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Abstract

The remarkable generalization performance of
contrastive vision-language models like CLIP is
often attributed to the diversity of their training
distributions. However, key questions remain
unanswered: Can CLIP generalize to an entirely
unseen domain when trained on a diverse mix-
ture of domains (domain generalization)? Can it
generalize to unseen classes within partially seen
domains (compositional generalization)? What
factors affect such generalization? To answer
these questions, we trained CLIP models on sys-
tematically constructed training distributions with
controlled domain diversity and object class expo-
sure. Our experiments show that domain diversity
is essential for both domain and compositional
generalization, yet compositional generalization
can be surprisingly weaker than domain general-
ization when the training distribution contains a
suboptimal subset of the test domain. Through
data-centric and mechanistic analyses, we find
that successful generalization requires the learn-
ing of sufficiently shared representations in inter-
mediate layers and circuits.

1. Introduction
Foundation models are considered a decisive step towards
more generic AI models (Bommasani et al., 2021). For
example, CLIP scaled the alignment of image-text pairs via
a contrastive loss to millions of samples (Radford et al.,
2021; Jia et al., 2021; Zhai et al., 2023). Unlike tradi-
tional classifiers from the ImageNet era, which often ex-
perience substantial performance drops under distribution
shifts, CLIP demonstrates unprecedented generalization to
“Out-of-Distribution (OOD)” data (Radford et al., 2021).
However, what drives this improved OOD generalization?
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Recent work has converged on the conclusion that CLIP’s
diverse training distribution is the primary factor driving its
unprecedented generalization performance. For example,
Fang et al. (2022) found that other factors such as language
supervision, training data size, or the contrastive loss play
only a minor role, while Nguyen et al. (2022) showed that
data quality is more important than quantity. More recently,
Mayilvahanan et al. (2025) demonstrated that CLIP’s “gen-
eralization performance [...] drops to levels similar to what
has been observed for ImageNet-trained models” (Mayil-
vahanan et al., 2025, p. 10) by limiting the diversity of
(visual) domains1 to a minimum, i.e., by removing all non-
natural samples. This shows that the mixture of various
(non-natural) domains plays an important role for CLIP’s
generalization, yet the underlying mechanisms remain un-
explored. This brings us to our core research question:

How does the mixture of diverse (visual) domains in the
training data affect CLIP’s generalization performance?

In particular, we investigate under which circumstances
CLIP can learn the object class invariances across the train-
ing domains with the aim to generalize to entirely unseen
domains—a fundamental question about its domain gener-
alization capability (Blanchard et al., 2011; Muandet et al.,
2013; Gulrajani & Lopez-Paz, 2021). We also study ques-
tions about CLIP’s compositional generalization (Hupkes
et al., 2020; Wiedemer et al., 2023), which is believed to be
an important factor of its generalization performance (May-
ilvahanan et al., 2024; Udandarao et al., 2024) and a long-
standing challenge of machine learning research. Adapting
Szabó’s (2012) classical example, we ask pictorially: Can
CLIP, trained on natural images of cats and dogs along with
sketches of cats, generalize to sketches of dogs?

To answer such questions, we construct fully controllable
experimental conditions that allow precise and systematic
manipulation of the domain mixtures and exposure to object
classes in the training data (see Figure 1), while keeping
all other variables, such as the CLIP model type, training
process, and class distribution constant. Specifically, we
augmented a base dataset consisting primarily of natural im-
ages, such as ImageNet-Captions (Fang et al., 2022), with
non-natural samples from DomainNet (Peng et al., 2019),

1We refer to a domain as a group of images sharing a common
style, such as natural images, sketches, paintings, etc.
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Figure 1: Training data setups and CLIP’s generalization performance under varying domain mixtures and class
exposure. A: We systematically varied the domain mixture and object class exposure in CLIP’s training data across four
controlled scenarios, while keeping other factors like dataset size and model choice constant. Specifically, we trained
CLIP models on (1) Natural-only—mostly natural images (from classes ■, ●) to establish a lower bound on performance;
(2) Leave-out-domain—a diverse set of domains (■, ●, ■, ●, ■, ●) excluding the test domain to assess CLIP’s domain
generalization; (3) CG low-diversity—natural images (■, ●) with some test domain classes (■) to evaluate its compositional
generalization with limited domain diversity; and (4) CG high-diversity—a diverse mix of domains (■, ●, ■, ●, ■, ●) plus
some test domain classes (■) to assess compositional generalization with higher domain diversity. B: CLIP models trained
on diverse domains demonstrate stronger OOD generalization to held-out test domain classes (●), compared to models
trained only on natural images or fewer domains. Notably, CLIP can perform as well or better even without exposure to
some test domain classes during training.

including the domains Clipart, Infograph, Painting, Quick-
draw, and Sketch. By systematically including subsets of
these domains and their classes, we study questions about
CLIP’s domain generalization and compositional general-
ization capabilities. We complement these experiments with
in-depth data-centric and mechanistic analyses to under-
stand what changes in the CLIP model led to the improved
generalization or failure thereof. Our experiments uncov-
ered the following key findings:

• Domain diversity improves generalization: We reaf-
firm the intuition that diversity of domains in the train-
ing distribution is critical for both domain and compo-
sitional generalization. However, CLIP only weakly
generalizes, as there remains a performance gap to a
model that has seen similar samples during training.

• Compositional generalization is challenging: Sur-
prisingly, including a domain in the training data does
not always improve generalization to unseen classes
within that same domain. However, ensuring sufficient
class diversity within the test domain—ideally with no
overlap with the queried classes in evaluation—along
with high domain diversity, can significantly reduce
the aforementioned performance gap.

• Generalization requires sufficient feature and cir-
cuit sharing: When CLIP generalizes well composi-

tionally, it shares more embedding features between
different domains. However, CLIP sometimes fails to
generalize to certain domains. We provide a twofold
explanation: (1) the inputs from these domains lack
shared input features and, as a result, (2) the model
has limited shared intermediate features and circuits2

between domains, constraining its ability to generalize
effectively. We support this hypothesis through repre-
sentational similarity analysis and introduce a related
concept for circuits: mechanistic similarity, measuring
similarity between circuits.

This work presents a systematic study of CLIP’s do-
main and compositional generalization, unveiling both
its capabilities and its limitations. For reproducibil-
ity, our code is available at https://github.com/
lmb-freiburg/understanding-clip-ood.

2. Related Work
OOD generalization of CLIP Unlike earlier models from
the ImageNet era, CLIP models have been shown to ex-
hibit remarkable OOD generalization (Radford et al., 2021;
Geirhos et al., 2021). Subsequent work has further enhanced

2Interconnected internal model mechanisms/components for
performing a specific computation or task (Olah et al., 2020).
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this capability by introducing stylistic diversity or encourag-
ing the learning of domain-invariant representation (Huang
et al., 2023; Bose et al., 2024; Addepalli et al., 2024; Yu
et al., 2024). These advances in OOD generalization have
sparked research to uncover the underlying factors behind
CLIP’s strong OOD generalization.

Fang et al. (2022) showed that CLIP’s diverse training
distribution—rather than its dataset size, language supervi-
sion, or contrastive loss—is the primary factor of its OOD
generalization. Similarly, Nguyen et al. (2022) found that
dataset quality outweighs quantity. However, the precise
characteristics of the training distribution contributing to
CLIP’s generlization performance remained unclear.

While high train-test similarity was initially believed to be
a key factor, Mayilvahanan et al. (2024) found its impact
to be smaller than expected. Instead, other factors, such as
the class distribution, were shown to play a more important
role (Wen et al., 2024). Moreover, caption richness has been
found to enhance CLIP’s robustness (Xue et al., 2024; Wen
et al., 2024), and CLIP’s loss fosters the learning of dis-
entangled representations, facilitating the generalization to
unseen attribute-object combinations (Abbasi et al., 2024).
At the same time, other work revealed that CLIP exhibits
behaviors resembling those of supervised classifiers. For
example, CLIP fails to generalize when all non-natural im-
ages are removed from its training data (Mayilvahanan et al.,
2025), and CLIP can be vulnerable to spurious correlations
(Wang et al., 2024). While these works have significantly
advanced our understanding of CLIP’s OOD generalization,
key questions remain. For example, “Can CLIP general-
ize to an entirely unseen domain?” (domain generaliza-
tion), “Can CLIP generalize to unseen class-domain combi-
nations?” (compositional generalization), and which factors
contribute to such generalization?

OOD generalization beyond CLIP The study of OOD
generalization has been a focal point in the recent machine
learning literature, covering various learning setups (refer
to Table 2 of Gulrajani & Lopez-Paz (2021) for a compre-
hensive overview). In this work, we focus on two specific
setups: domain generalization and compositional general-
ization. In domain generalization, models are trained on
multiple domains and evaluated on an entirely unseen do-
main (Blanchard et al., 2011; Muandet et al., 2013; Gulra-
jani & Lopez-Paz, 2021). This is known as “learning from
multiple environments” in the causality literature (Peters
et al., 2016; Arjovsky et al., 2019; Arjovsky, 2019; Richens
& Everitt, 2024). Compositional generalization, on the other
hand, examines whether models generalize to unseen com-
binations of factors which were seen separately in training.
Compositional generalization was recently studied for, e.g.,
(causal) generative models (Atzmon et al., 2020; Okawa
et al., 2023; Wiedemer et al., 2023), object-centric models
(Wiedemer et al., 2024), disentangled (Xu et al., 2022), and

(general) visual representation learning (Misra et al., 2017;
Schott et al., 2022; Saranrittichai et al., 2022).

3. Problem Setup
Recent work highlighted that CLIP is trained on a substan-
tial amount of non-natural images (Mayilvahanan et al.,
2025, Table 2), but the role of these non-natural images in
enabling CLIP’s OOD generalization remains unclear. In
this work, we aim to address this question by systemati-
cally analyzing the effect of different domain mixtures in
CLIP’s training data (see Figure 1), allowing us to study
CLIP’s ability to generalize to entirely unseen domains (do-
main generalization) and to novel combinations of known
domains and classes (compositional generalization).

Notations Let D0 denote the base domain mostly con-
sisting of natural images with image-text pairs (I0i , T

0
i )

(red in Figure 1). Further, we consider m non-natural do-
mains Dr for r ∈ {1, . . . ,m}with image-text pairs (Iri , T

r
i )

(blue, green, orange). Lastly, we consider the object classes
C = {c1, . . . , cn} for the images I which we divide into
two disjoint subsets C1 = {c1, . . . , ck} (squares ■) and
C2 = {ck+1, . . . , cn} (circles ●). We denote the subset of
Dr that contains only classes from C ′ as DC′

r .

Training data setups Below, we specify the four training
data setups; see Figure 1 for a visual overview.

• Natural-only (lower bound): We train only on our
base image domain D0 (e.g., ImageNet-Captions (Fang
et al., 2022), see Section 4 for further details), consist-
ing (almost) exclusively of natural images of all classes
C (■, ●). This condition serves as our lower bound
and mirrors the training distributions considered in
Fang et al. (2022); Mayilvahanan et al. (2025).

• Leave-out-domain (domain generalization): We
train on a variety of domains but hold out the test
domain Di:

⋃
j ̸=i Dj ∪D0 (■, ●, ■, ●, ■, ●); fol-

lowing the classical domain generalization learning
setup (Blanchard et al., 2011; Muandet et al., 2013;
Gulrajani & Lopez-Paz, 2021). Note we could also in-
terpret this as extrapolation in certain cases, i.e., does
CLIP generalize to data outside the domain coverage
seen during training?

Definition 3.1. A model compositionally generalizes if
it can accurately classify any new combinations of seen
factors—here, classes and domains—not seen together dur-
ing training.

Following this definition, we construct the training data
setups for Compositional Generalization (CG) as follows:

• CG low-diversity: We train on the base domain D0

and a subset of classes C1 of the test domain Di: D0 ∪
DC1

i (■, ●, ■).
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• CG high-diversity: We train on the base domain D0,
a diverse set of other domains Dj ̸=i :=

⋃
j ̸=i Dj con-

taining all classes C, and a subset of classes C1 of the
test domain Di: D0 ∪Dj ̸=i ∪ DC1

i (■, ●, ■, ●, ■,
●, ■).

Test data Our test data for all training data setups consists
of the same novel combinations of the classes C2 of the
test domain Di: DC2

i (●). By keeping the test set fixed
throughout all conditions, we ensure comparability across
these setups.

4. Experimental Setup
Datasets We used either ImageNet-Captions (Fang et al.,
2022), CC3M (Sharma et al., 2018), or CC12M (Chang-
pinyo et al., 2021) as our base image-text datasets D0 (red
in Figure 1). Captions in ImageNet-Captions are constructed
using the title, tag, and description (if provided) to yield
maximal descriptiveness. To mitigate the influence of class
distribution shift, we augmented the base datasets with natu-
ral samples from DomainNet-Real (Peng et al., 2019).

For the domain-specific image-text pairs Dr (blue, green,
orange in Figure 1), we used DomainNet’s non-natural
domains: Clipart, Infograph, Painting, Quickdraw, and
Sketch (Peng et al., 2019). Since DomainNet provides no
captions, we created captions by using domain-invariant
templates (e.g., an image of a {class}) or domain-
specific templates (e.g., a {domain} of a {class});
see Appendix A.2 for further details. We used comparable
final training dataset sizes across our different training con-
ditions; refer to Appendix A.3 for details. Finally, the class
choices for C1 and C2 are provided in Appendix A.4.

Evaluation of CLIP models We evaluated CLIP mod-
els in the classical zero-shot classification setting across
all DomainNet classes C using the standard OpenAI tem-
plates (Radford et al., 2021), extended with templates for
the missing domains of DomainNet; see Appendix A.5 for
further details. To mitigate the effect of class imbalance,
we calculated the balanced top-1 accuracy, which we will
hereon refer to as top-1 accuracy for brevity.

5. When Does CLIP Exhibit Domain and
Compositional Generalization?

In this section, we trained CLIP models on our systemati-
cally constructed training data setups, as described in the
previous sections and illustrated in Figure 1 (refer to Ap-
pendix A.6 for training details), to investigate when CLIP
achieves domain generalization and compositional general-
ization. Figure 2 summarizes the results for CLIP models
with ResNet-50 vision encoder and trained on ImageNet-

Captions as base dataset. We discuss the results and key
findings below.

To ensure the validity of our results and findings, we val-
idated them across several alternative choices: (1) base
datasets (CC3M, CC12M), (2) vision encoders (ViT-S-32,
Swin-T), (3) contrastive loss choices (SigLIP; Zhai et al.,
2023), and (4) vision-language pre-training methods (BLIP;
Li et al., 2022). These additional results, which are consis-
tent with those in Figure 2, are provided in Appendix B.1.

The role of domain diversity By constructing domain
mixtures and controlling for all other factors, such as dataset
size or model choice, we are able to isolate the impact
of domain diversity in Figure 2. In particular, Figure 2
reaffirms the hypothesis that domain diversity is a key factor
in enhancing CLIP’s generalization: CLIP achieves both
significantly better domain and compositional generalization
in settings with high domain diversity (Leave-out-domain,
CG high-diversity) compared to settings with low domain
diversity (Natural-only, CG low-diversity).

Does each domain contribute equally? While these re-
sults demonstrate that domain diversity is critical for the
(compositional) generalization of CLIP, they do not provide
insights into the importance of each domain individually,
since all domains are added at once. Thus, we successively
added domains to CG low-diversity until arriving at CG
high-diversity to assess their importance.

Figure 3 shows that some domains contribute more strongly
to generalization, while other domains can even slightly
reduce generalization performance on the test domain. In-
triguingly, the impact of a domain can change, depending
on which other domains are already included. For exam-
ple, in Figure 3a, while Sketch and Quickdraw are the most
beneficial domains to include initially for improving gener-
alization performance on Clipart, once Sketch is added, it
is more effective to first include the other domains (Paint-
ing, Infograph) before adding Quickdraw. We hypothesize
that this is due to the visual similarity between Sketch and
Quickdraw—both consist of black-and-white/gray images
with object contours—which may lead the model to learn
similar features. Once such features are learned from one
domain, the benefit of adding the other diminishes. Further
investigation of this observation is left for future work.

Overall, these observations suggest that while domain diver-
sity is generally beneficial for generalization, the specific
relationship between the added domain(s) and the test do-
main plays a critical role.

Finding 1: Domain diversity enhances domain gener-
alization and compositional generalization. However,
the relationship between domains also matters.
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Figure 2: High diversity domain mixtures exhibit improved effective robustness. Each point represents the average
balanced top-1 accuracy over three consecutive training epochs and three seeds, with higher opacity indicating later training
epochs. High diversity domain mixtures (Leave-out-domain (red), CG high-diversity (purple)) have consistently higher
generalization performance than their low diversity counterparts (Natural-only (blue), CG low-diversity (green)). These
gains are especially pronounced in the Clipart and Sketch domains (leftmost and rightmost). However, for the Quickdraw
domain (4th from left), generalization fails even in the high diversity settings—a limitation we will further investigate
in Section 6.2. Other evaluation metrics (balanced top-5 accuracy and F1 score) yield consistent results (see Figure 8 in
Appendix B).
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(a) Clipart.
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(b) Sketch.

Figure 3: Certain domains contribute more strongly to generalization performance than others. When domains are
added successively from CG low-diversity to CG high-diversity (from left to right), some domains significantly improve
generalization performance (balanced top-1 accuracy) on the unseen classes of the test domain, while others provide only
small gains or even slightly degrade it.

How close is CLIP to the maximally achievable perfor-
mance? In our previous experiments, we observed that
CLIP generalizes well given sufficient domain diversity.
However, how close is CLIP to the maximally achievable
performance if it had been trained on class-specific samples
from the test domain?

Table 1 shows that, even in high diversity settings with
better generalization, a gap to this upper bound performance
remains. We analyzed the number of test class samples
required to close this gap in Appendix B.3. We found that
the number of required samples tends to scale linearly.

Achieving good compositional generalization is challeng-
ing While high diversity improves generalization, one
may intuitively expect CLIP to generalize better to unseen
classes within a test domain if it has seen some other classes
of that domain during training. However, Figure 2 surpris-

ingly reveals the opposite: CLIP models trained on a subset
of classes from the test domain (CG low-/high-diversity) are
often slightly outperformed by models that have not seen the
test domain at all (Natural-only, Leave-out-domain).

Finding 2: Compositional generalization can be
weaker than domain generalization.

This finding is surprising, since the test domain is entirely
unseen and domain generalization can require extrapola-
tion. In contrast, compositional generalization is expected
to perform better as it has partial exposure to that domain.
However, our results suggest that this intuition may not
always hold.

To better understand this, we investigated the role of the test
domain’s chosen classes for training and the ones that are
queried during evaluation. For example, CLIP may learn
the shortcut that all sketches belong to the subset of the
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Table 1: There is a performance gap when CLIP has
seen class-specific samples of the test domain. With suffi-
cient domain diversity, CLIP generalizes well to unseen the
classes C2 of the Clipart and Sketch test domains Di. How-
ever, even in these cases, there remains a gap in balanced
top-1 accuracy compared to models also trained on domain-
specific samples of the classes, i.e., DC2

i . Appendix B.3
provides the results of the other domains.

Training data setup (Figure 1) Clipart Sketch

Leave-out-domain 27.4 30.1

CG high-diversity 27.6 28.1
w/ classes C2 (upper bound) 36.6 (+9.0) 44.3 (+16.2)

Table 2: Seeing a subset of classes of the test domain can
worsen compositional generalization. Including a sub-
set of sketches from DomainNet (CG low-/high-diversity)
slightly decreases balanced top-1 accuracy on the unseen
sketch classes C2 compared to not seeing that domain at all
(Leave-out-domain). However, adding sketches of classes
that do not overlap with DomainNet’s classes, instead im-
proves compositional generalization performance, suggest-
ing that compositional generalization can be limited by
(only) partial, suboptimal inclusion of the test domain.

Training data setup (Figure 1) Sketch

Natural-only 19.5
Leave-out-domain 30.1

CG low-diversity 19.2
w/ sketches of non-queried classes only 27.1 (+7.9)

CG high-diversity 28.1
w/ sketches of non-queried classes only 36.9 (+8.8)

seen classes, which becomes wrong for the unseen classes
queried in evaluation. To test this hypothesis, we replaced
DomainNet’s sketches from the classes C1 in our previous
CG settings with sketches from a set of classes C3 which
is disjoint from C1 ∪ C2 and not queried in evaluation. For
this, we used ImageNet-Sketch (Wang et al., 2019) and
excluded all ImageNet classes that overlap with the classes
from DomainNet; refer to Appendix A.3 for details on the
class overlap.

Table 2 confirms that including sketches of non-queried
classes improves compositional generalization. However, it
also highlights a failure mode: while compositional gener-
alization can work for CLIP (to some extent, c.f., Table 1),
partial exposure to classes of the test domain that overlap
with the classes queried in evaluation significantly wors-
ens compositional generalization. We further analyzed the
severity of this overlap on compositional generalization per-
formance in Appendix B.2.
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Figure 4: Effective robustness of CLIP vs. supervised
classifiers. Similar to CLIP, the robustness of supervised
classifiers also increases with the domain diversity of the
training data. However, CLIP consistently shows superior
balanced top-1 accuracy. Refer to Appendix B.4 for the
results on the remaining domains.

Table 3: Domain diversity increases feature sharing in
the embeddings. We report the percentage point increase
in top-k shared SAE features, averaged over classes c ∈
C2 and k ∈ {5, 10, 15, 20} (see Appendix C.1 for details
on the computation of shared features), when comparing
low diversity (Natural-only) to high diversity (Leave-out-
domain, CG high-diversity). Note that we used the CLIP
models using CC12M as base dataset, since we found that
SAEs extracted poor features for the models trained on
ImageNet-Captions.

Clipart Sketch

Natural-only→ Leave-out-domain +7.1 +4.1
Natural-only→ CG high-diversity +6.9 +3.4

The role of language supervision To investigate the in-
fluence of language supervision, we replicated our previous
experiments with a supervised ResNet50 classifier. Specifi-
cally, we trained the classifier on the combined class distri-
bution of ImageNet and DomainNet. Refer to Appendix A.7
for further training details.

Figure 4 shows that generalization performance of super-
vised classifiers increases with domain diversity, similar to
CLIP. However, CLIP consistently exhibits higher perfor-
mance compared to the classifiers, which can be attributable
to caption richness (Xue et al., 2024; Wen et al., 2024).

6. Why Does CLIP (Not) Generalize?
In this section, we investigate which changes in the CLIP
model led to domain and compositional generalization, or
lack thereof, observed in the previous section.

6.1. The Role of Visual Embeddings

Intuitively, we would expect CLIP to share more features in
its visual embeddings across domains as generalization im-
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Table 4: Domain-specific captions do not explain CLIP’s
poor generalization performance to unseen Quickdraw
classes in the CG high-diversity setting. When all domain-
specific captions are replaced (second row), we observe
increased alignment in the visual embeddings (Figure 5b);
yet, this does not translate into improved generalization
performance, as measured by balanced top-1 accuracy.

Captions Classes

domain-specific domain-invariant seen unseen

50% 50% 50.7 1.7
0% 100% 46.2 0.7

proves. To test this hypothesis, we applied an unsupervised
dictionary learning technique, i.e., Sparse Autoencoders
(SAEs) (Bricken et al., 2023; Huben et al., 2024), to ex-
tract interpretable features from CLIP’s visual embeddings
a ∈ Rp:

SAE(a) := (g ◦ ϕ ◦ f)(a), (1)

where ϕ is a ReLU non-linearity, and f and g are the lin-
ear encoder with weights Wf ∈ Rp×h and decoder with
weights Wg ∈ Rh×p, respectively. We trained the SAE
with an L2 reconstruction loss and L1 sparsity regulariza-
tion. Refer to Appendix C.1 for further technical details.

After extracting interpretable SAE features, we measured
the percentage overlap of the top-k most important SAE fea-
tures between domain pairs for each class c ∈ C2. Specifi-
cally, to identify important SAE features, we counted how
often each SAE feature appeared among the top-20 highest-
activating SAE features across domain-class combinations.
For each class, we then calculated the percentage overlap
of the top-k (with k ∈ {5, 10, 15, 20}) of these top-20 most
frequent SAE features between the test domain and each
of the other domains. These percentage overlaps were fi-
nally averaged over all values of k, all classes in C2, and
all pairs that include the test domain. Further details on this
computation and pseudocode are provided in Appendix C.1.

As shown in Table 3, CLIP models trained on more diverse
data—which generalize better—exhibit more cross-domain
feature sharing in their visual embeddings.

Finding 3: CLIP shares more features across domains
in its embeddings as generalization improves.

6.2. Why Does CLIP Sometimes Fail To Generalize?

Figure 2 shows that CLIP typically generalizes well compo-
sitionally with high domain diversity, except for Quickdraw.
It is tempting to attribute this solely to the unique character-
istics of Quickdraw images (Appendix A.1). However, the
first row of Table 4 highlights that CLIP can correctly clas-

(a) Domain-invariant and spe-
cific captions.

(b) Only domain-invariant cap-
tions.

Figure 5: The separation of the visual embeddings be-
tween Quickdraw and the images of other domains is
due to domain information in captions. However, the
better alignment of the visual embeddings does not improve
compositional generalization (Table 4).

sify the Quickdraw images of seen classes, indicating that
is has learned something useful for the Quickdraw domain,
yet CLIP performs poorly on images of unseen classes.

Are domain-specific captions the cause? We initially hy-
pothesized that using domain-specific captions—our train-
ing included both domain-invariant and domain-specific
captions (Section 4)—might have inadvertently led CLIP
to prioritize uniformity over alignment in its loss func-
tion. We suspect this occurs due to the stark visual dif-
ferences between Quickdraw images and those from other
domains, making alignment challenging. In order to mini-
mize the total loss in spite of this, CLIP may adopt a short-
cut: prioritizing uniformity, aligning Quickdraw image em-
beddings with the text embeddings of the domain-specific
captions, while sacrificing alignment with domain-invariant
captions. Consequently, we would expect a clear separation
between Quickdraw image embeddings and those from other
domains—and indeed, we observe this (Figure 5a). How-
ever, this separation may come at a cost, limiting CLIP’s
ability to generalize across the Quickdraw domain, particu-
larly to unseen classes.

As a remedy, we trained CLIP using only domain-invariant
captions. Although the visual embeddings are now better
aligned (Figure 5b), generalization performance remains
poor (second row of Table 4). Thus, the domain invari-
ance or specificity of captions cannot solely explain CLIP’s
poor generalization performance on unseen classes from
Quickdraw.

The role of shared intermediate features and circuits
While visual embeddings appear aligned in Figure 5b, it
does not necessarily imply that the computations leading up
to these embeddings are also aligned. Thus, we hypothesize
that insufficient sharing of intermediate representations and
circuits (Hohman et al., 2019; Olah et al., 2020) within

7
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CLIP’s vision encoder may explain its poor generalization
to the unseen classes. For example, if CLIP learns a separate
circuit for Quickdraw images instead of sharing sufficient
functionality across the domains, such a circuit may work
for seen classes but will fail on unseen classes, since the
unseen classes of the test domain can only be inferred with
the help of the other domains.

To test our hypothesis, we used tools from representational
similarity analysis to evaluate intermediate representations.
Additionally, we introduce a novel, related concept for cir-
cuits: mechanistic similarity, which measures the similarity
between circuits.

Representational similarity analysis To assess whether
CLIP learns similar intermediate representations for the
same class across domains, we measured representational
similarity using Center Kernel Alignment (CKA) (Kornblith
et al., 2019) with the unbiased Hilbert-Schmidt Indepen-
dence Criterion (HSIC) estimator (Song et al., 2012); refer
to Appendix C.2 for technical details.

Mechanistic similarity analysis While representational
similarity captures alignment at the representational level,
it does not reveal whether similar computations are imple-
mented internally. To address this, we introduce a measure
of mechanistic similarity, which quantifies the similarity of
the underlying circuits, i.e., the sets of model components
and their interactions responsible for a specific prediction.
Our analysis proceeds in two steps:

1. Circuit discovery: For each class-domain pair, we ex-
tracted a circuit represented as a directed acyclic graph.
We first identified the top-k model components—
specifically, axis-aligned neurons—based on their in-
direct effect3 (Pearl, 2001) on the model’s predictions,
following prior work (Vig et al., 2020; Schrodi et al.,
2022; Meng et al., 2022; Marks et al., 2025). These
components serve as the nodes of the circuit. Next, for
each component, we identified its k′ most influential
predecessors (also based on indirect effect), which de-
fine the edges of the circuit. Refer to Appendix C.3 for
further details on circuit discovery.

2. Circuit similarity: We then compared circuits across
domains for each class—for example, comparing the
circuit for “dog” of Quickdraw images vs. those of Cli-
part, Infograph, Painting, Real (natural images), and
Sketch images. To quantify similarity, we computed
the layer-wise Jaccard index of the top-k components,
capturing node overlap. To assess deeper structural sim-
ilarity, we applied the normalized Weisfeiler-Lehman
subtree graph kernel (Shervashidze et al., 2011), which

3Intuitively, the indirect effect quantifies how much each com-
ponent contributes to the model’s prediction.
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Weisfeiler-Lehman similarity (↑) 0.218 0.268

(c) Circuit similarity.

Figure 6: CLIP’s intermediate representations and cir-
cuits show a significant difference between Quickdraw
and the other domains, even though final visual embed-
dings can be aligned. We used the CLIP model trained on
only domain-invariant captions from Figure 5b and Table 4
(second row). Scores are averaged over classes and higher
scores mean higher representational similarity (a), more
shared neurons (b), or more similar circuits (c).

captures more complex structural and hierarchical sim-
ilarities. More details are provided in Appendix C.3.

Result Figure 6 confirms that the Quickdraw domain no-
ticeably differs from the other domains, both in terms of
representational and mechanistic similarity, supporting our
hypothesis that (compositional) generalization requires suf-
ficient sharing of intermediate features and circuits.

Finding 4: Sufficient sharing of intermediate features
and circuits is crucial for generalization to succeed.

7. Discussion
Compositional generalization Our results indicate that
CLIP has a (weak) ability for compositional generalization,
which is influenced by the composition of its training data.
Specifically, CLIP’s compositional generalization perfor-
mance worsens when a subset of classes of the test domain,
that is queried during evaluation, is seen during training
(Table 2). However, by including only classes that do not
overlap with the queried classes in the training data, CLIP’s
compositional generalization significantly narrows the gap
to the maximally achievable performance. In particular, per-
formance on unseen sketch classes significantly improved
from 19.5% (Natural-only) to 36.9% (CG high-diversity w/
non-queried classes only, Table 2), approaching the max-
imally achievable performance of 44.3% (Table 1). This
result supports the hypothesis that compositional generaliza-
tion could be indeed a driver behind CLIP’s generalization.

8
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Our results also allow us to reinterpret the main experiment
from Mayilvahanan et al. (2024, Table 1). In their experi-
ment, the maximally achievable performance corresponds to
the unaltered LAION-200M dataset, while the pruned ver-
sions of LAION-200M—where, e.g., (near) duplicates of all
ImageNet-Sketch classes were removed—can be interpreted
analogous to the curated compositional generalization set-
ting with high diversity from above. They observed only
a slight deterioration in performance despite these exclu-
sions. Our result suggests that compositional generalization
could be the key contributor of the sustained performance
observed here, though further analysis is required to exclude
other (unknown) factors.

Rethinking CLIP’s OOD generalization Recent studies
have concluded that CLIP’s OOD generalization is largely
driven by its vast and diverse training distribution (Fang
et al., 2022; Mayilvahanan et al., 2025). Our experiments
reaffirm this: While CLIP can weakly generalize (Figure 2),
a generalization gap persists when compared to models that
have seen class samples of the test domain(s) during training
(Table 1). We believe it is worth studying how narrow this
generalization gap can become and if it can ever be closed
without access to (near) duplicate samples during training—
both from empirical and theoretical perspectives.

Mechanistic similarity analysis Mechanistic similarity
analysis (Section 6.2) is a general framework that first dis-
covers circuits and then measures their similarity. In future
work, we plan to apply this framework to other problems,
e.g., to investigate whether multi-lingual LLMs process dif-
ferent languages in similar or very different ways.

Larger dataset sizes In this work, we disentangled the
effects of dataset size and domain diversity—two factors
that are typically confounded—and showed that domain
diversity is a key driver of CLIP’s generalization. However,
dataset size alone may also impact CLIP’s generalization
performance.

At the time of writing, to the best of our knowledge, no
large-scale domain datasets comparable to the size and di-
versity of DomainNet exists. To address this, future work
could filter a large, diverse dataset, such as LAION (Schuh-
mann et al., 2021), by domains. For example, the data
filtering approach proposed by Mayilvahanan et al. (2025),
which classifies images into natural and non-natural, could
be extended to classify various visual domains. Note that
the existing filtered natural-only subset of LAION-200M
curated by Mayilvahanan et al. could be directly adopted as
the base dataset D0.

Although, this would help overcome the scarcity of domain-
specific data, we lack the computational resources to con-
duct such large-scale experiments. However, we are confi-

dent that our findings remain robust across dataset sizes, as
demonstrated by consistent results in all three base datasets,
with sizes ranging from approximately 0.5 M to 10 M sam-
ples, in Appendix B.1.

Dataset quality Besides diversity, the quality of the
datasets used for training also likely plays a crucial role
in achieving robust generalization. For example, Nguyen
et al. (2022) showed that combining multiple datasets does
not necessarily result in improved robustness; in fact, the ro-
bustness of the best-performing dataset can even be diluted
by lower-quality datasets. To date, dataset quality remains
only loosely addressed in much of the current literature,
largely due to the difficulty to quantify it. Thus, we leave
further investigation of this aspect for future work.

Carbon emission estimate We conducted our experi-
ments mainly on NVIDIA RTX 2080 GPUs and estimated
the total GPU hours to be approximately 25 000. With a car-
bon efficiency of 0.321 kgCO2eq/kWh4, total emissions are
estimated to be about 1 725 kgCO2eq, using the Machine
Learning Impact calculator (Lacoste et al., 2019).

8. Conclusion
In this work, we analyzed when CLIP generalizes to unseen
domains and subsets thereof using systematically created
training data setups (see Figure 1), identifying domain di-
versity as a prerequisite for both domain and compositional
generalization. We showed that compositional generaliza-
tion can fail in certain scenarios, i.e., even perform worse
than domain generalization. We supported these findings
with in-depth data-centric experiments and mechanistic anal-
yses, offering insights into the internal workings that make
generalization succeed or fail.
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A. Further Details for Section 4
A.1. DomainNet Examples

Figure 7 visualizes four examples from all six image domains (Clipart, Infograph, Painting, Quickdraw, Real, Sketch) from
DomainNet (Peng et al., 2019). Some domains are more visually similar than others. For example, sketches and Quickdraw
images are typically gray, while paintings often contain a similar level of image detail similar to that of Real (natural) images.

Clipart Infograph Painting Quickdraw Real Sketch
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Figure 7: Random examples across the six domains of DomainNet.

A.2. DomainNet Training Captions

The DomainNet dataset (Peng et al., 2019) does not include captions. Therefore, we created captions using the class names
to train CLIP models on DomainNet data. For this, we used prompt templates similar to Radford et al. (2021). Specifically,
we used the following templates:

• “a {domain} of a {class}.”,

• “a {class} {domain}.”,

• “a {domain} depicting a {class}.”,

• “a {class} depicted in a {domain}.”,

• “a {domain} showing a {class}.”,

• “a {class} is visible in a {domain}.”.

For each DomainNet image sample, we randomly sampled one of the templates and inserted the corresponding class name
for the placeholder {class}. For the {domain} placeholder, we randomly chose with equal probability a generic,
domain-invariant term, such as image or picture, or a domain-specific term, such as clipart or painting. The terms are
provided in Table 5.
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Table 5: Generic, domain-invariant and domain-specific terms. Generic, domain-invariant terms are shared across
domains, while domain-specific terms can be either its domain name or a synonym.

Domain Terms

Generic image, picture

Clipart clipart, illustration
Infograph infograph, informational chart
Painting painting, art

Quickdraw quickdraw, doodle
Real photo, snapshot

Sketch sketch, drawing

A.3. Further Details on the Training Data Construction

Dataset Construction We created our training datasets based on a base dataset D0 (i.e., ImageNet-Captions, CC3M, or
CC12M) which provides a large collection of (mostly) natural images along with corresponding language descriptions. To
mitigate effects stemming from to class shifts, we augmented the base dataset with samples from DomainNet-Real, which
consists of natural images. Finally, we created different domain mixtures (see Figure 1) by incorporating subsets of samples
from various non-natural domains of DomainNet Dr with r ∈ {Clipart, Infograph, Painting, Quickdraw, Sketch} into
the training data, as outlined in Section 3.

Subsampling To ensure fair performance comparisons between the different training data setups (see Figure 1), we applied
subsampling to maintain comparable final dataset sizes when adding additional domains to the training data. We designed
our subsampling method to preserve the original data distribution as much as possible. Specifically, if domain Di contained
twice as many samples as domain Dj before subsampling, this ratio remained approximately constant afterward. Likewise,
the class distribution within each domain was preserved as much as possible.

Note that the non-natural domains in DomainNet vary significantly in size, e.g., Quickdraw has more than three times as
many samples as Clipart. Thus, we chose to only keep dataset sizes fixed within the same test domain. That is, for a given
test domain, CG low-diversity, CG high-diversity and Leave-out-domain datasets have the same size. However, dataset sizes
may differ across test domains (i.e., CG low-diversity settings for different test domains are not necessarily of equal size).
Since the Natural-only lower bound is independent of the choice of the test domain, it contains slightly fewer samples than
the other mixtures.

Joining the Class Distributions of ImageNet and DomainNet Both ImageNet-Captions and DomainNet provide class
labels for training supervised classifiers. However, their class distributions differ significantly in diversity and granularity.
ImageNet has nearly three times as many classes as DomainNet and is more fine-grained. For example, ImageNet
distinguishes over 100 different dog breeds, whereas DomainNet has only a single dog class.

To address this, we created a mapping from ImageNet classes to DomainNet classes. Each ImageNet class was either mapped
to a single DomainNet class or left unmatched, and multiple ImageNet classes could be mapped to the same DomainNet
class. We constructed this mapping manually based on class names, the WordNet hierarchy (Miller, 1995), and the NAVIGU
image explorer (https://navigu.net/#imagenet, Barthel et al. (2023)), ensuring that only semantically valid
mappings were retained.

Our final mapping assigned 450 ImageNet classes to DomainNet, including 147 one-to-one mappings. Using this mapping,
we merged the class distributions of ImageNet and DomainNet. Specifically, we relabeled the 450 mapped ImageNet classes
with their corresponding DomainNet labels.

A.4. Choice of Classes C2

We carefully chose the subset C2 in a way that the classes are diverse and not biased towards any spurious features (e.g.,
color). We considered the 147 classes, with a one-to-one match in ImageNet (see Appendix A.3), as the possible candidates
for C2. We selected about 10% of these candidates, i.e., 15 classes. For the selection process, we randomly sampled from
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the set of candidates. To ensure that we adequately covered the different super-categories of DomainNet (e.g., furniture,
mammal, tool), we kept only the first random sample for each category, rejecting further samples from the same category.
We also manually rejected some samples if we considered them to be too similar to our existing selection. Our final selection
of classes is

C2 = {aircraft carrier, axe, banana, barn, bed, candle, lion, mountain,
necklace, penguin, pizza, saxophone, television, tractor, traffic light}.

(2)

and C1 are the remaining 330 classes of DomainNet.

A.5. DomainNet Evaluation Prompts

We evaluated the zero-shot performance of our CLIP models using the OpenAI templates from Radford et al. (2021). Since
Painting and Sketch templates are already contained, we added the templates for the missing domain names:

• “a clipart of the {class}.”,

• “a clipart of a {class}.”,

• “an infograph of the {class}.”,

• “an infograph of a {class}.”,

• “a quickdraw of the {class}.”,

• “a quickdraw of a {class}.”.

Following Radford et al. (2021), we created zero-shot weights for all 345 DomainNet Classes from these templates by taking
the class-wise average over the text embeddings of all templates (marginalization to obtain the “true” object embedding) and
normalizing afterwards. Formally, let c ∈ {c1, . . . , cn} be a class, T be the set of templates, tc a template with the name of
class c inserted, and g be the text encoder of our CLIP model. Assuming that the text encoder g produces L2-normalized
embeddings, we compute the zero-shot weights of class c as:

wc =

1
|T |
∑

t∈T g(tc)∥∥∥ 1
|T |
∑

t∈T g(tc)
∥∥∥
2

. (3)

A.6. CLIP Training Details

Following Fang et al. (2022), we trained CLIP models with an embedding size of 1024 with ResNet-50 (He et al., 2016) and
a transformer text encoder (Vaswani et al., 2017) (12 layers with a width of 512, 8 attention heads, and context length of 77).
We trained the models for 32 epochs with a batch size of 1024 with AdamW (learning rate of 0.001, β1 = 0.9, β2 = 0.999,
ϵ = 1e-8, weight decay of 0.2) and cosine annealing learning rate scheduling with 500 warmup steps. We used the code
from OpenCLIP (Cherti et al., 2023) (https://github.com/mlfoundations/open_clip, License: custom) for
our training implementation, including OpenCLIP’s default augmentations.

A.7. Supervised Classifier Details

Similar to Fang et al. (2022), we trained the supervised ResNet-50 classifiers (He et al., 2016) for 90 epochs with a batch
size of 256 using SGD with Nesterov momentum, weight decay of 1e-4, momentum of 0.9, initial learning rate of 0.01 (they
used 0.1) with step-wise decay by 0.1 at epochs 30, 50, and 70. We used the same image augmentations as for our CLIP
models. We trained our supervised classifiers on the 895 classes—550 unmatched ImageNet classes combined with the 345
DomainNet classes—see Appendix A.3 for details

B. Additional Results For Section 5
In Figure 2, we compared the effective robustness trends of our different training setup across different domains. Table 6
shows the final balanced top-1 test accuracy (averaged over three runs) of our CLIP models with ImageNet-Captions as the
base dataset and ResNet-50 as the vision encoder.
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Table 6: CLIP robustness results for the four training data setups (see Figure 1). We repeated CLIP trainings three
times and evaluated the model’s balanced top-1 accuracy on the unseen classes of the test domain. CLIP generalizes better
with higher domain diversity. Intriguingly, CLIP achieves superior performance when not seeing the domain at all vs. seeing
a subset of it (c.f., Table 2). However, while diversity substantially improves CLIP’s generalization performance, there
remains a performance gap to a model that has seen similar samples to the classes C2 (c.f., Table 1). Figure 2 shows the
respective effective robustness plots.

Data composition (Figure 1) Clipart Infograph Painting Quickdraw Sketch

Natural-only 20.3± 0.7 11.8± 0.2 34.1± 1.4 0.8± 0.1 19.5± 0.7

Leave-out-domain 27.4± 1.2 13.6± 0.6 33.8± 0.5 4.8± 1.1 30.1± 1.4

CG low-diversity 17.1± 1.2 10.8± 1.0 31.4± 0.1 2.0± 0.9 19.2± 2.0
w/ classes C2 (upper bound) 37.2± 0.8 21.5± 1.8 45.5± 0.8 56.0± 0.6 50.3± 1.2

CG high-diversity 27.6± 1.5 12.7± 2.0 34.6± 1.2 1.7± 0.7 28.1± 0.8
w/ classes C2 (upper bound) 36.6± 1.0 18.8± 0.3 41.8± 1.4 51.5± 1.9 44.3± 0.8
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Figure 8: Effective robustness for additional evaluation metrics. We re-visualized the results from Figure 2 using
balanced top-5 accuracy (first row) and macro F1 score (second row). Our findings remain consistent across both metrics.

Other evaluation metrics We also evaluated our CLIP models using balanced top-5 accuracy and macro F1 score to
ensure our findings remain consistent across different evaluation metrics. Figure 8 shows the corresponding effective
robustness plots.

B.1. Validity of the Results across Architecture, Dataset, and Loss Choices

We conducted the experiments from the main text (Figure 2 and Table 6) using ImageNet-Captions as the base dataset
and a ResNet-50 vision encoder. To ensure the consistency of our findings across different base datasets, vision encoder
architectures, and contrastive loss functions, we performed additional experiments by systematically varying each of these
components. In addition, we also investigated BLIP (Li et al., 2022), a different method for vision-language pre-training.
Due to computational resource constraints, we repeated these experiments only for the Clipart and Sketch domains, where
increasing domain diversity yielded the most significant robustness gains.

Architecture For the architecture experiments, we trained two CLIP configurations with different image encoder architec-
tures. The first configuration used a Swin-T (Liu et al., 2021), the same text encoder as in our ResNet-50 experiments, and
an embedding dimension of 512. The second configuration used a ViT-S-32 (Touvron et al., 2021), a slightly smaller text
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encoder with a width of 384, only six attention heads, and also a smaller embedding dimension of 384. In addition, for
ViT-S-32, we used slightly adjusted AdamW hyperparameters, i.e., β2 = 0.98 and ϵ = 10−6. All other hyperparameters
were consistent with the ResNet-50-based experiments (see Appendix A.6).

Table 7 and Figure 9 confirm that for transformer-based vision encoders, robustness also improves with increasing domain
diversity, as expected. Similarly, compositional generalization can perform worse than domain generalization.

Table 7: Results (balanced top-1 accuracy) when varying CLIP’s vision encoder. We find similar trends across these
vision encoder choices.

Vision encoder Training data setup Clipart Sketch

ResNet-50

Natural-only 19.4 19.6
Leave-out-domain 27.1 31.8
CG low-diversity 18.7 16.4
CG high-diversity 28.6 28.6

ViT-S-32

Natural-only 12.0 5.9
Leave-out-domain 15.1 8.2
CG low-diversity 12.7 5.8
CG high-diversity 13.8 8.3

Swin-T

Natural-only 17.1 11.3
Leave-out-domain 20.3 15.2
CG low-diversity 17.4 10.4
CG high-diversity 22.3 14.0
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(b) Sketch with ViT-S-32.
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(c) Clipart with Swin-T.
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(d) Sketch with Swin-T.

Figure 9: Effective robustness plots for different vision encoders. Refer to Figure 2 for the effective robustness plots for
the ResNet-50 vision encoder.

Base Dataset For the base dataset experiments, we trained our ResNet-50 CLIP configuration using CC3M and CC12M as
the base datasets. Following Radford et al. (2021), we used a maximum learning rate of 5e-4. We also adjusted the number
of warmup steps to 2000 and the batch size to 2048. All other hyperparameters were consistent with the experiments from
the main text (see Appendix A.6 for the hyperparameters).

Table 8 and Figure 10 confirm that both CC3M and CC12M exhibit the same robustness trends as our ImageNet-Captions
models. However, the robustness gains are smaller compared to ImageNet-Captions. This is most likely due to the reduced
relative weighting of the DomainNet images with larger base dataset sizes, as well as the higher inherent diversity of CC3M
and CC12M. For example, both CC3M and CC12M include some non-natural images, which may diminish the effect
of further increasing domain diversity. Note that compositional generalization seems to be slightly better than domain
generalization for larger datasets, which we attribute to domain contamination (see Appendix B.2 why this may benefit
compositional generalization). We leave further investigation into the effect of dataset size and diversity of the base dataset
for future work (see Section 7 for a discussion).
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Table 8: Results when varying the base dataset D0. We observe similar trends for CC3M and CC12M as for ImageNet-
Captions. The only exception is that compositional generalization now tends to always work better than domain generalization
for CC12M. We attribute this to a domain contamination of CC12M, i.e., manual inspection shows that CC12M contains a
lot of Sketch and Clipart images.

Base dataset D0 Training data setup Clipart Sketch

ImageNet-Captions

Natural-only 19.4 19.6
Leave-out-domain 27.1 31.8
CG low-diversity 18.7 16.4
CG high-diversity 28.6 28.6

CC3M

Natural-only 32.2 31.5
Leave-out-domain 31.6 35.1
CG low-diversity 28.4 30.5
CG high-diversity 35.5 33.6

CC12M

Natural-only 39.6 48.3
Leave-out-domain 46.1 51.2
CG low-diversity 38.5 41.7
CG high-diversity 48.7 51.7
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(b) Sketch with CC3M.
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(d) Sketch with CC12M.

Figure 10: Effective robustness plots for the different base datasets. Refer to Figure 2 for the effective robustness plots
for the ImageNet-Captions dataset.

Contrastive Loss For the loss experiments, we trained our ResNet-50 CLIP configuration but replaced the original CLIP
loss with the SigLIP loss (Zhai et al., 2023).

Table 9 and Figure 11 confirm that the results for models trained with SigLIP are consistent with our observations from the
experiments in the main text.

Beyond Contrastive Losses Finally, we conducted an experiment using BLIP (Li et al., 2022) instead of CLIP. Similar
to CLIP, BLIP is also a vision-language pre-training method that uses a contrastive image-text loss, but additionally
includes an image-text matching as well as a language modeling loss. We used the training pipeline provided by LAVIS
(https://github.com/salesforce/LAVIS, License: BSD 3-Clause, Li et al. (2023)) to train BLIP in its base
configuration, which uses a ViT-B-16 (Dosovitskiy et al., 2021) pre-trained on ImageNet as the image encoder and a text
encoder initialized from BERTbase (Devlin et al., 2019).

Table 10 and Figure 12 show that the results for BLIP follow the same trends as our CLIP models, except for the overall
higher performance due to the pre-trained image and text encoders.

B.2. Challenges of Compositional Generalization

In Section 5, we found that compositional generalization settings can suffer from an exposure to a subset of classes during
training that are later queried in evaluation. This can make compositional generalization fail but can be alleviated by using
domain samples from classes that do not overlap with the class distribution which is queried during evaluation. Table 2 shows
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Table 9: Results when using a different loss function (SigLIP (Zhai et al., 2023)). The choice of loss function does not
change the trends observed for CLIP’s original contrastive loss.

Loss function Training data setup Clipart Sketch

CLIP

Natural-only 19.4 19.6
Leave-out-domain 27.1 31.8
CG low-diversity 18.7 16.4
CG high-diversity 28.6 28.6

SigLIP

Natural-only 20.4 19.7
Leave-out-domain 28.1 26.1
CG low-diversity 19.2 16.4
CG high-diversity 25.7 27.5
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Figure 11: Effective robustness plots for SigLIP. Refer to Figure 2 for effective robustness plots when using CLIP’s
original contrastive loss.

that replacing all DomainNet sketches with sketches that do not overlap with DomainNet’s classes (see Appendix A.3),
using ImageNet-Sketch, improves compositional generalization performance from 28.1% to 36.9%.

In practice, however, enforcing little to no class overlap may not always be feasible; particularly in zero-shot settings where
CLIP is applied to data and/or tasks that are unknown at training time. Therefore, we investigated the severity of this in
more detail. To do this, we partitioned the set of classes C = C1 ∪C2 ∪C3 in our test domain Di into three disjoint subsets
(see Figure 13a):

• C1: Classes that are seen during training and are queried during evaluation.

• C2: Classes that are not seen during training and are queried during evaluation. Note that only classes from C2 are
contained in the test set DC2

i .

• C3: Classes that are seen during training and are not queried during evaluation.

This partitioning allowed us to systematically assess the impact of class overlap on compositional generalization by
constructing training sets with varying mixtures of classes from C1 and C3.

For this experiment, we selected Sketch as our test domain.5 The subsets C1 and C2 were defined as described in Section 3,
meaning that C1 ∪ C2 represents the class distribution queried during evaluation (i.e., all DomainNet classes). For C3,
we used classes from ImageNet-Sketch (Wang et al., 2019) that do not overlap with the classes from DomainNet (see
Appendix A.3 for more details). Note that throughout all these experiments, the class distribution in the other domains Dj ̸=i

remained unchanged—that is, classes from C1 and C2 were included in training, while no classes from C3 were introduced.

As shown in Table 2 and Figure 13b (rightmost bar), training solely on samples from C3 significantly improves compositional
generalization performance compared to not seeing any test domain samples from Di (zero line) or only seeing samples from
classes C1 of Di (leftmost bar). To further investigate this, we trained CLIP models using samples from C1 ∪ C3 of the test
domain Di and gradually reduced the number of classes from C1, while keeping all other factors fixed. Figure 13b shows

5We chose Sketch due to the availability of a large class distribution from ImageNet-Sketch.
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Table 10: Results when using BLIP (Li et al., 2022). Using BLIP as a pre-training method does not change the trends
observed for standard CLIP. Note that the overall increased performance of BLIP is due to their usage of pre-trained image
and text encoders.

Training regime Training data setup Clipart Sketch

CLIP

Natural-only 19.4 19.6
Leave-out-domain 27.1 31.8
CG low-diversity 18.7 16.4
CG high-diversity 28.6 28.6

BLIP

Natural-only 37.1 35.7
Leave-out-domain 61.8 58.6
CG low-diversity 35.0 41.6
CG high-diversity 55.6 61.2
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Figure 12: Effective robustness plots for BLIP. Refer to Figure 2 for effective robustness plots when using standard CLIP.

that reducing class overlap (moving from left to right)—i.e., decreasing the number of C1 classes seen during training—
consistently improves compositional generalization performance. This reaffirms the detrimental effect of class overlap,
as observed in Table 2, but also highlights that increasing class diversity can help mitigate its impact on compositional
generalization performance.

Supervised classifiers We also investigated to what extent supervised classifiers are vulnerable to this bias. Table 11
confirms that supervised classifiers are also susceptible to it.

B.3. Closing The Generalization Gap

Table 6 clearly shows that there is a significant performance gap between the CG high-diversity with and without including
domain-specific samples of our test classes C2, even for domains like Clipart and Sketch where generalization seems to work
reasonably well. We conducted an interpolation experiment between the two settings with and without such samples to better
understand how many of these samples are actually required to close this “generalization gap”. To further investigate how
the generalization capability of a model impacts the required number of samples, we also performed the same experiment
for the CG low-diversity setting.

For a given test domain Di, we consider the number of training samples of our test set DC2
i to be 100% and then trained

additional CLIP models in which we successively added 5%, 10%, 15%, 20%, 40%, 60%, and 80% of training samples
from DC2

i to the training data. Note that we ensured that the overall dataset size remained unchanged.

Figure 14 shows that performance on the classes seems to follow a roughly linear relationship with the number of samples
allowed for all domains, except for the Quickdraw domain. For Quickdraw, the relationship seems to be log-linear instead,
which may be due to the fact that CLIP does not generalize at all for Quickdraw. This observation also relates to the findings
of Udandarao et al. (2024), who predict that a linear increase in samples leads only to a log-linear increase in zero-shot
performance. Across all domains and settings, we observed that to achieve the maximally possible performance, 100% of
the training samples from DC2

i are required.
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(b) Effect of different mixtures of the test domain’s classes C1 ∪ C3 seen during training.

Figure 13: Severity of class overlap on compositional generalization. a: We partitioned the classes C in the test domain
Di into three disjoint subsets: C = C1∪C2∪C3. During evaluation, both C1 and C2 are included in the query set, allowing
the model to predict any class from these subsets. However, the actual test set, DC2

i , only contains samples from C2. In
contrast, the classes in C3 are excluded from both the query and test sets. This partitioning allows us to investigate the
severity of class overlap for compositional generalization performance. In particular, we found that including classes of C1

led to a significant drop in balanced top-1 accuracy for compositional generalization—even performing worse than domain
generalization (Figure 2). On the other hand, replacing the class samples from C1 with the ones of C3 (which are not part of
the query set) resulted in a significant improvement in compositional generalization (Table 2). b: To investigate the severity,
we varied the mixture of classes from C1 and C3. We find that reducing classes from C1 (moving from left to right), while
keeping all other factors fixed, steadily improves compositional generalization performance (with the exceptions for the
class mixtures 25% C1 + 100% C3 and 1 class C1 + 100% C3).

Table 11: Supervised classifiers are also susceptible to the seen class bias. Supervised classifiers’ compositional
generalization also deteriorates due to a partial test domain overlap and replacing them with samples from non-overlapping
classes significantly improves compositional generalization.

Training data setup (Figure 1) Sketch

Leave-out-domain 27.4

CG high-diversity 22.2
w/ sketches of non-queried classes only 30.1 (+7.9)

B.4. Role of Language Supervision

Previous studies comparing the robustness of CLIP models and supervised classifiers either examined models trained on
different datasets or focused on low-diversity datasets consisting mostly of natural images, such as ImageNet-Captions
(Fang et al., 2022). Since both ImageNet-Captions and DomainNet provide class labels, we investigated how our domain
mixtures affect the robustness of supervised classifiers and compared the results to CLIP models.

Table 12 and Figure 15 show the results of our experiments on supervised classifiers. We found that CLIP models consistently
exhibit slightly higher robustness than their supervised counterparts, which may be due to the richness of captions (Xue
et al., 2024; Wen et al., 2024). Interestingly, CLIP’s advantages are more pronounced in compositional generalization
settings (CG low/high-diversity). However, in the domain generalization setting (Leave-out-domain), supervised classifiers
can sometimes achieve generalization comparable to CLIP.
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Figure 14: Interpolation between CG settings with and without domain-specific training samples of the test classes
C2. For each interpolation, we fitted both a linear and a log-linear regression model and visualized the fit with a lower mean
squared error (MSE). Balanced top-1 accuracy on the test classes appears to follow a roughly linear relationship with the
number of test samples included, except for Quickdraw, which shows a strong log-linear relationship.

Table 12: Performance comparison across supervised experiments. The robustness of supervised models (as measured
by balanced top-1 accuracy) also increases with domain diversity. However, supervised classifiers generalize slightly worse
than CLIP models (Figures 4 and 15).

Clipart Infograph Painting Quickdraw Sketch

Natural-only 17.6± 1.6 10.9± 0.8 32.6± 1.6 0.7± 0.1 15.0± 1.1

Leave-out-domain 30.8± 2.1 14.5± 1.2 35.7± 1.2 10.1± 0.5 27.4± 2.1

CG low-diversity 13.2± 0.6 9.7± 0.5 25.1± 0.9 0.0± 0.0 12.0± 1.1
CG high-diversity 25.0± 1.6 12.2± 0.7 28.6± 0.4 0.7± 0.4 22.2± 0.7

C. Additional Technical Details and Results for Section 6
C.1. Technical Details on Sparse Autoencoders

Following (Bricken et al., 2023; Huben et al., 2024), we used a Sparse Autoencoder (SAE) to extract interpretable features
from CLIP’s visual embeddings a ∈ Rp. The SAE is defined as follows:

SAE(a) := (g ◦ ϕ ◦ f)(a), (4)

where ϕ is a ReLU non-linearity, and f and g are linear encoder with weights Wf ∈ Rp×h or decoder with weights
Wg ∈ Rh×p, respectively. We trained the SAE with an L2 reconstruction loss and L1 sparsity regularization:

L(a) = ∥a− (g ◦ ϕ ◦ f)(a)∥22 + λ∥(ϕ ◦ f)(a)∥1, (5)

where λ governs the sparsity regularization strength.

We trained SAE’s on the activations of our CC12M CLIP models6 (see Appendix B.1). We used CC12M and the complete

6We also tried the CLIP models that were trained with ImageNet-Captions as base dataset but found that the SAE extracted poorly
interpretable features.
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Figure 15: Effective robustness plots for CLIP vs. supervised classifiers. While the general trends are very similar
between CLIP models and supervised classifiers, CLIP models typically generalizes better than the supervised classifiers.

DomainNet training set to train the SAE’s to identify interpretable features. The hidden dimension h was set to 4096, i.e., 4x
the embedding dimension of the CLIP model’s output dimensionality. We trained the SAE for 200 epochs using a batch
size of 4096. The regularization strength hyperparameter λ was set to 1e-4. To alleviate the dying neuron problem, dead
neurons were resampled every 500,000 training steps. Our implementation is based on the code published by Rao et al.
(2024) (https://github.com/neuroexplicit-saar/discover-then-name, License: MIT).

We trained one SAE for our natural-only baseline, two SAE’s for the leave-out-domain setting (with Clipart and Sketch as
the test domain), and another two SAEs for the CG high-diversity setting (also with Clipart and Sketch as test domain). For
each model, we analyzed the extent to which the top-k most activating SAE features are shared between the test domain
(Clipart or Sketch) and all other domains (not just the training domains).

To identify the top-k SAE features, we computed the SAE hidden representations (after applying the non-linearity ϕ) for
each sample of each class and domain. We then selected the top-k SAE features (with k ∈ {5, 10, 15, 20}) per class-domain
pair based on how frequently they ranked among the top-20 most activating features, i.e., largest activation magnitudes (see
Algorithm 1).

To measure feature sharing, we then calculated the percentage overlap between the top-k SAE features of the test domain
and those of each of the other domains. To yield a single overlap score per model, we averaged across classes C2, these
pairs of domains, and the four values of k (see Algorithm 2). Finally, we calculated the increase of the overlap score of the
corresponding leave-out-domain and CG high-diversity models over the natural-only baseline model.
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Algorithm 1 get topk features

input domain of interest Di, class of interest c, number of features to consider k
1: hist← 0 ∈ Rh // h is the number of concepts
2: for each image I ∈ Dc

i do
3: a← fCLIP(I) // CLIP image activation
4: w ← ϕ(fSAE(a)) // SAE concept activations
5: for each index i ∈ topk(w, 20) do
6: hist[i]← hist[i] + 1 // count top-20 activating concepts
7: end for
8: end for

output topk(hist, k) // return top-k most frequent features

Algorithm 2 measure feature sharing

input test domain Di

1: S ← ∅ // initialize empty set of scores
2: for each k ∈ {5, 10, 15, 20} do
3: for each class c ∈ C2 do
4: Fi ← get topk features(Di, c, k) // top-k features of test domain Di

5: for each other domain Dj ̸= Di do
6: Fj ← get topk features(Dj , c, k) // top-k features of domain Dj

7: s← |Fi∩Fj |
k // percentage overlap of Fi and Fj

8: S ← S ∪ {s}
9: end for

10: end for
11: end for
output 1

|S|
∑
s∈S

s // overlap averaged over domains Dj , classes c, and k

C.2. Technical Details on Center Kernel Alignment and Additional Results

Let XD1 ∈ RC×p and YD2 ∈ RC×p contain the C mean visual embeddings of each class for the domains D1 or D2,
respectively. Then, we compute the Gram matrices/kernels K = XD1(XD1)T and L = YD2(YD2)T that contain the
pairwise similarities of each pair of mean class embeddings. Note that we used a linear kernel here, as commonly done
in the representational similarity literature. Alternatively, we also tried a non-linear kernel (i.e., RBF kernel) with similar
results (see Figure 17). Center kernel alignment is defined by Kornblith et al. (2019) as follows:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
, (6)

where we used the used the unbiased Hilbert-Schmidt Independence Criterion (HSIC) estimator (Song et al., 2012) following
Nguyen et al. (2021), defined as follows:

HSIC(K,L) =
1

C(C − 3)

(
tr(K̃L̃) +

1T K̃11T L̃1

(C − 1)(C − 2)
− 2

C − 2
1T K̃L̃1

)
, (7)

where we set the diagonal elements of K and L to zero in K̃ or L̃, respectively.

We computed center kernel alignment between all pairs of domains for each class. Thereby, we can assess the representational
similarity for each class across the domains. For visualization, for each domain, we averaged over all classes to obtain a
representational similarity estimate. In the main text, we further averaged together the non-Quickdraw domains (all domains
are shown in Figures 16 and 17).

ADDITIONAL RESULTS

Figures 16 and 17 show results for all classes C, the classes seen during training C1, and the unseen classes C2. Interestingly,
we find that the representational gap widens for the unseen classes C2.
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(b) Seen classes only.
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(c) Unseen classes only.
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(e) Seen classes only.
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(f) Unseen classes only.

Figure 16: Linear center kernel alignment (CKA) similarity. Quickdraw has the lowest representational similarity across
domains. This particularly emphasized for the unseen classes C2 (c, f).

C.3. Technical Details on the Circuit Similarity Analysis and Additional Results

Attributing the causal effects of model components is a key goal of (mechanistic) interpretability research (Meng et al.,
2022; Marks et al., 2025; Mueller et al., 2024). We drew inspiration from them to analyze the level of sharing of the most
important CLIP’s model components, i.e., the axis-aligned neurons in its vision encoder, across domains. To do this, we first
must attribute the components’ importance via the indirect effect (Pearl, 2001).

Let m:l(I
d
clean) = al,nclean ∈ p be a p-dimensional neuron n in the l-th layer of model m for input image Iclean. Further, we

define al,npatch ∈ p as a corrupted baseline. The computation of the indirect effect is defined as follows:

IE = mL,c(I
d
clean|do(al = al,npatch))−mL,c(a

l,n
clean), (8)

where mL,c is the output logit for class c of the last layer L (note that we can obtain this logit through the dynamic zero-shot
weights that can be generated by CLIP’s text encoder, see Appendix A.5) and do(al = al,npatch) denotes the do-operator (Pearl,

2009) that intervenes on the computation of the CLIP model by setting the activations al to al,npatch.

Since there are lot of neurons in CLIP’s vision encoder, we sped up the computation through a linear approximation using
integrated gradients (Sundararajan et al., 2017), following Marks et al. (2025); Hanna et al. (2024):

ÎEig =

(∑
α

∇al,nml:(αa
l,n
clean + (1− α)al,npatch)

)
(al,npatch − al,nclean), (9)

where α ∈ {0, 1
N , · · · , N−1

N }) and we set al,npatch to 0. We adapted the codebase from Marks et al. (2025) (https:
//github.com/saprmarks/feature-circuits, License: MIT)—using nnsight (Fiotto-Kaufman et al., 2025,
https://github.com/ndif-team/nnsight, License: MIT) internally—for our implementation.

DISCOVERY OF CIRCUITS

We use above computation for the indirect effect to find the k most important neurons and k′ most important preceding
neurons of each of those neurons for each class of each domain. This approach is outlined below in more detail:

1. Identify the k most important neurons: We directly apply Equation 9. We used N = 10 steps for the linear
approximation and only retained the 10% most important neurons per layer. Note that these neurons represent the
nodes of the graph representing the circuit.
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(b) Seen classes only.
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(c) Unseen classes only.
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(d) All classes.
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(e) Seen classes only.
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(f) Unseen classes only.

Figure 17: Non-linear center kernel alignment (CKA) similarity. The results follow the same pattern as the linear CKA
(Figures 6a and 16): Quickdraw is the most representational dissimilar domain.

2. Identify the k′ most important preceding neurons of each neuron: We adapted Equation 9 to measure the effect of
preceding neurons n of layer l < l′ on the activations of neuron n′ in layer l′. Specifically, we replaced mL,c by ml′,n′

and measured the L2 change caused by the clean activations al,nclean and intervened activations αal,nclean + (1− α)al,npatch.
We also set N to 10. Note that this will yield us edges for the graph representing the circuit. After computing the
indirect effects of all preceding neurons, we only retained the k′ = 3 most important edges.

MEASURING CIRCUIT SIMILARITY

We compared the circuit similarity of pairs of graphs resorting to classical graph similarity measures.

Node-level similarity We computed the Jaccard index for the nodes NCdomain D1 , class c , NCdomain D2 , class c , as follows:

|NCdomain D1 , class c ∩NCdomain D2 , class c |
|NCdomain D1 , class c ∪NCdomain D2 , class c |

. (10)

Intuitively, this quantifies the degree of overlap between the most contributing model components for class c across domains
D1 and D2.

Graph-level (structural) similarity Above simple node overlap cannot capture more complex structural and hierarchical
similarities between circuits. Thus, we used the normalized Weisfeiler-Lehman subtree graph kernel (Shervashidze et al.,
2011). The Weisfeiler-Lehman graph kernel is popular graph kernel choice since (1) it can handle labeled, directed graphs
of different sizes, (2) it is expressive, and (3) scales well to large graphs. The main idea of the Weisfeiler-Lehman kernel is
the following procedure, given two labeled graphs, G1 and G2:

1. Multiset labeling and sorting: For each node n ∈ G1, create a multiset (unordered set with duplicates allowed)
consisting of the node’s n current label and the sorted labels of its neighbors. Repeat this step for each node n′ ∈ G2.

2. Label compression: Assign a unique new label to each of these multisets using a hash function.

3. Counting occurences: Count the occurrences of each compressed label to obtain the feature vectors ϕh(G1), ϕh(G2).

4. Relabeling: Replace the current node labels with the newly compressed labels.

We can repeat this procedure for h iterations and compute the similarity of graphs via:

K(G1, G2) = ⟨ϕ(G1), ϕ(G2)⟩ =
∑
h

ϕh(G1) · ϕh(G2) . (11)
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(a) All classes.
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(b) Seen classes only.
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(c) Unseen classes only.
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(d) All classes.
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(e) Seen classes only.
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(f) Unseen classes only.

Figure 18: Amount of shared neurons. The Quickdraw domains shares the least neurons. This is especially apparent for
the unseen classes C2 (c, f).

Table 13: Weisfeiler-Lehman similarities. Higher similarities mean higher circuit (graph) similarity. The Quickdraw do-
main exhibits the least degree of similarity, supporting our hypothesis that sharing of the circuits is critical for generalization.

Clipart Infograph Painting Quickdraw Real Sketch

All classes 0.281 0.246 0.266 0.218 0.273 0.273
Seen classes only 0.281 0.246 0.265 0.218 0.273 0.273
Unseen classes only 0.278 0.258 0.274 0.211 0.272 0.275

Finally, we normalize the kernel to obtain a similarity score between 0 and 1:

K̃(G1, G2) =
K(G1, G2)√

K(G1, G1) ·K(G2, G2)
. (12)

For our analysis, we used h = 3 iterations. Our implementation is based on the publicly available code from https:
//github.com/emanuele/jstsp2015, License MIT.

False positives In certain cases, the Weisfeiler-Lehman kernel can incorrectly identify non-isomorphic graphs as isomor-
phic. However, several factors reduce the chance of such false positives in our setting. Specifically, we used h = 3, which
yields a more expressive graph kernel. In addition, node names in the circuits encode global topological information (i.e.,
layer and neuron indices), which further reduces the chance of false positives. Finally, we verified that the circuits were
already distinguishable at the node level (i.e., at the 0-th iteration of the Weisfeiler-Lehman kernel).7

ADDITIONAL RESULTS

Figure 18 and Table 13 shows results for all classes C, the classes seen during training C1, and the unseen classes C2.
Interestingly, we find that, similar as for the representational similarities in Figures 16 and 17, nodes are less shared and
circuits are slightly less similar for the unseen classes C2.

7False positives can only occur if two graphs remain indistinguishable across all iterations of the Weisfeiler-Lehman kernel.
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