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Abstract. Training high-quality CLIP models typically requires enor-
mous datasets, which limits the development of domain-specific models –
especially in areas that even the largest CLIP models do not cover well –
and drives up training costs. This poses challenges for scientific research
that needs fine-grained control over the training procedure of CLIP mod-
els. In this work, we show that by employing smart web search strategies
enhanced with knowledge graphs, a robust CLIP model can be trained
from scratch with considerably less data. Specifically, we demonstrate
that an expert foundation model for living organisms can be built using
just 10M images. Moreover, we introduce EntityNet, a dataset compris-
ing 33M images paired with 46M text descriptions, which enables the
training of a generic CLIP model in significantly reduced time.

1 Introduction

Contrastive Language-Image Pretraining (CLIP) [1] has become a cornerstone
for training Vision-Language Models (VLMs). CLIP models learn high-quality
visual embeddings and establish a link to the semantic level of brief text descrip-
tions by training on pairs of images and their corresponding text descriptions
collected from the web. The features and the link between images and text have
been used directly for, e.g., zero-shot classification or text-to-image retrieval, and
enable dialogues with visual input, such as in the LLaVA family of models [2–4].
The link can also be exploited in the opposite direction to enable text-conditional
image generation, e.g., Stable Diffusion [5].

Training state-of-the-art CLIP models is computationally expensive. The
original CLIP model has seen 12.8B image-text pairs, and later works have scaled
this further [6, 7]. This need for scale has limited most of the research to fine-
tuning, which comes with reduced architectural flexibility and control over the
data selection. It is particularly problematic for analytic research that demands
full control over training to find causes of emergent behavior.

The effort to collect vast datasets is also a key bottleneck for building foun-
dation models for expert domains. Although CLIP models are supposed to be
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Fig. 1: We demonstrate how to harvest datasets for training CLIP models with an
improved quality-cost trade-off, for a generic (left) or an expert domain (right).

generic and cover most of the world, they are not good enough for use in spe-
cific expert domains such as medicine or biology. Building foundation models for
expert domains requires an efficient data collection process, taking into account
the availability of fewer data samples in these domains.

Our goal is to tackle these challenges from the dataset side while keeping
the CLIP algorithm fixed. This strategy is backed by recent literature. For ex-
ample, Li et al. [8] explored CLIP “along three dimensions: data, architecture,
and training strategies” and they stress the “significance of high-quality training
data”. For Large Language Models (LLMs), data curation was shown to reduce
training time and model size, achieved through heavily filtered publicly available
web data and synthetic data [9]. With the dataset creation process, we aim (1)
for improved performance in the expert domain of living organisms, in order
to demonstrate the creation of expert foundation models; and (2) we aim for a
good trade-off between training efficiency and model performance on the broad
domain of the visual world, in order to enable compute-efficient from-scratch
analysis of fully functional CLIP models.

We built a dataset we call EntityNet, where we leveraged knowledge graphs
and targeted web image search. Specifically, from the knowledge graphs Wikidata
and WordNet, we collected 135k entities (e.g. eagle) as well as their aliases
and descriptions. We extracted entity attributes from Wikidata related to color,
partonomy, behavior, and other aspects, and used them to guide an LLM in
generating entity-attribute queries for image search. For example, from the entity
plastic and the attribute small we generated the query small plastic item.

The resulting EntityNet consists of 33M images paired with 45M alt texts
and 613k text labels from the knowledge graphs. The dataset is partitioned into
a subset of 10M images of living organisms, capturing high-quality visual and
semantic information about the taxonomy of animals, plants, and funghi, as
well as a subset of 23M images covering a wide range of categories, such as tools,
geographical features, materials, and buildings. Notably, from this process we
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obtain not only alt texts, but also a link back to the knowledge graph information
that was used to create the search query for a given image. We show that this
information can be used during training to achieve better performance than by
training on alt texts alone. The method of creating our dataset is largely generic
and can be applied to other knowledge graphs.

Training on this dataset, we obtain a foundation model that is both spe-
cialized on the target expert domain and is also able to understand the overall
visual world. In our domain-specific evaluations on iNaturalist and RareSpecies,
the model demonstrates robust generalization and clearly surpasses CLIP mod-
els trained on much more data (Figure 1). On ImageNet, we demonstrate our
dataset to be highly compute efficient and to achieve a performance comparable
to models trained 20x longer (Figure 1).

– We propose a method to automatically create a vision-language dataset based
on a given knowledge graph and an image search engine.

– We apply this method to create the EntityNet dataset, consisting of 33M
images paired with 45M alt texts and supplementary text information from
the knowledge graphs.

– We train an expert CLIP model for living organisms on a single 8xL40S ma-
chine from scratch in 55 hours. This EntityNet-CLIP is highly specialized
in the target expert domain of living organisms, and comparably strong on
ImageNet.

– We evaluate our model and a suite of other CLIP models for object classi-
fication, image retrieval, and domain shift robustness. In the expert domain
of animals and plants, our model achieves higher performance than models
with orders of magnitude more parameters or training data. It is also much
stronger than CLIP models that specialize only for this domain. In the generic
domain, our model performs remarkably well given the low amount of compute
required to train it.

2 Related work

Datasets. Many recent studies have investigated methods for building large-
scale datasets for multimodal training. Radford et al. [1] trained the original
CLIP model on a private dataset of 400M images using image-text pairs with
text derived from Wikipedia and WordNet terms. Schuhmann et al. [10] further
built the publicly available LAION-400M dataset by filtering HTML data from
Common Crawl [11] based on the similarity estimated by the CLIP model. In a
follow-up work, they [12] scaled their approach one order of magnitude with the
multilingual LAION-5B dataset. Xu et al. [13] sought to replicate the original
CLIP’s data curation approach. Gadre et al. [6] proposed DataComp, a filter-
ing challenge containing up to 13B image-text pairs from CommonCrawl, and
a baseline DataComp-1B dataset. It contains 1.4B pairs filtered with a combi-
nation of CLIP score and clustering to match ImageNet [14] training examples.
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Fig. 2: We create a dataset for vision-language pretraining: First, we extract
entities from knowledge graphs, then generate attributes and natural types for
them. We search for different combinations of entities, attributes, and types in
image search engines, and collect alt texts for each image. Finally, we train our
model on the combined data.

Fang et al. [7] trained a Data Filtering Network on 357M human-verified image-
text pairs, which they used to filter 42B candidates into the DFN-5B dataset
and use that dataset to train the current top model of the OpenCLIP leader-
board [15]. These large datasets have largely supplanted smaller ones like Con-
ceptualCaptions12M (CC12M) [16], relying on unimodal heuristics, and Yahoo
Flickr Creative Commons 15M (YFCC15M), a derived subset of 15M image-text
pairs from Flickr [17]. While many prior works have focused on scaling up mul-
timodal datasets and models, we aim to improve research on high-quality CLIP
models when data and compute efficiency is essential, such as setting up a CLIP
model for an expert domain or for scientific analysis of CLIP training.

Stevens et al. [18] curated the TreeOfLife-10M dataset from biological sources [19–
21] to train BioCLIP, a model for organismal biology. They evaluated it on
RareSpecies, a benchmark of 400 species not seen during training. While Bio-
CLIP leverages domain-specific biological knowledge, we propose a dataset con-
struction method that generalizes to arbitrary domains using knowledge graphs.

Training algorithms. Several works have investigated algorithmic improve-
ments to CLIP. Li et al. [22] simply train and fine-tune with different image
resolutions, while Li et al. [23] suggests masking parts of the image to reduce
computation. Zhai et al. [24] propose a sigmoid loss which reduces the com-
putational load especially in big distributed settings. They follow up [25] by
extending the training objective using multiple previously developed techniques,
including captioning-based pretraining [26], self-distillation [27] and online data
curation [28] into a unified training strategy. Vasu et al. [29] improve learning



Using Knowledge Graphs to harvest datasets for efficient CLIP training 5

efficiency with synthetic captions created by an image captioning model and an
ensemble of CLIP teachers to train their model. Chen et al. [30] evaluate vision
encoder choices and design a hybrid architecture that improves over vanilla vi-
sion transformers (ViT) based CLIP models. These algorithmic improvements
are orthogonal to our contribution. In this work, we fix the algorithm and archi-
tecture to enable a fair comparison with ViT-based CLIP baselines.

Li et al. [8] analyze scaling effects across data, architecture, and training
strategies, showing that huge models require larger datasets, and data quality
plays a crucial role. They create improved datasets by filtering the 3.4B WebLI
dataset [31] with CLIP, while we pursue a different dataset collection process.

3 Dataset creation

Our dataset creation process consists of four steps: entity extraction, attribute
generation, query building, and image search. This process is generally applicable
to all visual domains covered by the underlying knowledge graph. We construct
a dataset covering most visual entities in our world, additionally focusing on
animals and plants, referred to as the organism subset. See Figure 2 for the
dataset creation process and Table 1 for examples of entities and attributes.

3.1 Entity extraction

A high-quality list of visual entities forms the basis for our dataset, built from the
Wikidata knowledge graph [32] and utilizing the hierarchical structure provided
by the subclass of relation within Wikidata. For example, the entity dog is a
subclass of the pet entity, which in turn is a subclass of domesticated animal .
This hierarchy enables easy collection of entities related to a super-entity. First,
we manually build a list of 21 super-entities that cover most physical and visual
entities in Wikidata. For the organism subset, the super-entities are just animal
and plant . Examples of non-organism super-entities include food , building , or
physical tool , with all super-entities listed in the supplementary material. Next,
we extract all entities from Wikidata linked to at least one of the super-entities
through the subclass of relation. For animals and plants, Wikidata also models
their biological taxon hierarchy via the parent taxon relation. Because the taxon
hierarchy substantially increases the coverage of our organism subset, we use
it together with the regular subclass hierarchy to extract entities. We exclude
named entities (e.g., specific persons), as Wikidata models these via the instance
of relation; we focus solely on the subclass of and parent taxon relations. For
every entity, we also download its name, description, aliases, and its number of
Wikimedia sitelinks 1 as additional information. Finally, we apply two filtering
steps: First, we remove all entities with a sitelink count below a predefined
threshold, eliminating very rare or low-quality entities unlikely to produce strong
search results. We then use a LLM to filter out any remaining non-visual entities.
1 The number of Wikimedia sitelinks is a commonly used and high-quality proxy for

the popularity of an entity [33].

https://www.wikidata.org/wiki/Property:P279
https://www.wikidata.org/wiki/Q144
https://www.wikidata.org/wiki/Q39201
https://www.wikidata.org/wiki/Q622852
https://www.wikidata.org/wiki/Q729
https://www.wikidata.org/wiki/Q756
https://www.wikidata.org/wiki/Q2095
https://www.wikidata.org/wiki/Q41176
https://www.wikidata.org/wiki/Q39546
https://www.wikidata.org/wiki/Property:P171
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Table 1: Top: Examples of entities and additional information as extracted from
the Wikidata knowledge graph. Bottom: Examples of attributes and corre-
sponding search queries for different entities as generated by the LLM.

Entity Description Sitelinks Aliases

tiger species of big cat 216 tigress, tigers, Panthera tigris
chest box-shaped type of furniture 51 coffer, kist
muscle car type of high-performance car 30 high performance car

Entity Category Attribute Search query

rock Pattern and texture porous porous rock
wolf Environment snow wolf in the snow
residence Parts arches arches in residence architecture
garlic Shape and size big big garlic bulb
farm Other tourist tourists visiting a farm
boot Color multicolor multicolored boots

For our expert domain, the organism subset, we also add all nouns from
WordNet [34] that are a subclass of the living thing node, excluding humans,
named entities and entities that cannot be seen with the bare eye, e.g., microor-
ganisms. Finally, we employ heuristic methods to detect and remove potentially
offensive entities via a profanity filter.

3.2 Attribute generation

Besides searching for the entities directly, we also aim to search for variations
of them in different contexts, by combining them with attributes. We manually
define 6 visual attribute categories we want to search for: Color, Pattern and
texture, Parts, Shape and size, Environment, and Other. We extract potential
attributes for each entity from the Wikidata knowledge graph and prompt an
LLM2 with this entity and attribute information to generate a list of visual
attributes. We first considered generating attributes without categories, how-
ever, the results lacked diversity, and adding categories improves the variety of
attributes. For each attribute we also generate a search query combining the
attribute itself with the corresponding entity. We generate between 1 and 10
attributes per category and generate them for the most popular entities only, as
image search engines fail to respect attributes in search queries for rare entities,
where they often even struggle to return good results for the entity alone.

3.3 Query building

For the entities themselves, we use their names and aliases as search queries.
We search entity-attribute combinations using the search queries generated by
the LLM. We then create additional queries based on the attributes: First, we
2 We use three LLMs and merge their generated attributes: Qwen2.5 7B [35], OpenAI

GPT-4o, and OpenAI GPT-4o mini (both accessed via API at platform.openai.com)

http://www.wikidata.org/entity/Q19939
http://www.wikidata.org/entity/Q366134
http://www.wikidata.org/entity/Q1072763
https://www.wikidata.org/entity/Q8063
https://www.wikidata.org/entity/Q18498
http://www.wikidata.org/entity/Q699405
https://www.wikidata.org/entity/Q23400
https://www.wikidata.org/entity/Q131596
http://www.wikidata.org/entity/Q190868
https://platform.openai.com/
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Table 2: Details of our EntityNet dataset. We show the number of unique el-
ements for each column, e.g. the number of images after deduplication or all
unique entity aliases in the respective sets.

Query set Images Queries Entities Aliases Attributes Alt texts Example query

World entity 23M 158k 74k 101k - 23M ship
+ attribute 19M 139k 6k 16k 20k 16M small handbag
Living entity 9M 72k 63k 51k - 8M kohlrabi
+ attribute 9M 53k 1k 3k 5k 6M tropical plant

All 33M 416k 135k 149k 23k 45M -

determine the entity’s natural type – the super-entity a human would most
likely associate with it, e.g., bird for eagle, or clothing for hat. It is neither too
general nor too specific, and can typically help disambiguate entities sharing
the same name. We use an LLM to select the most fitting super-entity from an
entity’s super-class hierarchy as its natural type and generate a brief description
explaining why this type is appropriate. The description is used during training
as a potential text label. We then replace entity mentions in the attribute search
queries with their natural types. For example, the attribute query eagle in its
nest may turn into bird in its nest, or black BMW M4 into black car.

3.4 Image search and filtering

We execute our search queries using the image search APIs of Bing and Google.
Initial tests on the organism subset revealed Bing’s search results to be of much
higher quality at a lower cost, so we rely solely on the Bing API for all other
queries. The image search APIs also provide the URL for the website hosting
the image, which we use to collect alt texts from the HTML image tag. After
downloading images and alt texts, we perform the following postprocessing steps.

Similar to Changpinyo et al. [16], we apply relaxed filtering heuristics. We
do not use multimodal filtering, but rely on search engines to provide image-
text correspondences. We remove JSON-like and too long text. We also remove
images with an aspect ratio of more than 4 or covering less than 4096 pixels.

We deduplicate all downloaded images using the Self-Supervised Descriptor
for Image Copy Detection method (SSCD) [36]. For duplicates, we retain the
largest image and collect all unique alt texts and related entities from the dupli-
cates. Deduplication increases the dataset diversity per sample, since the domain
coverage stays the same, while the number of samples decreases. We also remove
images that appear in any evaluation dataset using the same SSCD method.

Our final dataset comprises approximately 33M images and 45M alt texts,
obtained from 416k queries. This amounts to 79 images per query and 1.4 alt
texts per image on average. The total cost for all image search API calls was
around 10,000$. See Table 2 for an overview over our dataset.
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4 Experimental setup

4.1 Training

We trained all models with the standard CLIP loss [1], using a batch size of
8,192 for pretraining and 32,768 during finetuning, along with random resized
crop augmentation. We sampled text labels from both the image alt texts and
the knowledge graph. For each image, 50% of the time, we chose a random alt
text, and 50% of the time, we chose randomly between search queries, aliases,
or descriptions of the corresponding entity. We trained all models for 18 epochs.
Training on 33M images takes ∼55 hours on 8 L40s GPUs (48GB VRAM per
GPU). Our training code is based on OpenCLIP [15]. Further training details
and text sampling examples are in the supplementary material.

4.2 Evaluated models

On our EntityNet dataset, we trained ViT CLIP models of size B-32 and B-16
from random initialization. For a comparison with a similarly sized dataset, we
also trained models on CC12M by downloading all available URLs, and then
detecting and removing duplicates relative to the evaluation datasets using the
same procedure as detailed in Section 3.4, obtaining 9.3M images. We finetuned
B-32 and B-16 CLIP models trained on DataComp-1B on our dataset to compare
finetuning and pretraining performance. We also evaluate the original OpenAI
CLIP [1], models pretrained on DataComp-M/L/1B, CommonPool-M/L [6], and
DFN-5B [7], as well as the biological domain expert model BioCLIP [18], a ViT-
B-16 CLIP model finetuned from OpenAI-CLIP on the TreeOfLife-10M dataset.

4.3 Object classification evaluation

To test the VLMs on object classification, we use the same procedure as CLIP [1],
see the supplementary material for a detailed description. We evaluate all models
on just encoding the class name, and on using the average embedding of the
80 context prompts that the CLIP authors used for ImageNet, and report the
higher top-1 accuracy. For zero-shot object classification, we require models not
to have been trained on the training set of the benchmark, to test “generalization
to unseen datasets” [1]

Benchmarks in the generic domain. We evaluate on ImageNet [14],
a popular image classification benchmark [37]. We use the ILSVRC2012 val-
idation set, which contains 50,000 images from 1,000 classes. The classes in-
clude simple objects, such as park bench, as well as more fine-grained labels like
23 types of terrier dogs, e.g., Staffordshire Bull Terrier. We further evaluate
the robustness under distribution shifts on ImageNet-A [38], ImageNet-R [39],
ImageNet-Sketch [40], ImageNet-V2 [41], and ObjectNet [42] as proposed by
Taori et al. [43]. ImageNet-A contains 7500 samples of 200 ImageNet classes.
The samples were adversarially filtered to make ResNet-50s misclassify them,
providing a more challenging test. ImageNet-R contains 30000 renditions, such
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as paintings or embroidery, of 200 ImageNet object classes. ImageNet-Sketch
contains 50000 sketches, covering 200 ImageNet classes. ImageNet-V2 replicates
the original ImageNet generation process, providing an additional 10000 test im-
ages. The object-centered ObjectNet contains 18574 images from 113 ImageNet
classes with control over background, rotation and viewpoint.

Benchmarks in the expert domain. We evaluate our models on iNatural-
ist 2021 [20], a fine-grained species classification benchmark that contains 100k
images in the validation set of 10k different species. Similar to Parashar et al. [44],
we report the best results after testing on both the English common name and
the Latin taxon name. We further test on the Caltech-UCSD Birds (CUB) [45]
dataset, which contains 5,794 images of birds in the original author’s test set,
each annotated as one of 200 fine-grained bird species, e.g., grasshopper spar-
row. Additionally, we evaluate on the Rare Species benchmark proposed by
Stevens et al. [18], comprising 400 species with 30 images each, specifically
tailored to assess generalization to unseen taxa. To comply with the bench-
mark requirements of not seeing the testing 400 species during training, we
exclude all entities and queries from our dataset that appear in RareSpecies, us-
ing substring matching. As class names, we evaluate all text types proposed by
Stevens et al. [18]: combinations of the Latin taxonomy and the English common
name. Same as in Section 4.3 we evaluate on both the CLIP ImageNet prompt
and no prompt, and report the better of both accuracies.

4.4 Retrieval evaluation

We evaluate the COCO Karpathy test split [46], a subset of 5000 samples from
the MS-COCO [47] dataset paired with 5 texts each. We also evaluate the 1000
samples in the Karpathy test split of Flickr30k [48] annotated with 5 texts per
image, as well as on the 3600 image-text pairs in XM3600 [49]. We report the
average of image-to-text and text-to-image recall@1 over all datasets.

5 Results

We evaluate CLIP pretrained from scratch on our EntityNet dataset and
CLIP models trained on other datasets. In Figures 1 and 3 we contrast the ef-
fectiveness of models with their training cost. We show the results in detail in
Table 3. In the generic domain, our models surpass others trained on similarly
sized datasets while achieving comparable performance on object classification
with models trained 20x longer. On image-text retrieval, our model performs
similarly to models trained on the same amount of compute. While our pipeline
creates a dataset efficient for understanding objects and their properties, under-
standing complex scenes still requires learning mainly from the alt texts more
than from objects and attributes. In the expert domain, we outperform even
the largest CLIP models on the challenging iNaturalist 2021 dataset, which re-
quires classifying images among 10k fine-grained species. Our model also excels
on CUB by distinguishing 200 bird species better than all other CLIP models of
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Fig. 3: Results on image retrieval and distribution shift robustness on ImageNet.

the same size. Further, when compared to the expert model BioCLIP, explicitly
trained for organismal biology at a similar training cost, our model demonstrates
superior performance. On the Rare Species benchmark, our model outperforms
BioCLIP on unseen species, showing the effectiveness of our dataset collection
method over a manually designed living organism training set.

We investigate improving existing CLIP models via finetuning in Table 4.
The results show that our dataset can be leveraged to create expert CLIP models
that outperform both the base model and our model pretrained from scratch on
the expert domain. This improvement comes at the cost of trading off some
capabilities in the other domains. When finetuning only on the expert domain,
we trade off more capabilities, yet obtain even stronger experts.

We further validate and verify our design choices through a component
analysis in Table 5. Training separately on the generic and the domain expert
part of our dataset reveals that, while the best generic model emerges from
training on everything, a slightly better expert model is the result of training
only on the expert domain (first table segment). However, generalization to un-
seen species slightly benefits when training on the full dataset, showing that
our generic domain data can enhance generalization capabilities within the ex-
pert domain. We also observe that generating and downloading attribute queries
contributes to improved performance of the pretrained model.

In the second segment of the table, we evaluate the mixture of alt text and
knowledge graph labels used during training. Notably, both training only on
alt texts or only on knowledge graph labels mostly performs worse than our
50-50 mix. The exception is image-text retrieval, where training fully on alt text
performs slightly better. Potentially, the knowledge graph labels are less useful
for learning the matching between longer text queries and images, and more
useful for learning fine-grained object classification.

Finally, we reduce the scale of our dataset by powers of two. While the
model performance expectedly drops with reduced dataset size, the efficiency of
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Table 3: Results for training CLIP B-32 and B-16 on our EntityNet dataset
from scratch. We mark the best and second best result. To measure compute
cost, we calculate training MACs (multiply–accumulate operations). We only
compare zero-shot results and mark results as “–” if the model does not fulfill
the zero-shot requirements.

Arch. Dataset MACs Images in Image- Retrie- Distr. iNat. CUB Rare
(1e18) dataset (M) Net val shift 2021 Species

B-32 CC12M 3.7 9.3 28.6 25.6 18.3 0.7 9.2 –
B-32 CommonPool-M 2.9 128.0 27.2 20.2 19.8 0.8 10.1 –
B-32 DataComp-M 2.9 14.0 29.7 19.5 20.5 1.0 16.8 –
B-32 OpenAI 288.6 400.0 63.4 49.6 48.7 7.4 51.8 –
B-32 DataComp-1B 295.4 1400.0 69.2 54.0 56.3 12.6 73.8 –

B-32 EntityNet (ours) 13.1 32.7 61.5 37.2 41.0 26.1 79.5 42.7
B-16 BioCLIP 61.3 10.4 18.6 0.8 15.4 – 78.1 38.1
B-16 CommonPool-L 78.2 1280.0 57.8 45.6 47.0 4.1 35.1 –
B-16 DataComp-L 78.2 140.0 63.1 49.4 51.1 6.1 48.1 –
B-16 DataComp-1B 791.4 1400.0 73.5 57.4 64.4 15.3 79.0 –
B-16 OpenAI 784.6 400.0 68.3 52.1 58.6 9.2 56.1 –

B-16 EntityNet (ours) 36.0 32.7 66.2 39.8 47.4 32.0 85.3 47.1
L-14 OpenAI 3328.4 400.0 75.5 54.3 71.4 12.0 62.9 –
L-14 DataComp-1B 3338.6 1400.0 79.2 61.8 74.9 21.1 85.5 –
L-14 DFN-2B 3338.6 2000.0 81.4 64.2 74.8 21.6 86.5 –
H-14 DFN-5B 22164.0 5000.0 83.4 68.7 76.3 25.1 88.1 –

our dataset per datapoint stays high, with the model still reaching 33% accuracy
on ImageNet with only 4M images.

6 Limitations

The proposed data harvesting approach assumes that there is a knowledge graph
for the target domain and that there is a searchable database with noisy pairing
of images and text. However, knowledge graphs exist in many domains, e.g.,
UniProt [50] with 246M protein sequence records or AgriKG [51] with 150k
agricultural entities. Also, if no image search engine is available for the given
domain, but a large amount of image-text data exists, pairs can be found by
searching for the queries via substring matching in the image-text pairs.

Another limitation is the small, but significant drop in performance on image-
text retrieval and classifying ImageNet distribution shifts in the generic domain,
when finetuning a large model with EntityNet. First, our dataset by design has a
strong focus on the expert domain and trades off some performance in the generic
domain during finetuning. Second, our search pipeline finds many clean object-
centric images and annotates them with entity information, which tremendously
helps understanding object semantics, but to improve efficiency on image-text
retrieval in a similar way, one needs to tackle the quality of alt texts and their
alignment to the images [52]. Finally, we focused on searching photos, which
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Table 4: Results for finetuning the DataComp-1B CLIP model on EntityNet. We
mark the best and second best result. To measure compute cost, we calculate
training MACs (multiply–accumulate operations).

Arch. Dataset MACs Images in Image Retrie- Distr. iNat CUB
(1e18) dataset (M) -Net val shift 2021

B-32 DataComp-1B 295.4 1400.0 69.2 54.0 56.3 12.6 73.8
B-32 EntityNet 13.3 32.7 69.5 50.8 53.3 29.5 83.3
B-32 Only organisms 4.2 10.2 48.2 31.2 33.3 37.0 87.0

B-16 DataComp-1B 791.4 1400.0 73.5 57.4 64.4 15.3 79.0
B-16 EntityNet 36.1 32.7 73.5 52.2 61.0 34.9 86.5
B-16 Only organisms 11.3 10.2 51.4 34.8 39.2 42.7 90.3

Table 5: Analysis of performance when varying dataset composition, text sam-
pling and dataset size. We mark the best and second best result. To measure
compute cost, we calculate training MACs (multiply–accumulate operations).

Arch. Dataset MACs Images in Image- Retrie- Distr. iNat. CUB Rare
(1e18) dataset (M) Net val shift 2021 Species

B-32 Everything 13.1 32.7 61.5 37.2 41.0 26.1 79.5 42.7
B-32 No organisms 9.0 22.5 39.2 32.1 28.0 0.8 6.2 6.9
B-32 Only organisms 4.1 10.2 36.0 16.5 21.0 28.6 83.2 42.0
B-32 No attributes 8.7 21.8 54.8 28.6 33.8 25.6 79.7 39.2

B-32 50% alt text 13.1 32.7 61.5 37.2 41.0 26.1 79.5 42.7
B-32 100% alt text 13.1 32.7 59.1 38.3 38.1 22.9 78.8 39.7
B-32 0% alt text 13.1 32.7 55.7 13.5 35.5 24.2 78.1 29.7

B-32 Full size 13.1 32.7 61.5 37.2 41.0 26.1 79.5 42.7
B-32 1/2 size 6.6 16.4 54.1 30.3 33.6 20.1 74.1 36.6
B-32 1/4 size 3.3 8.2 45.2 23.5 25.7 13.2 64.9 28.0
B-32 1/8 size 1.6 4.1 33.3 16.6 17.7 7.3 47.8 19.4
B-32 1/16 size 0.8 2.0 19.9 9.4 10.0 2.8 27.4 11.8

explains slightly lower accuracy when classifying paintings and sketches – the
EntityNet dataset simply contains a lower percentage of such types of images
than datasets like CommonPool.

7 Conclusions

We demonstrated how to use knowledge graphs to harvest datasets that are effi-
cient for training CLIP models. Our strategy allows to create an expert domain
dataset with little manual effort, enabling the development of CLIP models that
significantly outperform standard models in the expert domain. The expert do-
main dataset can be used for training a model from scratch or for finetuning an
existing vanilla model. The substantial size and diversity of the expert domain
dataset ensures that the good generalization properties of CLIP exist also in the
expert domain, in contrast to training with an over-specialized expert dataset.
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Furthermore, we demonstrated that the proposed harvesting strategy is also
viable to create a common domain dataset, which allows us to achieve a bet-
ter quality-compute trade-off than training with previous datasets. Future work
can use our EntityNet dataset to train CLIP models with all emergent proper-
ties much more efficiently, thus allowing for experiments, where training can be
controlled. So far, this has been possible only with models of lacking quality.
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A Additional analyses

A.1 Verification of Bing search results

In this work, we search for images that fit our queries using Bing image search.
In contrast, CLIP [1] searches for the query in a large pool of image-text pair
candidates created from raw HTML via substring matching. We manually evalu-
ate the quality of the image search engine and of substring matching in Table 6,
using randomly select queries of our EntityNet dataset. In total, 87% of queries
were answered correctly. Incorrect results of Bing search can be grouped into
wrong similar terms (for the japanese “dogi” uniform, the search instead returns
actual dogs), and attribute ignored (for “B-25 Mitchell gray paint” the search
returns the correct B-25 plane, but differently painted). Bing search is clearly
superior to substring matching, with the latter algorithm only fulfilling 52% of
queries.

A.2 Scaling behaviour of EntityNet

In Figure 4, We study the impact of removing entire entities or reducing the
number of queries per entity, and compare this with randomly dropping images.
Removing entities and their associated images degrades performance more than
randomly removing the same number of images, indicating that entities repre-
sent important semantic concepts for model training. In other words, our results
suggest that diversity (more entities with fewer images per entity) is more im-
portant than depth (fewer entities with more images each). In all cases, shrinking
the dataset lowers performance, so a certain dataset size (here 33M) is indeed
essential for a good generic model.
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B Detailed experimental results

We show extensive results on object classification in Table 7. For a more detailed
analysis of model capabilities on ImageNet, we split the classes into living (410
classes) and other (590 classes) using WordNet: Since ImageNet labels are built
on WordNet nouns, we simply select all labels that are children of the living
things node for the living set. On iNaturalist, in addition to the 2021 version, we
also evaluate on the 2019 version which contains 3,030 images in the validation
set, each annotated with one of 1,010 species. We test with the same protocol as
on iNaturalist 2021, testing on both english and latin class names and reporting
the best accuracy. We show additional results on retrieval in Table 8 and object
classification under distribution shift in Table 9.

C Experimental details

C.1 Hyperparameter settings

We report hyperparameters for our experiments in Table 10. Similar to Li et al. [23],
we reduce the context size of the text encoder down from 77 to 32 to reduce
VRAM and training time requirements. For a fair comparison with other CLIP
models, we report all training cost and training duration as if the training was
run at a context length of 77.

C.2 Object classification evaluation

To test the VLMs on object classification, we use the same procedure as CLIP [1]:
Given an image I, class names C1, ..., CN , image encoder f and text encoder
g, we embed the image using the image encoder v = f(I). To acquire a text
embedding for class Cc, the CLIP authors started by directly encoding the class
names as wc = g(Cc), e.g., dog. Alternatively, they created several prompts P
using templates, e.g., graffiti of a dog, a photo of the cool dog, etc., then encoded
each prompt, and computed the average embedding: wc =

∑
p∈P g(p)/|P |. They

referred to this approach as using “context prompts”. Finally, given the image
and text embeddings, the prediction p is the class which has the highest cosine
similarity to the image.

For a fair comparison between models that have been trained with different
prompts, we evaluate all models on just encoding the class name, and on using
the average embedding of the 80 context prompts that the CLIP authors used
for ImageNet, then report the higher top-1 accuracy.

D Qualitative example of text label sampling

We show an example of our text label sampling strategy in Table 11.
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E Image Search API details

Google The Google Image Search API is available via the Google Cloud Plat-
form, and requires an existing programmable search engine to function. It returns
up to 10 images per request and page with a limit of 10 pages, i.e., 100 images per
query. It costs 5$ per 1,000 API calls, resulting in costs of about 500$ to download
1M images. We found the search results from the Google API to be quite differ-
ent, and arguably worse, from the ones returned when using the regular Google
image search. For all our API requests we set the parameter imgColorType to
color, imgType to photo, lr to lang_en, and excludeTerms to drawing clipart
illustration cartoon vector painting. This way we get mostly real-world images
in our search results. We additionally add all aliases and the natural type of the
sought entity to the orTerms parameter for entity and entity-attribute queries.
Because the Google API returns only up to 10 images per request and page, we
search for the following number of pages: 2 pages each for entity queries, 4 pages
each for entity-attribute queries, and 10 pages each for all natural-type-attribute
queries. We started our search with queries from the organism subset on both
the Google and Bing APIs. We found the quality and value-for-money ratio of
the Bing API to be better, and therefore switched to only using Bing for all
other queries.

Bing The Bing Image Search API is available via Microsoft Azure. It returns
up to 150 images per request and has no restrictions on the number of accessi-
ble pages. It costs 18$ per 1,000 API calls, resulting in costs of about 120$ to
download 1M images. In our experience, the returned images closely match the
ones from the regular Bing image search. For all our API requests we set the
parameter imageType to Photo and color to ColorOnly. Unlike the Google API,
Bing does not have a way to specify orTerms via a separate request parameter,
so we add the natural type of the sought entity to the search query directly, e.g.,
we search for jaguar animal. The Bing API returns 150 images per request and
page, we request one page for each query.

F Querying entities with SPARQL

The SPARQL query over Wikidata used to harvest all entities under a super-
entity is displayed in Figure 5. It returns a list of entities from a specified target
domain as defined by one or more super-entities. The super-entities can be deter-
mined manually by searching for appropriate entities on the Wikidata website.
For example, if we want to build a dataset about vehicles, we can set the super-
entity to vehicle (Q42889), as done in Table 12. We list the super-entities we
considered for our dataset and the relevant statistics in Table 13 for included
and Table 14 for excluded super-entities.

https://developers.google.com/custom-search/v1/overview
https://cloud.google.com
https://cloud.google.com
https://programmablesearchengine.google.com/
https://google.com/images
https://google.com/images
https://www.microsoft.com/en-us/bing/apis/bing-image-search-api
https://azure.microsoft.com
https://bing.com/images
http://www.wikidata.org/entity/Q1420
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Table 6: We randomly select 100 search queries for each query set and manually
check for the following errors: Wrong: The majority of the results do not match
the query. Too few: Only four or less images are found. Over all 416k queries,
Bing search finds ≥ 5 images in 99.8% of cases.

Query set Bing search Substring matching
Wrong Too few Wrong Too few

World entity 13% 0% 15% 26%
World entity + attribute 22% 0% 3% 66%
Living entity 0% 0% 7% 19%
Living entity + attribute 18% 0% 7% 51 %

Total 13% 0% 8% 40 %

Fig. 4: Scaling entities and queries per entity.
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Table 7: Detailed object classification results. The table is grouped into training
from scratch, finetuning, and analyzing components, the groups are separated
by double horizontal lines. Each part is again split by single horizontal lines into
groups of same model size or same component analysis. Models marked with ⋆
are finetuned. We mark the best and second best result. To measure compute
cost, we calculate training MACs (multiply–accumulate operations). We only
compare zero-shot results and mark results as “–” if the model does not fulfill
the zero-shot requirements.

Arch. Dataset MACs Images in ImageNet iNat. CUB Rare
(1e18) dataset (M) 1k living other 2019 2021 spcs

# Classes → 1,000 410 590 1,010 10k 200 400

B-32 CC12M 3.7 9.3 28.6 27.6 31.1 2.0 0.7 9.2 –
B-32 CommonPool-M 2.9 128.0 27.2 20.6 33.5 2.6 0.8 10.1 –
B-32 DataComp-M 2.9 14.0 29.7 25.5 34.5 3.0 1.0 16.8 –
B-32 OpenAI 288.6 400.0 63.4 65.5 63.1 10.9 7.4 51.8 –
B-32 DataComp-1B 295.4 1400.0 69.2 71.2 69.1 16.7 12.6 73.8 –

B-32 EntityNet 13.1 32.7 61.5 68.5 57.9 38.3 26.1 79.5 42.7

B-16 ⋆ BioCLIP 61.3 10.4 18.6 44.3 2.6 – – 78.1 38.1
B-16 CommonPool-L 78.2 1280.0 57.8 53.2 62.4 6.9 4.1 35.1 –
B-16 DataComp-L 78.2 140.0 63.1 61.8 65.3 9.1 6.1 48.1 –
B-16 DataComp-1B 791.4 1400.0 73.5 75.9 73.2 19.5 15.3 79.0 –
B-16 OpenAI 784.6 400.0 68.3 71.5 67.4 12.5 9.2 56.1 –

B-16 EntityNet 36.0 32.7 66.2 73.9 62.0 42.2 32.0 85.3 47.1

L-14 OpenAI 3328.4 400.0 75.5 78.9 74.5 15.2 12.0 62.9 –
L-14 DataComp-1B 3338.6 1400.0 79.2 82.1 78.4 23.6 21.1 85.5 –
L-14 DFN-2B 3338.6 2000.0 81.4 83.7 80.9 24.1 21.6 86.5 –
H-14 DFN-5B 22164.0 5000.0 83.4 85.4 83.2 31.4 25.1 88.1 –

B-32 DataComp-1B 295.4 1400.0 69.2 71.2 69.1 16.7 12.6 73.8 –
B-32 ⋆ EntityNet 13.3 32.7 69.5 73.6 67.8 41.5 29.5 83.3 –
B-32 ⋆ Only organisms 4.2 10.2 48.2 76.3 30.9 49.3 37.0 87.0 –

B-16 DataComp-1B 791.4 1400.0 73.5 75.9 73.2 19.5 15.3 79.0 –
B-16 ⋆ EntityNet 36.1 32.7 73.5 78.1 71.5 46.7 34.9 86.5 –
B-16 ⋆ Only organisms 11.3 10.2 51.4 80.2 33.8 54.3 42.7 90.3 –

B-32 EntityNet 13.1 32.7 61.5 68.5 57.9 38.3 26.1 79.5 42.7
B-32 No organisms 9.0 22.5 39.2 17.5 56.1 1.7 0.8 6.2 6.9
B-32 Only organisms 4.1 10.2 36.0 68.5 15.4 41.4 28.6 83.2 42.0
B-32 No attributes 8.7 21.8 54.8 63.0 50.4 36.4 25.6 79.7 39.2

B-32 50% alt text 13.1 32.7 61.5 68.5 57.9 38.3 26.1 79.5 42.7
B-32 100% alt text 13.1 32.7 59.1 66.5 55.4 36.4 22.9 78.8 39.7
B-32 0% alt text 13.1 32.7 55.7 64.4 51.5 35.4 24.2 78.1 29.7

B-32 Full size 13.1 32.7 61.5 68.5 57.9 38.3 26.1 79.5 42.7
B-32 1/2 size 6.6 16.4 54.1 61.5 50.5 30.7 20.1 74.1 36.6
B-32 1/4 size 3.3 8.2 45.2 52.4 41.8 23.4 13.2 64.9 28.0
B-32 1/8 size 1.6 4.1 33.3 39.6 30.5 14.5 7.3 47.8 19.4
B-32 1/16 size 0.8 2.0 19.9 25.0 18.1 7.6 2.8 27.4 11.8

B-32 Batch size 2k 13.1 32.7 59.7 65.4 57.2 31.5 21.0 74.1 38.7
B-32 Batch size 4k 13.1 32.7 60.9 67.0 58.0 36.2 24.1 77.6 41.0
B-32 Batch size 8k 13.1 32.7 61.5 68.5 57.9 38.3 26.1 79.5 42.7
B-32 Batch size 16k 13.2 32.7 60.5 68.2 56.6 38.8 26.9 81.2 42.1
B-32 Batch size 32k 13.3 32.7 58.6 67.0 54.2 39.5 26.3 81.3 41.7
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Table 8: Detailed retrieval results. The table is grouped into training from
scratch, finetuning, and analyzing components, the groups are separated by dou-
ble horizontal lines. Each part is again split by single horizontal lines into groups
of same model size or same component analysis. Models marked with ⋆ are fine-
tuned. We mark the best and second best result. To measure compute cost, we
calculate training MACs (multiply–accumulate operations).

Arch. Dataset MACs Images in Ave- COCO Flickr30K XM3600
(1e18) dataset (M) rage I2T T2I I2T T2I I2T T2I

B-32 CC12M 3.7 9.3 25.6 22.4 15.2 37.2 27.1 26.1 25.5
B-32 CommonPool-M 2.9 128.0 20.2 18.3 11.2 29.9 18.9 23.6 19.6
B-32 DataComp-M 2.9 14.0 19.5 17.1 11.0 26.0 18.0 23.6 21.5
B-32 OpenAI 288.6 400.0 49.6 50.1 30.5 77.5 58.8 43.4 37.2
B-32 DataComp-1B 295.4 1400.0 54.0 53.5 37.1 78.8 61.1 48.3 45.3

B-32 EntityNet 13.1 32.7 37.2 32.8 22.2 52.3 37.8 40.6 37.3

B-16 ⋆ BioCLIP 61.3 10.4 0.8 0.4 0.2 0.9 0.6 1.8 1.1
B-16 CommonPool-L 78.2 1280.0 45.6 44.4 28.8 68.3 51.0 42.1 39.2
B-16 DataComp-L 78.2 140.0 49.4 48.7 32.2 73.5 55.1 44.7 42.1
B-16 DataComp-1B 791.4 1400.0 57.4 57.5 40.2 84.9 67.3 47.9 46.5
B-16 OpenAI 784.6 400.0 52.1 52.5 33.1 81.9 62.0 43.8 39.3

B-16 EntityNet 36.0 32.7 39.8 36.0 25.2 57.1 43.3 39.9 37.1

L-14 OpenAI 3328.4 400.0 54.3 56.3 36.5 85.1 65.2 44.5 38.4
L-14 DataComp-1B 3338.6 1400.0 61.8 63.2 45.8 89.5 73.4 50.4 48.6
L-14 DFN-2B 3338.6 2000.0 64.2 65.7 48.6 89.6 75.3 53.6 52.7
H-14 DFN-5B 22164.0 5000.0 68.7 72.3 53.9 93.0 80.2 57.6 55.4

B-32 DataComp-1B 295.4 1400.0 54.0 53.5 37.1 78.8 61.1 48.3 45.3
B-32 ⋆ EntityNet 13.3 32.7 50.8 48.1 34.4 72.1 57.1 47.8 45.6
B-32 ⋆ Only organisms 4.2 10.2 31.2 28.0 19.7 44.8 33.7 30.9 29.9

B-16 DataComp-1B 791.4 1400.0 57.4 57.5 40.2 84.9 67.3 47.9 46.5
B-16 ⋆ EntityNet 36.1 32.7 52.2 50.4 36.4 75.6 59.4 47.3 44.3
B-16 ⋆ Only organisms 11.3 10.2 34.8 31.8 22.8 51.7 37.1 33.5 32.0

B-32 EntityNet 13.1 32.7 37.2 32.8 22.2 52.3 37.8 40.6 37.3
B-32 No organisms 9.0 22.5 32.1 28.6 18.7 46.3 33.6 33.2 32.3
B-32 Only organisms 4.1 10.2 16.5 12.8 9.8 23.4 15.3 19.0 18.6
B-32 No attributes 8.7 21.8 28.6 23.6 16.1 41.3 27.3 32.3 30.8

B-32 50% alt text 13.1 32.7 37.2 32.8 22.2 52.3 37.8 40.6 37.3
B-32 100% alt text 13.1 32.7 38.3 35.2 23.2 53.4 39.8 40.5 38.0
B-32 0% alt text 13.1 32.7 13.5 8.7 6.1 19.2 11.7 18.3 17.0

B-32 Full size 13.1 32.7 37.2 32.8 22.2 52.3 37.8 40.6 37.3
B-32 1/2 size 6.6 16.4 30.3 27.0 17.6 42.7 29.7 33.3 31.6
B-32 1/4 size 3.3 8.2 23.5 19.5 13.0 31.1 22.9 27.6 27.2
B-32 1/8 size 1.6 4.1 16.6 12.8 8.7 20.7 14.2 21.9 20.9
B-32 1/16 size 0.8 2.0 9.4 7.1 5.0 10.0 7.1 13.9 13.5

B-32 Batch size 2k 13.1 32.7 35.6 30.8 20.9 50.2 37.2 38.2 36.4
B-32 Batch size 4k 13.1 32.7 36.4 31.6 22.1 51.7 37.0 39.1 37.2
B-32 Batch size 8k 13.1 32.7 37.2 32.8 22.2 52.3 37.8 40.6 37.3
B-32 Batch size 16k 13.2 32.7 35.8 32.2 21.8 50.5 36.9 37.2 36.1
B-32 Batch size 32k 13.3 32.7 34.5 31.0 20.8 48.9 34.5 36.2 35.3
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Table 9: Detailed results on ImageNet distribution shifts. The table is grouped
into training from scratch, finetuning, and analyzing components, the groups are
separated by double horizontal lines. Each part is again split by single horizontal
lines into groups of same model size or same component analysis. Models marked
with ⋆ are finetuned. We mark the best and second best result. To measure
compute cost, we calculate training MACs (multiply–accumulate operations).
INet: ImageNet.

Arch. Dataset MACs Images in INet Ave- INet INet Obj.- INet INet
(1e18) dataset (M) 1K rage V2 R Net Sketch A

# Classes → 1,000 – 1000 200 133 1000 200

B-32 CC12M 3.7 9.3 28.6 18.3 24.2 34.5 12.1 16.0 4.7
B-32 CommonPool-M 2.9 128.0 27.2 19.8 22.5 33.0 20.9 18.4 4.3
B-32 DataComp-M 2.9 14.0 29.7 20.5 24.4 34.0 19.7 19.3 4.9
B-32 OpenAI 288.6 400.0 63.4 48.7 56.0 69.4 44.2 42.3 31.5
B-32 DataComp-1B 295.4 1400.0 69.2 56.3 60.8 78.2 55.2 56.8 30.5

B-32 EntityNet 13.1 32.7 61.5 41.0 53.6 58.8 32.6 45.0 14.9

B-16 ⋆ BioCLIP 61.3 10.4 18.6 15.4 17.7 16.0 3.2 7.3 32.9
B-16 CommonPool-L 78.2 1280.0 57.8 47.0 50.0 68.4 49.1 45.9 21.7
B-16 DataComp-L 78.2 140.0 63.1 51.1 55.2 71.8 53.1 49.7 25.5
B-16 DataComp-1B 791.4 1400.0 73.5 64.4 66.0 83.6 63.7 60.4 48.4
B-16 OpenAI 784.6 400.0 68.3 58.6 61.9 77.7 55.3 48.2 49.9

B-16 EntityNet 36.0 32.7 66.2 47.4 59.2 64.1 40.9 48.9 23.9

L-14 OpenAI 3328.4 400.0 75.5 71.4 69.9 87.9 69.0 59.6 70.7
L-14 DataComp-1B 3338.6 1400.0 79.2 74.9 72.0 90.8 74.3 68.0 69.6
L-14 DFN-2B 3338.6 2000.0 81.4 74.8 74.6 90.0 74.1 68.3 66.8
H-14 DFN-5B 22164.0 5000.0 83.4 76.3 77.4 93.0 68.4 72.8 69.9

B-32 DataComp-1B 295.4 1400.0 69.2 56.3 60.8 78.2 55.2 56.8 30.5
B-32 ⋆ EntityNet 13.3 32.7 69.5 53.3 61.9 74.2 47.9 56.8 25.6
B-32 ⋆ Only organisms 4.2 10.2 48.2 33.3 43.1 56.7 19.1 32.1 15.8

B-16 DataComp-1B 791.4 1400.0 73.5 64.4 66.0 83.6 63.7 60.4 48.4
B-16 ⋆ EntityNet 36.1 32.7 73.5 61.0 66.5 79.0 56.6 59.8 42.9
B-16 ⋆ Only organisms 11.3 10.2 51.4 39.2 46.1 62.1 25.9 35.1 26.8

B-32 EntityNet 13.1 32.7 61.5 41.0 53.6 58.8 32.6 45.0 14.9
B-32 No organism 9.0 22.5 39.2 28.0 33.6 37.7 29.1 32.0 7.5
B-32 Only organisms 4.1 10.2 36.0 21.0 31.5 39.6 8.1 17.6 8.1
B-32 No attributes 8.7 21.8 54.8 33.8 47.9 49.2 24.4 36.9 10.5

B-32 50% alt text 13.1 32.7 61.5 41.0 53.6 58.8 32.6 45.0 14.9
B-32 100% alt text 13.1 32.7 59.1 38.1 51.1 55.6 30.1 40.8 13.1
B-32 0% alt text 13.1 32.7 55.7 35.5 48.0 53.0 27.1 36.8 12.4

B-32 Full size 13.1 32.7 61.5 41.0 53.6 58.8 32.6 45.0 14.9
B-32 1/2 size 6.6 16.4 54.1 33.6 47.2 51.0 24.4 36.5 8.9
B-32 1/4 size 3.3 8.2 45.2 25.7 39.1 39.9 18.1 25.6 5.9
B-32 1/8 size 1.6 4.1 33.3 17.7 28.5 28.7 12.0 15.3 4.2
B-32 1/16 size 0.8 2.0 19.9 10.0 17.2 17.6 6.8 5.7 2.8

B-32 Batch size 2k 13.1 32.7 59.7 40.4 52.5 59.4 31.3 44.5 14.4
B-32 Batch size 4k 13.1 32.7 60.9 41.0 53.0 60.0 32.1 44.9 14.9
B-32 Batch size 8k 13.1 32.7 61.5 41.0 53.6 58.8 32.6 45.0 14.9
B-32 Batch size 16k 13.2 32.7 60.5 39.7 53.2 58.0 30.6 42.9 13.8
B-32 Batch size 32k 13.3 32.7 58.6 37.2 51.3 54.6 27.9 40.6 11.6
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Table 10: Hyperparameters used for pretraining and finetuning, unless otherwise
stated. For all experiments we use the AdamW [53] optimizer with ϵ = 1e − 8,
β1 = 0.9, β2 = 0.98.

Dataset Model Batch Learning Weight Epochs Warmup
Size Rate Decay epochs

CC12M ViT-B/32 8k 5e-4 0.2 18 2
CC12M ViT-B/16 8k 5e-4 0.2 18 2
Ours, pretraining ViT-B/32 8k 5e-4 0.2 18 2
Ours, pretraining ViT-B/16 8k 5e-4 0.2 18 2
Ours, finetuning ViT-B/32 32k 5e-5 0.2 18 2
Ours, finetuning ViT-B/16 32k 5e-5 0.2 18 2

Table 11: Example of our text label sampling strategy for an image returned from
the entity query of zipper. Probability mass is split 50/50 between image alt texts
and texts from the knowledge graph. Between alt texts, we chose uniformly.
Between knowledge graph texts we chose the search query 25% of the time,
a description 10% of the time (uniformly between descriptions), and an alias
otherwise (uniformly between all aliases).

Text Chance Source

Zipper PNG 25% Alt text

yellow zipper PNG image 25% Alt text

zipper 12.5% Search query

zip 5.5% Alias

dingy 5.5% Alias

clasp locker 5.5% Alias

fly 5.5% Alias

zip fastener 5.5% Alias

device for fastening the edges of
an opening of fabric or other
flexible material

2.5% Description

A device used for fastening,
typically made of physical
material.

2.5% Description

https://www.wikidata.org/wiki/Q101761
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PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX schema: <http://schema.org/>
PREFIX wikibase: <http://wikiba.se/ontology#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
SELECT DISTINCT

?ent
?label
?desc
?links
(GROUP_CONCAT(DISTINCT ?alias; SEPARATOR=";;;") AS ?aliases)

WHERE {
VALUES ?typ { wd:Q42889 }
?ent wdt:P279* ?typ .
?ent rdfs:label ?label .
FILTER(LANG(?label) = "en")
?ent ^schema:about/wikibase:sitelinks ?links .
FILTER(?links >= 5)
OPTIONAL {

?ent schema:description ?desc .
FILTER(LANG(?desc) = "en")

}
OPTIONAL {

?ent skos:altLabel ?alias .
FILTER(LANG(?alias) = "en")

}
}
GROUP BY ?ent ?label ?desc ?links
ORDER BY DESC(?links)

Fig. 5: Generic SPARQL query for extracting entities from Wikidata that are
related to a given set of super-entities. The super-entities are manually set within
the VALUES ?typ { ... } clause. In this example it is the motor car entity
wd:Q42889. A minimum number of sitelinks can also be specified to filter out
unpopular entities, here it is set to 5.
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Table 12: Vehicle entities and accompanying information as extracted from the
Wikidata knowledge graph. Showing the first 5 and last 5 out of 17,015 entities.
Note that we only collect entities with sitelinks ≥ 5. The corresponding SPARQL
query is shown in Figure 5.

Identifier Name Description Sitelinks Aliases

Q1420 motor car motorized road
vehicle designed to
carry one to eight
people rather than
primarily goods

237 auto, motor vehicle,
motor cars, motorcar,
cars, car, automobiles,
automobile, autocar

Q11442 bicycle pedal-driven
two-wheel vehicle

203 bike, Bicycles, cycle,
pushbike, pedal cycle,
pedal bike

Q197 airplane powered fixed-wing
aircraft

196 airplane, aeroplane,
plane, powered
fixed-wing aircraft,
planes, plane, aeroplane,
fixed-wing powered
aircraft, fixed-wing
airplane, aeroplanes,
fixed-wing aeroplane,
airplanes

Q870 train form of rail
transport
consisting of a
series of connected
vehicles

193 rail-train, trains, railway
train, railtrain, rail train,
railroad train

Q11446 ship large buoyant
watercraft

178 marine vessel, vessel,
water vessel, ships

Q813876 Bedford JJL motor vehicle 5
Q7077241 Odakyu

20000 series
RSE

Japanese electric
multiple unit
trainset

5 RSE, Romancecar RSE,
Resort Super Express,
Odakyu Romancecar
RSE, 20000 series

Q812263 Bavarian Pt
2/3

class of 97 German
2-4-0T locomotives

5 ÖBB 770, DR Class 70.0,
DRG Class 70.0

Q9177196 Bombardier
CRJ1000

regional jet airliner 5 CRJ1000

Q812260 Bavarian
PtL 2/2

class of 6+29+13
German 0-4-0T
locomotives

5 DB Class 98.3, DRG
Class 98.3, ÖBB 688

http://www.wikidata.org/entity/Q1420
http://www.wikidata.org/entity/Q11442
http://www.wikidata.org/entity/Q197
http://www.wikidata.org/entity/Q870
http://www.wikidata.org/entity/Q11446
http://www.wikidata.org/entity/Q813876
http://www.wikidata.org/entity/Q7077241
http://www.wikidata.org/entity/Q812263
http://www.wikidata.org/entity/Q9177196
http://www.wikidata.org/entity/Q812260
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Table 13: The super-entities for building our EntityNet dataset to describe the
visual world. The aliases column refers to the set of all aliases collected from the
entities. The numbers in this table are slightly higher than the ones we report
in the main paper, because they refer to the raw counts of entities and aliases
before profanity filtering and the removal of entities that return no results in the
image search.

Super-
entity

Description Examples Entities Aliases

product Anything that can be offered to a mar-
ket

banh mi, navigation
system

63,676 144,715

substance Any composed matter whose origin is
either biological, chemical, or mineral

solid lubricant, Chi-
nese tea

34,259 111,383

physical
tool

Physical item that can be used to
achieve a goal

Patient lift, police
transport

32,727 71,227

animal Kingdom of multicellular eukaryotic or-
ganisms

saw-scaled viper,
Sporathraupis
cyanocephala

28,000 76,408

plant Living thing in the kingdom of photo-
synthetic eukaryotes

Whitebark Pine, Eu-
calyptus coccifera

28,000 55,925

material Substance that can occur in different
amounts, all with some similar [mixture
of some] characteristics, and with which
objects can be made

dietary proteins,
stone slab tomb

18,021 40,822

vehicle Mobile machine used for transport,
whether it has an engine or not, includ-
ing wheeled and tracked vehicles, air-,
water-, and space-craft

shipwrecks (objects),
Evergreen A-class
container ship

17,015 37,849

geographical
feature

Components of planets that can be ge-
ographically located

hydrothermal Vents,
grooves

8,683 19,030

food Any substance consumed to provide nu-
tritional support for the body; form of
energy stored in chemical

coffee milk, tikka 8,464 15,332

architectural
structure

Human-designed and -made structure rock temples, sum-
merhouse

4,507 10,354

anatomical
structure

Entity with a single connected inherent
3d shape that’s created by coordinated
expression of the organism’s own dna

bronchi, maxillary
wisdom tooth

4,394 9,999

facility Place, equipment, or service to support
a specific function

public toilet, auto-
mobile servicing shop

2,767 6,740

physical ac-
tivity

Human physical activity consisting of
voluntary bodily movement by skeletal
muscles

American rules foot-
ball, archery

2,228 4,422

clothing Covering worn on the body blucher shoe, G-suit 1,929 4,313
building Structure, typically with a roof and

walls, standing more or less perma-
nently in one place

shoestore, family
restaurant

1,655 3,964

musical in-
strument

Device created or adapted to make mu-
sical sounds

electroencephalophone,
Chinese flutes

1,450 3,493

organ Collection of tissues with similar func-
tions

nasal bone, cranial
nerves

1,155 2,450

furniture Movable objects used to equip house-
holds, offices, or shops for purposes such
as storage, seating, sleeping

faldstool, airline seat 388 933

body of wa-
ter

Any significant accumulation of water,
generally on a planet’s surface

dammed lake, deep-
sea hydrothermal
vent

379 792

weather State of the atmosphere cold snap, tropical
cyclone

151 304

precipitation Liquid or solid water that falls to the
ground

hail, thunderstorm 43 72

Total Before deduplication 259,891 620,527
Total After deduplication 146,985 368,062
Total After deduplication, without animals and plants 90,985 235,795
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Table 14: We consider these super-entities either non-visual, irrelevant, or too
specific and do not select related entities when building our dataset.

Super-entity Description

abstract
entity

entity that does not have a physical existence, including abstract
objects and properties

astronomical
object

physical body of astronomically-significant size, mass, or role, natu-
rally occurring in a universe

city large human settlement
concept semantic unit understood in different ways, e.g. as mental represen-

tation, ability or abstract object (philosophy)
continent large landmass identified by convention
country distinct territorial body or political entity
historical
event

particular incident in history that brings about a historical change

history past events and their tracks or records
imaginary
character

character known only from narrations (fictional or in a factual man-
ner) without a proof of existence; includes fictional, mythical, leg-
endary or religious characters and similar

language particular system of communication, often named for the region or
peoples that use it

language structured system of communication
medical pro-
cedure

process of medicine done to heal; course of action intended to achieve
a result in the delivery of healthcare

organization social entity established to meet needs or pursue goals
planet celestial body directly orbiting a star or stellar remnant
religion social-cultural system
representation entity or process that portrays something else, usually in a simplified

or approximated manner
role social role with a set of powers and responsibilities within an orga-

nization
science systematic endeavor that builds and organizes knowledge, and the

set of knowledge produced by this system
social system patterned series of interrelationships existing between individuals,

groups, and institutions
speciality field limited to a specific area of knowledge; specialization in an oc-

cupation or branch of learning; a specific use
star astronomical object consisting of a luminous spheroid of plasma held

together by its own gravity
temporal en-
tity

thing that can be contained within a period of time, or change in
state (e.g. events, periods, acts)

work of art aesthetic item or artistic creation; object whose value is its beauty
only, not practical usefulness

written work any work expressed in writing, such as inscriptions, manuscripts,
documents or maps
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