image quality. Another limitation is the requirement for hyperparameter
optimization due to different needs in distinct use cases. While our approach is
simple and only has a limited number of hyperparameters, making this process
very swift, it is still necessary. Beyond that, contemporary foundation diffusion
models, despite expanding data coverage [67], may underperform in specialized
domains, e.g ., biomedical data or exhibit (social) biases [8,46]. Lastly, we ac-
knowledge that our consensus guidance mechanism can suppress the signal of
the model under investigation but importantly not add any features unlike the
adversarially robust model in DVCE (see Fig. 8). We found that the diversity
of our method can mitigate this problem as suppressed features for one counter-
factual, may not be suppressed for another; refer to Appendix H.

7 Conclusion

We presented LDCE to generate semantically meaningful counterfactual expla-
nations using class- or text-conditional (foundation) diffusion models, combined
with a novel consensus guidance mechanism. We show LDCE’s universal ap-
plicability across diverse models trained on diverse datasets, and its usage for
understand and resolve model errors.
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(a) tiger shark → great white shark (b) electric ray → great white shark

(c) rooster → ostrich (d) indigo bunting → goldfinch

(e) chickadee → goldfinch (f) eft → spotted salamander

Fig. 8. Qualitative examples illustrating the marginal influence of the target model in
DVCE. From left to right: original image, counterfactual images generated using DVCE
with cone projection using an angular threshold of 30◦ and the robust classifier, and
DVCE using the robust classifier only, i.e., without the target model.

A Influence of the Adversarial Robust Model in DVCE

Fig. 8 shows that the auxiliary robust model has a profound impact on the
counterfactuals generated by DVCE [3]. Consequently, we cannot attribute the
changes of counterfactual explanations solely to the target model since they are
substantially confounded by the auxiliary adversarially robust model.

B Dataset and Model Licenses

Tabs. 3 and 4 provide licenses and URLs of the datasets or models used in
our experimental evaluation, respectively. Our implementation of LDCE is built
upon Rombach et al . [59] (License: Open RAIL-M, URL: https://github.com/
CompVis/stable-diffusion) and provided at https://github.com/lmb-freiburg/
ldce (License: MIT). Note that since all datasets have an image resolution of
256x256, we used a finetuned version of stable diffusion on this resolution,
provided by Pinkey [54] (License: CreativeML Open RAIL-M, URL: https://
huggingface.co/justinpinkney/miniSD).

C Model Details

Below, we provide model details:

https://github.com/CompVis/stable-diffusion
https://github.com/CompVis/stable-diffusion
https://github.com/lmb-freiburg/ldce
https://github.com/lmb-freiburg/ldce
https://huggingface.co/justinpinkney/miniSD
https://huggingface.co/justinpinkney/miniSD


Latent Diffusion Counterfactual Explanations 19

Table 3. Licenses and URLs for the datasets used in our experiments.

Dataset License URL

CelebAMask-HQ [44] CC BY 4.0 https://github.com/switchablenorms/CelebAMask-HQ
Oxford Flowers 102 [50] GNU https://www.robots.ox.ac.uk/∼vgg/data/flowers/102/
ImageNet [21] Custom https://www.image-net.org/index.php
Oxford Pet [53] CC BY-SA 4.0 https://www.robots.ox.ac.uk/∼vgg/data/pets/

Table 4. Licenses and URLs for the target and diffusion models used in our experiments.

Models License URL

ImageNet class-
conditional LDM [59]

MIT https://github.com/CompVis/latent-diffusion

Mini Stable
diffusion 1.4 [54]

CreativeML
Open RAIL-M [59]

https://huggingface.co/justinpinkney/miniSD

ResNet-50 for ImageNet [28,77] BSD 3 https://github.com/pytorch/vision
Adv. robust ResNet-50 for ImageNet [11] MIT https://github.com/valentyn1boreiko/SVCEs code
DenseNet-121 [33] for CelebA HQ [35] Apache 2 https://github.com/valeoai/STEEX
DINO for Oxford Flowers 102 [15] Apache 2 https://github.com/facebookresearch/dino
OpenCLIP for Oxford Pets [18] Custom https://github.com/mlfoundations/open clip

SimSiam [17] CC BY-NC 4.0 https://github.com/facebookresearch/simsiam
CelebA HQ Oracle [35] Apache 2 https://github.com/valeoai/STEEX
Ported VGGFace2
model from [14]

MIT https://github.com/cydonia999/VGGFace2-pytorch

– ResNet50 [28] on ImageNet [21]: We used the pretrained ResNet-50 model
provided by torchvision [77].

– DenseNet-121 [33] on CelebA HQ [44]: We used the pretrained DenseNet-
121 model provided by Jacob et al . [35].

– OpenCLIP [55,18] on Oxford Pets [53]: We used the provided weights
of OpenCLIP ViT-B/32 [23], and achieved a top-1 zero-shot classification
accuracy of 90.5% using CLIP-style prompts [55].

– DINO+linear [15] on Oxford Flowers 102 [50]: We used a frozen DINO
ViT-S/8 model, added a trainable linear classifier, and trained the linear clas-
sifier on Oxford Flowers 102 for 30 epochs. We used SGD with a learning rate
of 0.001 and momentum of 0.9, and cosine annealing [45]. The model achieved
a top-1 classification accuracy of 92.82%.

D Hyperparameters

Tab. 5 provides our manually tuned hyperparameters. For our LDCE-txt, we
transform the counterfactual target classes yCF to CLIP-style text prompts [55],
as follows:
– ImageNet: a photo of a {category name}.
– CelebA HQ: a photo of a {attribute name} person.

(attribute name ∈ {non-smiling, smiling, old, young}).
– Oxford Flowers 102: a photo of a {category name}, a type of flower.

– Oxford Pets: a photo of a {category name}, a type of pet.

https://github.com/switchablenorms/CelebAMask-HQ
https://www.robots.ox.ac.uk/~vgg/data/flowers/102/
https://www.image-net.org/index.php
https://www.robots.ox.ac.uk/~vgg/data/pets/
https://github.com/CompVis/latent-diffusion
https://huggingface.co/justinpinkney/miniSD
https://github.com/pytorch/vision
https://github.com/valentyn1boreiko/SVCEs_code
https://github.com/valeoai/STEEX
https://github.com/facebookresearch/dino
https://github.com/mlfoundations/open_clip
https://github.com/facebookresearch/simsiam
https://github.com/valeoai/STEEX
https://github.com/cydonia999/VGGFace2-pytorch
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Table 5. Manually-tuned hyperparameters of LDCE-cls and LDCE-txt.

LDCE-cls LDCE-txt
Hyperparameter ImageNet ImageNet CelebA HQ Flowers Oxford Pets

consensus threshold γ 45◦ 50◦ 90◦ 45◦ 45◦

starts timestep T 191 191 160 250 191
classifier weighting λc 2.3 3.95 3.95 3.4 4.2
distance weighting λd 0.3 1.2 3.5 1.2 2.4

We note that more engineered prompts may yield better counterfactual expla-
nations, but we leave such studies for future work.

E Evaluation Criteria for Counterfactual Explanations

In this section, we discuss the evaluation criteria used to quantitatively assess
the quality of counterfactual explanations. Even though quantitative assessment
of counterfactual explanations is arguably very subjective, these evaluation cri-
teria build a basis of quantitative evaluation based on the commonly recognized
desiderata validity, closeness, and realism.

Flip Ratio (FR)

This criterion focuses on assessing the validity of N counterfactual explanations
by quantifying the degree to which the original class label yFi of the original
image xF

i flips the target classifier’s prediction f to the counterfactual target
class yCF

i for the counterfactual image xCF
i :

FR =

N∑
i=1

I(f(xCF
i ) = yCF

i )

N
, (12)

where I is the indicator function.

Counterfactual Transition (COUT)

Counterfactual Transition (COUT) [38] measures the sparsity of changes in coun-
terfactual explanations, incorporating validity and sparsity aspects. It quantifies
the impact of perturbations introduced to the (f)actual image xF using a nor-
malized mask m that represents relative changes compared to the counterfactual
image xCF, i.e., m = δ(||xF−xCF||1), where δ normalizes the absolute difference
to [0, 1]. We progressively perturb xF by inserting top-ranked pixel batches from
xCF based on these sorted mask values.

For each perturbation step t ∈ {0, . . . , T}, we record the output scores of the
classifier f for the (f)actual class yF and the counterfactual class yCF throughout
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the transition from x0 = xF to xT = xCF. From this, we can compute the COUT
score:

COUT = AUPC(yCF)−AUPC(yF) ∈ [−1, 1] , (13)

where the area under the Perturbation Curve (AUPC) for each class y ∈ {yF, yCF}
is defined as follows:

AUPC(y) =
1

T

T−1∑
t=0

1

2

(
fy

(
x(t)
)
+ fy

(
x(t+1)

))
∈ [0, 1] . (14)

A high COUT score indicates that a counterfactual generation approach finds
sparse changes that flip classifiers’ output to the counterfactual class.

SimSiam Similarity (S3)

This criterion measures the cosine similarity between a counterfactual image xCF

and its corresponding (f)actual image xF in the feature space of a self-supervised
SimSiam model S [17]:

S3(xCF, xF) =
S(xCF) · S(xF)

∥S(xCF)∥∥S(xF)∥
. (15)

Lp norms

Lp norms serve as closeness criteria by quantifying the magnitude of the changes
between the counterfactual image xCF

i and original image xF
i :

Lp =
1

N

N∑
i=1

∥di∥p , (16)

where 0 < p ≤ ∞ and C,H,W are the number of channels, image height, and
image width, respectively, and

∥di∥p =

(
C∑

c=1

H∑
h=1

W∑
w=1

|xF
i,c,h,w − xCF

i,c,h,w|p
) 1

p

. (17)

Note that Lp norms can be confounded by unimportant, high-frequency im-
age details.

Mean Number of Attribute Changes (MNAC)

Mean Number of Attribute Changes (MNAC) quantifies the average number
of attributes modified in the generated counterfactual explanations. It uses an
oracle model Oa (i.e., VGGFace2 model [14]) which predicts the probability of
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each attribute a ∈ A, where A is the entire attributes space. MNAC is defined
as follows:

MNAC =
1

N

N∑
i=1

∑
a∈A

[
I
(
I
(
Oa(x

CF
i ) > β

)
̸= I

(
Oa(x

F
i ) > β

))]
, (18)

where β is a threshold (typically set to 0.5) that determines the presence of
attributes. MNAC quantifies the counterfactual method’s changes to the query
attribute q, while remaining independent of other attributes. However, a higher
MNAC value can wrongly assign accountability for spurious correlations to the
counterfactual approach, when in fact they may be artifacts of the classifier.

Correlation Difference (CD)

Correlation Difference (CD) [36] evaluates the ability of counterfactual methods
to identify spurious correlations by comparing the Pearson correlation coefficient
cq,a(x), of the relative attribute changes δq and δa, before and after applying the
counterfactual method. For each attribute a, the attribute change δa is com-
puted between pairs of samples i and j, as δai,j = ŷai − ŷaj , using the predicted
probabilities ŷai and ŷaj from the oracle model O (i.e., VGGFace2 model [14]).
The CD for a query attribute q is then computed as:

CDq =
1

N

N∑
i=1

∑
a∈A

|cq,a(xCF)− cq,a(xF)| . (19)

Face Similarity (FS)

Jeanneret et al . [37] proposed Face Similarity (FS) that addresses threshold-
ing issues and the abrupt transitions in classifier decisions in Face Verification
Accuracy (FVA) when comparing the (f)actual image xF and its correspond-
ing counterfactual xCF. FS directly measures the cosine similarity between the
feature encodings, providing a more continuous assessment (similar to S3).

Fréchet Inception Distances (FID & sFID)

Fréchet Inception Distance (FID) [29] and split FID (sFID) [37] evaluate the real-
ism of generated counterfactual images by measuring the distance on the dataset
level between the InceptionV3 [75] feature distributions of real and generated
images:

FID = ∥µF − µCF∥22 +Tr(ΣF +ΣCF − 2
√
ΣFΣCF) , (20)

where µF, µCF and ΣF, ΣCF are the feature-wise mean or covariance matrices of
the InceptionV3 feature distributions of real and generated images, respectively.
However, there is a strong bias in FID towards counterfactual approaches that
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barely alter the pixels of the (f)actual inputs. To address this, Jeanneret et
al . [37] proposed to split the dataset into two subsets: generate counterfactuals
for one subset, compute FID between those counterfactuals and the (f)actual
inputs of the untouched subset, and vice versa, and then take the mean of the
resulting FIDs.

Precision & Recall

We adopted the implementation of precision & recall from Kynkäänniemi et al .
[42]. Specifically, the (f)actual and counterfactual are embedded into a feature
space, denoted by ϕF ∈ ΦF or ϕCF ∈ ΦCF, respectively. We utilize DINOv2
[52] features for the precision and recall metrics, as it offers a more general
representation space than InceptionV3 [75]. Kynkäänniemi et al . determine if
a sample ϕ is (locally) supported in the data manifold by estimating the data
manifold by the volume of the hypersphere with the distance to the kth nearest
neighbor as radius:

g(ϕ, Φ) =

{
1 if ||ϕ− ϕ′||2 ≤ ||ϕ′ −NNk(ϕ

′, Φ)||2 for at least one ϕ′ ∈ Φ
0 otherwise,

(21)

where NNk(ϕ
′, Φ) returns the kth nearest neighbor of ϕ′ ∈ Φ. In other words,

Eq. (21) determines if a given sample ϕ is within the local hypervolume (support)
of the features vectors from Φ. Finally, to adapt to our counterfactual setting,
we define precision and recall as follows:

precision(ΦF, ΦCF) =
1

ΦCF

∑
ϕCF∈ΦCF

g(ϕCF, ΦF) (22)

and

recall(ΦF, ΦCF) =
1

ΦF

∑
ϕF∈ΦF

g(ϕF, ΦCF) . (23)

F Quantiative Evaluation on CelebA HQ

For a comprehensive evaluation, we evaluate our method on CelebA HQ in
Tab. 6 against DiVE [58], STEEX [35], DiME [36], and ACE [37]. Note that
all aforementioned approaches used generative models trained on CelebA HQ,
while LDCE-txt uses an universally applicable diffusion model. Nonetheless, we
find that LDCE-txt achieves competitive quantitative results. Specifically, while
DiME achieves better numbers on FS, and partially on CD, COUT and FR, it
is inferior for FID and sFID. Similarly, while ACE achieves better numbers on
FID, sFID, FVA, and MNAC (LDCE-txt is however close and clearly superior
to ACE for FID and sFID without post-processing), it is inferior for CD and
COUT. Note that we can improve image fidelity of counterfactuals by finetun-
ing the diffusion model with LoRA [32]. Tab. 6 shows that LDCE-txt makes a
good trade-off between various desiderata (realism, closeness, sparsity, validity).
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Table 6. Quantitative comparison on CelebA HQ using DenseNet-121. All previous
methods use a diffusion model specifically trained on CelebA HQ, while LDCE-txt uses
the generic training data distribution from stable diffusion. Despite this, LDCE-txt is
competitive and partially outperforms them.

Method
Smile Age

FID (↓) sFID (↓) FS (↓) MNAC (↓) CD (↓) COUT (↑) FR (↑) FID (↓) sFID (↓) FS (↓) MNAC (↓) CD (↓) COUT (↑) FR (↑) avg rank (↓)

DiVE [58] 107.0 - - 7.41 - - - 107.5 - - 6.76 - - - N/A
STEEX [35] 21.9 - - 5.27 - - - 26.8 - - 5.63 - - - N/A
DiME [36] 18.1 27.7 0.6729 2.63 1.82 0.6495 97.0 18.7 27.8 0.6597 2.10 4.29 0.5615 97.0 3.46
ACE ℓ1 [37] 26.1 36.8 0.8020 2.33 2.49 0.4716 95.7 24.6 38.0 0.7680 1.95 4.61 0.4550 98.7 5.21
ACE∗ ℓ1 [37] 3.21 20.2 0.8941 1.56 2.61 0.5496 95.0 5.31 21.7 0.8085 1.53 5.4 0.3984 95.0 4.07
ACE ℓ2 [37] 26.0 35.2 0.8010 2.39 2.40 0.5048 97.9 24.2 34.9 0.7690 2.02 4.29 0.5332 99.7 4.46
ACE∗ ℓ2 [37] 6.93 22.0 0.8440 1.87 2.21 0.5946 95.0 16.4 28.2 0.7743 1.92 4.21 0.5303 95.0 3.86

LDCE-txt 13.3 25.5 0.7590 2.57 2.01 0.6051 93.0 13.9 25.3 0.7129 2.38 3.99 0.5760 98.2 3.5

LDCE-txt† 12.1 23.7 0.7573 2.68 2.29 0.6311 93.4 12.8 24.4 0.71 2.29 4.26 0.5718 97.9 3.42
∗: ACE with post-processing. †: LoRA-finetuned [32] stable diffusion on CelebA HQ.

Remarkably, LDCE-txt achieves such strong performance, while being univer-
sally applicable. In contrast, prior methods from the literature used generative
models trained on CelebA HQ.

G Changes over the Course of Counterfactual Generation

We conducted a deeper analysis to understand how a (f)actual image xF is
transformed into a counterfactual explanation xCF. To this end, we visualized
intermediate steps (linearly spaced) of the diffusion process in Fig. 9. We found
that the image gradually evolves from xF to xCF by modifying coarse (low-
frequency) features (e.g ., blobs or shapes) in the earlier steps and more intricate
(high-frequency) features (e.g ., textures) in the latter steps of the diffusion pro-
cess.

H Diversity of Counterfactual Explanations

Diffusion models by design are capable of generating image distributions. While
the used DDIM sampler [71] is deterministic, we remark that the abduction step
(application of forward diffusion onto the (f)actual input xF) still introduces
stochasticity in our approach, resulting in the generation of diverse counterfac-
tual images. More specifically, Fig. 10 shows that the injected noise influences
the features that are added to or removed from the (f)actual image at different
scales. Therefore, to gain a more comprehensive understanding of the underly-
ing semantics driving the transitions in classifiers’ decisions, we recommend to
generate counterfactuals for multiple random seeds.

I Additional Qualitative Examples

Figs. 11 to 14 provide additional qualitative examples for ImageNet with ResNet-
50, CelebA HQ with DenseNet-121, Oxford Pets with OpenCLIP VIT-B/32, or
Oxford Flowers 102 with (frozen) DINO-VIT-S/8 with (trained) linear classifier,
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(a) poodle → dalmatian

(b) golf ball → baseball

(c) soccer ball → golf ball

(d) backpack → plastic bag

(e) sandal → running shoe

Fig. 9. Visualization of changes over the course of the counterfactual generation. From
left to right: (f)actual image xF, intermediate visualizations (linearly spaced) till final
counterfactual xCF.
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respectively. Note that, in contrast to standard image generation, editing or
prompt-to-prompt tuning, we are interested in minimal semantically meaningful
changes to flip a target classifier’s prediction (and not just generating the best
looking image).

J Finetuning Details

We finetuned the final linear layer of ResNet-50 on the ImageNet training set
combined with 25 examples that correspond to the respective model error type
for 16 epochs and a batch size of 512. We use stochastic gradient descent with
learning rate of 0.1, momentum of 0.9, and weight decay of 0.0005. We used
cosine annealing as learning rate scheduler and standard image augmentations
(random crop, horizontal flip, and normalization). We evaluated the final model
on the holdout test set.
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(a) ant → ground beetle

(b) zebra → hippopotamus

(c) brabancon griffon → newfoundland

(d) soccer ball → golfball

(e) alp → coral reef

Fig. 10. Qualitative diversity assessment across five different random seeds (0-4) using
LDCE-txt on ImageNet [21] with ResNet-50 [28]. From left to right: original image,
counterfactual image generated by LDCE-txt for five different seeds.
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Original SVCE DVCE ACE ℓ1 ACE ℓ2
LDCE-cls
w/o cons. LDCE-cls

LDCE-txt
w/o cons. LDCE-txt

(a) stingray → great white shark

(b) kite → rooster

(c) oystercatcher → ruddy turnstone

(d) Chihuahua → toy terrier

(e) poodle → dalmatian

(f) meerkat → ice bear

(g) marmot → porcupine

(h) ambulance → jeep

(i) backpack→ sleeping bag
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Original SVCE DVCE ACE ℓ1 ACE ℓ2
LDCE-cls
w/o cons. LDCE-cls

LDCE-txt
w/o cons. LDCE-txt

(j) gong → drum

(k) mitten → mask

(l) restaurant → library

(m) tennis ball → baseball

(n) lemon → orange

(o) carbonara → guacamole

(p) valley → cliff

Fig. 11. Additional qualitative results for on ImageNet with ResNet-50. From left to
right: original image, counterfactual images generated by SVCE [11], DVCE [3], LDCE-
no consensus, LDCE-cls, and LDCE-txt.
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(a) no-smile → smile

(b) smile → no-smile

(c) young → old

(d) old → young

Fig. 12. Additional qualitative results for LDCE-txt on CelebA HQ with DenseNet-121.
Left: original image. Right: counterfactual image.
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(a) abyssinian → Egyptian
cat (b) Am. bulldog → sphynx

(c) American pitbull →
stafford

(d) beagle → chihuahua (e) bengal → abyssinian (f) birman → siamese

(g) bombay → chihuahua (h) bombay → persian
(i) boxer → American pit-
bull

(j) British shorthair → ben-
gal (k) chihuahua → sphynx

(l) Egypt. cat → Brit.
shorthair

(m) spaniel → wheaten
(n) great pyrenees →
samoyed (o) havanese → yorkshire

(p) Japanese chin → boxer
(q) leonberger→ newfound-
land (r) Russian blue → sphynx

(s) samoyed → pomeranian
(t) Ger. shorthaired → bea-
gle (u) keeshond → birman

Fig. 13. Additional qualitative results for LDCE-txt on Oxford Pets with OpenCLIP
VIT-B/32. Left: original image. Right: counterfactual image.
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(a) canterbury → balloon
flower (b) sweet pea → bee balm

(c) Eng. marigold → sun-
flower

(d) Eng. marigold → water
lily

(e) tiger lily → stemless
gentian

(f) moon orc. → spring cro-
cus

(g) bird of paradise → ylw.
iris

(h) monkshood →
wallflower

(i) king protea → passion
flower

(j) preuvian lily → water-
cress (k) arum lily → magnolia

(l) pincushion → snap-
dragon

(m) sweet william → petu-
nia

(n) gdn. phlox → sweet
william

(o) barbeton daisy → gaza-
nia

(p) marigold → carnation
(q) Jpn. anemone → frangi-
pani

(r) silverbush → morning
glory

(s) rose → camellia
(t) morning glory → desert-
rose (u) siam tulip → water lily

Fig. 14. Additional qualitative results for LDCE-txt on Oxford Flowers 102 with
(frozen) DINO-VIT-S/8 with (trained) linear classifier. Left: original image. Right:
counterfactual image.
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(a) bluriness
african elephant → armadillo

(b) distorted bodies
acoustic guitar → electric guitar

(c) distorted faces
Am. lobster → dungeness crab

balm

(d) large distance to
counterfactual target class yCF

birdhouse → umbrella

Fig. 15. Failure modes of LDCE (i.e., LDCE-txt) on ImageNet [21] with ResNet-50
[28]. Left: original image. Right: counterfactual image.

K Failure Modes

In this section, we aim to disclose some observed failure modes of LDCE (specif-
ically LDCE-txt): (i) occasional blurry images (Fig. 15(a)), (ii) distorted human
bodies and faces (Figs. 15(b) and 15(c)), and (iii) a large distance to the counter-
factual target class causing difficulties in counterfactual generation (Fig. 15(d)).
Moreover, we note that these failure modes are further aggravated when multiple
instances of the same class (Fig. 15(c)) or multiple classes or objects are present
in the image (Fig. 15(a)).

As discussed in our limitations section, we believe that the former cases (i
& ii) can mostly be attributed to limitations in the foundation diffusion model,
which can potentially be addressed through orthogonal advancements in gen-
erative modeling. On the other hand, the latter case (iii) could potentially be
overcome by further hyperparameters tuning, e.g ., increasing classifier strength
λc and decreasing the distance strength λd. However, it is important to note
that such adjustments may lead to counterfactuals that are farther away from
the original instance, thereby possibly violating the desired desiderata of close-
ness. Another approach would be to increase the number of diffusion steps T , but
this would result in longer counterfactual generation times. Achieving a balance
for these hyperparameters is highly dependent on the specific user requirements
and the characteristics of the dataset.
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(a) kite → rooster (b) poodle → dalmatian

Fig. 16. Important areas (right) align with the (semantic) changes made by LDCE from
(f)actual (left) to counterfactual (middle).

L Counterfactual Region Importance Masks

To evaluate whether the changes proposed by LDCE lean towards semantic
changes rather than adversarial perturbations, we demonstrate the impact of
each 64x64 region in the LDCE-generated counterfactual image on the classifier
decision. This evaluation can help us have a better insight on the locality and
the semantic quality of the proposed visual features. We assessed the importance
of all image regions by replacing each image region (of a size of 64) from the
counterfactual by the (f)actual image, computed the difference in prediction
of the counterfactual target class, and aggregated results for each image pixel.
Fig. 16 shows that important image regions (i.e., the ones with large change in
the classification of the counterfactual target class) align well with the introduced
changes of our method, LDCE. This clearly indicates that the (semantic) changes
made by LDCE drive the classification change.
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